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Generalized parton distributions (GPDs) are studied at the hadronic (nonperturbative) scale within
different assumptions based on a relativistic constituent quark model. In particular, by means of a meson-
cloud model we investigate the role of nonperturbative antiquark degrees of freedom and the valence-
quark contribution. A QCD evolution of the obtained GPDs is used to add perturbative effects and to
investigate the GPDs’ sensitivity to the nonperturbative ingredients of the calculation at larger (experi-
mental) scale.
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I. INTRODUCTION

Generalized parton distributions (GPDs) are basic ingre-
dients in the description of hard exclusive processes (see
Ref. [1] and references therein). Not only are they general-
izations of the well-known parton distributions from
inclusive deep inelastic scattering (DIS), but being corre-
lation functions they also incorporate nontrivial behavior
of hadrons related to the nonperturbative regime of quan-
tum chromodymanics (QCD). At present, apart from the
preliminary studies of lattice QCD [2,3], one cannot cal-
culate GPDs from first principles, so one has to resort to
models or parametrizations.

In fact, the perturbative approach to QCD is able to
connect observables at different resolution scales, but the
realization of the complete project (i.e., to fully understand
the consequences of the dynamics of quarks and gluons)
requires the input of unknown nonperturbative matrix ele-
ments to provide absolute values for the observables at any
scale. In the present paper we intend to apply a radiative
parton model procedure which, starting from a low reso-
lution scale Q2

0, has been able to reproduce and predict
(see, e.g., Ref. [4] and references therein) the main features
of the experimental deep inelastic structure functions at
high momentum transfer. The procedure assumes that there
exists a scale where the short range (perturbative) part of
the interaction is negligible and, therefore, the glue and sea
are suppressed, and a long range (confining) part of the
interaction produces a proton composed by (three) valence
quarks, mainly [5]. Jaffe and Ross [6] proposed to ascribe
the quark model calculations of matrix elements to that
hadronic scale Q2

0. In this way, quark models summarizing
a great deal of hadronic properties may substitute for low-
energy parametrizations, while evolution to larger Q2 is
dictated by perturbative QCD.

In the following we study the nucleon’s GPDs within
specific hadron models and address the problem of evolv-
ing the input distributions to the experimental scale inves-
tigating the effects of different dynamical assumptions. In
particular, we want to investigate both the quark core
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structure of the nucleon and its chiral properties. In fact,
the new aspects of the GPDs with respect to the better
known parton distributions are related to the so-called
Efremov-Radyushkin-Brodsky-Lepage (ERBL) region
where the presence of dynamical q �q pairs, both in the
nonperturbative and perturbative regimes, plays a crucial
role.

The importance of the chiral structure of nucleons is
well established both experimentally and theoretically. The
pion cloud associated with chiral symmetry breaking was
first discussed in the DIS context by Feynman [7] and
Sullivan [8]. It leads to flavor symmetry violations in the
sea-quark distribution of the nucleons [9], naturally ac-
counting for the excess of �d (anti)quarks over �u (anti)-
quarks as observed experimentally through the violation
of the Gottfried sum rule [10–13]. As discussed by
Melnitchouk et al. [14], the relatively large asymmetry
found in these experiments implies the presence of non-
trivial dynamics in the proton sea which does not have a
perturbative QCD origin. In particular, a quantitative de-
scription of the entire region of the quark momentum
fraction x covered by the experiments requires a delicate
balance between several competing mechanisms. At larger
x the dynamics of the pion cloud provides the bulk of the
�d � �u asymmetry with DIS from the �N component of the
nucleon wave function, however also the �� arises in the
light-cone formulation of the meson-cloud model and it is
of some importance in DIS too.

Although the nucleon’s nonperturbative antiquark sea
cannot be attributed entirely to its virtual meson cloud [15],
the role of mesons in DIS is of primary importance, and the
idea was developed further giving origin to the meson-
cloud model (for a review of early work, see Refs. [16–18]
and references therein). The connection between this
model and the chiral properties of QCD was established
by investigating the nonanalytic behavior of the �d � �u
distribution [19] (see, however, [20]). The meson-cloud
picture is also suggested by QCD in the limit of large
numbers of colors Nc, where it becomes equivalent to an
-1  2005 The American Physical Society
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effective theory of mesons, in which baryons appear as
solitons, i.e., classical solutions characterized by a mean
meson field [21]. A realization of this idea is achieved in
the chiral quark-soliton model, where the effective action
is derived from the instanton vacuum of QCD, thus provid-
ing a microscopic mechanism for the dynamical breaking
of chiral symmetry [22]. Flavor asymmetry of the anti-
quark distributions arises in this model of the nucleon as a
subleading effect in the limit of large Nc [23].

An alternative approach to investigate the role of
q �q-pairs in DIS and to access the ERBL region, is consid-
ering the constituent quarks as complex systems [24]. Such
a scheme has been recently developed in relation to a
nonrelativistic constituent quark model, both for parton
distributions [25] and GPDs [26].

In the present work we will study the possibility of
integrating meson-cloud model effects into the evolution
of GPDs. To this end we will assume that GPDs can be
written in terms of double distributions [27], involving a
given profile function and the forward parton distribution
derived in some model. At the same time the model pro-
posed by Melnitchouk et al. [14] will be adapted to show
how the knowledge of the meson-cloud effects can be
incorporated within a relativistic quark-valence approach
to GPDs. The double distribution (DD) model will be
briefly recalled in Sec. II. Here the input parton distribution
is discussed both in terms of the pure valence contribution
derived in light-front relativistic quark models (Sec. II A)
and in the meson-cloud model (Sec. II B). Matching sea,
gluons and valence-parton distributions in QCD evolution
of the obtained GPDs is then briefly described in Sec. III,
and the results are discussed in Sec. IV. Some conclusions
are drawn in the final section.
II. MODELING GPDS WITH DOUBLE
DISTRIBUTIONS

In the following we shall concentrate our attention on
the chiral even (helicity conserving) distribution
Hq�x; �; Q2; t� for partons of flavor q at the hadronic scale
where the models we are going to discuss are assumed to
be valid to evaluate the twist-two amplitude. Such ampli-
tude occurs, for example, in deeply virtual Compton scat-
tering where a lepton exchanges a virtual photon of
momentum q� with a nucleon of momentum P�, produc-
ing a real photon of momentum q0� and a recoil nucleon of
momentum P0�. Then Q2 � �q�q� is the spacelike vir-
tuality that defines the scale of the process. In a symmetric
frame of reference where q� and the average nucleon
momentum P� � 1

2 �P
� � P0�� are collinear along the z

axis and in opposite directions, the quark light-cone mo-
mentum is k� � xP�, the invariant momentum square is
t � �2 � �P0� � P��2, and the skewedness � describes
the longitudinal change of the nucleon momentum, 2� �
���=P�.
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For the sake of simplicity we follow the common nota-
tion which explicitly indicates three variables only �x; �; t�
instead of four �x; �; Q2; t�. We shall come back to the
definition of Q2 when we discuss the values of the hadronic
scale Q2

0 and the QCD evolution of Hq in Q2.
We also introduce nonsinglet (valence) and singlet quark

distributions,

HNS�x; �; t� �
X
q

�Hq�x; �; t� � Hq��x; �; t�	

� HNS��x; �; t�; (1)

HS�x; �; t� �
X
q

�Hq�x; �; t� � Hq��x; �; t�	

� �HS��x; �; t�; (2)

respectively. Besides being symmetric or antisymmetric in
x, they are also symmetric under � ! �� due to the
polynomiality property [28].

The analogous GPD for gluons is symmetric in x, i.e.,

Hg�x; �; t� � Hg��x; �; t�; (3)

and reduces to the gluon density g�x� in the forward limit
(x ! x)

Hg�x; 0; 0� � xg�x�; x > 0: (4)

There are two distinct regions: the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) region, jxj > �, and the
ERBL region, jxj < �. The naming derives from the fact
that the GPD evolution equations in the region jxj > �
(jxj < �) reduce to the familiar DGLAP (ERBL) equations
in the limit � � 0 (� � 1).

The singlet and gluon distributions mix under evolution,
while the nonsinglet distribution does not.

GPDs depend on the invariant momentum transfer t. In
particular, the first moment in x of Hq�x; �; t� is indepen-
dent of � and related to the Dirac form factor of the proton.
Thus in phenomenological constructions of GPDs it has
been found convenient to assume a factorized t dependence
determined by some form factors. This simplifies the QCD
evolution considerably because in this way the t depen-
dences of quarks and gluons (which mix under evolution)
are not modified during evolution.

The t-independent part Hq�x; �� � Hq�x; �; t � 0� is
parametrized by a two-component form [27]:

Hq�x; �� � Hq
DD�x; �� � ��� � jxj�Dq

�
x
�

�
; (5)

where

Hq
DD�x; �� �

Z 1

�1
d�

Z 1�j�j

�1�j�j
d���x � � � ���Fq��;��:

(6)

The D-term contribution Dq in Eq. (5) completes the
parametrization of GPDs, restoring the correct polynomial-
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ity properties of GPDs [28,29]. It has a support only for
jxj � �, so that it is invisible in the forward limit. The D-
term contributes to the singlet-quark and gluon distribu-
tions and not to the nonsinglet distribution. Its effect under
evolution is at the level of a few percent [30], and in the
following it will be disregarded in the input GPDs.

According to Radyushkin’s suggestion [27], the DDs
entering Eq. (6) are written as

Fq��; �� � h��;��q���; (7)

where q��� is the forward quark distribution (for the flavor
q), and the profile function h��;�� is parametrized as
[27,31]

h��;�� �
��2b � 2�

22b�1�2�b � 1�

��1� j�j�2 � �2	b

�1� j�j�2b�1
: (8)

In Eq. (8), the parameter b determines the width of the
profile function h��; �� and characterizes the strength of
the � dependence of the GPDs. It is a free parameter for the
valence (bval) and sea (bsea) contributions to GPDs, which
can be used in such an approach as fit parameters in the
extraction of GPDs from hard electroproduction observ-
ables. The favored choice is bval � bsea � 1:0, correspond-
ing to maximum skewedness. With a similar assumption
adopted for the gluon distribution one defines bgluon � 2.
The limiting case b ! 1 gives h��;�� ! ����h��� and
corresponds to the �-independent ansatz for the GPD, i.e.,
Hq�x; �� ! Hq�x; � � 0� � q�x�, as used in Refs. [32,33].

In order to explicitly calculate Hq�x; �� in Eq. (5) knowl-
edge of the parton distribution q�x� is needed. In the two
following subsections details are given about the derivation
of q�x�.

A. Parton distributions and light-front relativistic
quark models

Following the lines of Ref. [34] in two recent papers
[35,36] we discussed a method to evaluate GPDs within
light-front constituent quark models (CQMs) at the scale
dominated by valence (constituent) degrees of freedom.
The comparison of these calculations with predictions in
the chiral soliton model and the MIT bag model, as well as
the consistency with lattice results for the first moments of
GPDs showed that all the phenomenology for large �x and
small t could be studied within the assumed relativistic
CQM. As a drawback of such an approach, the calculation
was restricted to the region x � � and the generation of q �q
contributions could have a perturbative origin only. In
contrast, within the DD-based model both ERBL and
DGLAP regions of quark GPDs are populated with any
input quark distribution q�x� (with or without sea contri-
bution). In this subsection we only consider valence quarks
leaving for the next subsection the case including the sea.

According to the approach of Refs. [35,36] the parton
distribution in relativistic light-front CQM takes this sim-
ple form:
034022
q�x;�2
0� �

X3
j�1

X
�i;!i

�!j!q

Z Y3
i�1

d ~ki�
�X3

i�1

~ki

�
�
�
x

�
k�j
M0

�
j��c	

� �f ~ki;�i; !ig�j
2; (9)

where k�j � �k0j � k3j �=
���
2

p
is the quark light-cone momen-

tum, and M0 �
P

i

�����������������
~k2i � m2

i

q
is the free mass for the three-

quark system. ��c	
� �f ~ki;�i; !ig� is the canonical wave func-

tion of the nucleon in the instant form; under the assump-
tion that only valence quarks are active, it is obtained by
solving an eigenvalue equation for the mass operator
within relativistic CQMs.

In the following we will discuss results based on the
mass operator for the hypercentral CQM [37], i.e.,

M �
X3
i�1

�����������������
~k2i � m2

i

q
�

!
y
� &ly; (10)

with
P

i
~ki � 0, and mi being the constituent quark masses,

y �
�����������������
~(2 � ~�2

q
is the radius of the hypersphere in six

dimensions and ~( and ~� are Jacobi coordinates. For a
discussion of the model see Refs. [37,38].

The distribution (9) automatically fulfills the support
condition and satisfies the (particle) baryon number and
momentum sum rules at the hadronic scale �2

0 where the
valence contribution dominates the twist-two response:Z

dxq�x;�2
0� � Nq; (11)

with Nq being the number of valence quarks of flavor q,Z
dxx�u�x;�2

0� � d�x;�2
0�	 � 1; (12)

and u�x;�2
0� � uV�x;�2

0� and d�x;�2
0� � dV�x;�2

0�, the up
and down valence-quark distributions.

B. Parton distributions and the meson-cloud model

Let us now introduce the meson-cloud model to incor-
porate q �q contributions into the valence-quark model of
the parton distribution discussed in the previous section.

The basic hypothesis of the meson-cloud model is that
the physical nucleon state can be expanded (in the infinite
momentum frame (IMF) and in the one-meson approxima-
tion) in a series involving bare nucleons and two-particle,
meson-baryon states. Its wave function is written as the
sum of meson-baryon Fock states

jpi �
����
Z

p
jpibare �

X
BM

Z
dyd2 ~k?-BM�y; k2?�

� jB�y; ~k?�;M�1� y;� ~k?�i: (13)

Here -BM�y; k2?� is the probability amplitude for the pro-
ton to fluctuate into a virtual baryon-meson BM system
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with the baryon and meson having longitudinal momentum
fractions y and 1� y and transverse momenta ~k? and
� ~k?, respectively. Z is the wave function renormalization
constant and is equal to the probability to find the bare
proton in the physical proton.

The lowest lying fluctuations for the proton which we
include in our calculation are

p�uud� ! n�udd����u �d�;

p�uud� ! p�uud��0

�
1���
2

p �d �d � u �u	
�
;

p�uud� ! ���uud��0

�
1���
2

p �d �d � u �u	
�
;

p�uud� ! �0�udd����u �d�;

p�uud� ! ����uuu���� �ud�:

(14)

In DIS the virtual photon can hit either the bare proton p or
one of the constituents of the higher Fock states. In the
IMF, where the constituents of the target can be regarded as
free during the interaction time, the contribution of the
higher Fock states to the quark distribution of the physical
proton, can be written as the convolution

�qp�x� �
X
MB

"Z 1

x

dy
y

fMB=p�y�qM

�
x
y

�

�
Z 1

x

dy
y

fBM=p�y�qB

�
x
y

�#
; (15)

where the splitting functions fMB=p�y� and fBM=p�y� are
related to the probability amplitudes -BM by

fBM=p�y� � fMB=p�1� y� �
Z 1

0
dk2?

X
�;�0

j-��0

BM�y; k2?�j
2:

(16)

Here -��0

BM�y; k2?� is the probability amplitude for a hadron
with given positive helicity to be in a Fock state consisting
of a baryon with helicity � and a meson with helicity �0

[39]. It can be calculated by using time-ordered perturba-
tion theory in the IMF. The quark distributions in a physi-
cal proton are then given by

qp�x� � Zqbarep �x� � �qp�x�; (17)

where qbarep are the bare quark distributions and the renor-
malization constant Z is given by

Z � 1�
X
MB

Z 1

0
dyfMB=p�y�: (18)

The amplitudes -��0

BM�y; k2?� may be expressed in the fol-
lowing form
034022
-��0

BM�y; k2?� �
1

2�
������������������
y�1� y�

p ��������������
mHmB

p

m2
H �M2

BM�y; k2?�

� GHBM�y; k2?�V
��0

IMF�y; k2?�; (19)

where mH is the physical mass of the fluctuating hadron [in
present case the proton, but the approach can be general-
ized (e.g. Ref. [39])], and

M 2
BM �

k2? � m2
B

y
�

k2? � m2
M

1� y
(20)

is the invariant mass of the meson-baryon fluctuation.
V��0

IMF�y; k2?� describes the vertex and contains the spin-
dependence of the amplitude. The exact form of the
V��0

IMF�y; k2?� can be found for various transitions in
Refs. [16,40]. Because of the extended nature of the verti-
ces one has to introduce phenomenological vertex form
factors, GHBM�y; k2?�, which parametrize the unknown dy-
namics at the vertices. We use the popular parametrization

GHBM�y; k2?� �
�

�2BM � m2
H

�2BM �M2
BM�y; k2?�

�
2
: (21)

In order to calculate the meson-cloud corrections to the
quark distributions we have to specify the coupling con-
stants entering V��0

IMF�y; k2?� and the cutoff parameters�BM.
We use the numerical values as given by [14,39], i.e.,
g2NN�=4� � 13:6 and g2N��=4� � 11:08 GeV�2. The
couplings of a given type of fluctuation with different
isospin components are related by isospin Clebsch-
Gordon coefficients, gpn�� � �

���
2

p
gpp�0 , gp�0�� �

�gp���0=
���
2

p
� gp�����=

���
3

p
, with gNN� � gpp�0 and

gN�� � gp����� . The violation of the Gottfried sum rule
and flavor symmetry puts also constraints on the magnitude
of the cutoff parameters. The values �MB � 1:0 GeV and
�MB � 1:3 GeV for the �N and �� components, respec-
tively, give contributions to the �u and �d which are consis-
tent with the requirement that the meson-cloud component
of the sea-quark contribution cannot be larger than the
measured sea-quark and also with flavor symmetry viola-
tion [14]. With this choice of the parameters the probabil-
ities of the fluctuations are given by PN�=p � 13%,
P��=p � 11%.

In the following we will assume that at the lowest
hadronic scale the bare nucleon is described by the rela-
tivistic quark model wave function formulated within the
light-front dynamics and, as a consequence, that only
valence partons will contribute to the partonic content of
the bare nucleon [35,37]. The full (nonperturbative) anti-
quark content will be generated by the meson-cloud
mechanism described by Eq. (15). The partonic content
of the � and the pion will be consistently evaluated within
the same scheme assuming light-front dynamics and va-
lence contributions only. Within these approximations the
meson-cloud corrections at the hadronic scale �2

0 read
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qp�x� � Zqbarep �x� �
Z 1

x

dy
y
�fN�=p�1� y� � f��=p�1� y�	

� q�

�
x
y

�
�

Z 1

x

dy
y
�fN�=p�y� � f��=p�y�	q�

�
x
y

�
;

(22)

where qp � �u � uV � �u; d � dV � �d� include both va-
lence and sea contribution coming from the meson-baryon
fluctuations, while qbarep � �ubareV ; dbareV � include the valence
contribution only as discussed in Sec. II A. The conserva-
tion of both momentum and baryon number sum rules is
guaranteed by the correct formulation of meson-cloud
approach, in particular, by the momentum conservation
due to the symmetry fBM=p�y� � fMB=p�1� y� in
Eq. (15) and by the renormalization factor Z of Eqs. (13),
(17), and (18).

1. The nucleon

In order to model the partonic content at the scale �2
0 for

the nucleon, the � and the pion, we make use of the light-
front approach discussed in Sec. II A and calculate the
diagonal component of the generalized parton distribu-
tions, i.e., the inclusive parton distributions by means of

qbarep �x� � q�x;�2
0�; (23)

where q�x; �2
0� is given by Eq. (9).

2. The �

The calculation of the cloud contribution involves the
explicit form for the parton distributions q��x� of the �
[see Eq. (22)]; we use the results of the relativistic model
for the nucleon and the isospin symmetries:

u����x;�2
0� �

3

2
up�x;�2

0�; d����x;�2
0� � 0;

u���x;�2
0� � up�x;�2

0�; d���x;�2
0� � dp�x;�2

0�;

u�0�x;�2
0� �

1

2
up�x;�2

0�; d�0�x;�2
0� � 2dp�x;�2

0�;

u���x;�2
0� � 0; d���x;�2

0� � 3dp�x;�2
0�: (24)
3. The pion

The canonical wave function of the pion is taken from
Ref. [41] and reads

��c	� ~k1; ~k2;�1; �2� �
1

�3=4�3=2

�
1

2
�1
1

2
�2j00

�
� exp��k2=�2�2�	; (25)

with ~k � ~k1 � � ~k2, x � x1 � k�=M0; x2 � 1� x,
M2
0 � � ~k2? � m2

q�=x � � ~k2? � m2
q�=�1� x�, and � �

0:3659 GeV. The choice of the model from Ref. [41] is
consistent with the hypercentral CQM we adopt for the
034022
nucleon, in fact the central potential between the two
constituent quarks is described as a linear confining term
plus Coulomb-like interaction. The canonical expression
(25) represents a variational solution to the mass equation.

The light-front parton distribution of the �� is given by

q���x� � v��x;�2
0�

�
X
�i

X
j

�jq

Z Y2
i�1

d ~ki�
�X2

i�1

~ki

�
�
�
x

�
k�j
M0

�
j��c	

� �f ~ki;�ig�j
2: (26)

Isospin symmetry imposes u��

V � �d��

V � �u��

V � d��

V �
v��x;�2

0�, while, due to the model restrictions, the pion
sea at the hadronic scale vanishes: �u��

� d��
� u��

�
�d��

� 0.
III. MATCHING SEA, GLUONS AND
VALENCE-PARTON DISTRIBUTIONS IN QCD

EVOLUTION

In order to extract the parton distributions of the nucleon
including the sea (cloud) contributions we need to match
sea, valence and gluons within the radiative parton model
and to identify the matching scale Q2

0 consistent with the
QCD evolution equation [42,43].

We assume that the gluon distribution has a valence-like
form and reads

G�x;Q2
0� �

Ng

3
�uV�x;Q2

0� � dV�x;Q2
0�	; (27)

where Ng represents the number of gluons. SinceR
dx�uV�x;Q2

0� � dV�x;Q2
0�	 � 2� 1 because of baryon

number conservation, we have

Z
dxG�x; Q2

0� �
Ng

3

Z
dx�uV�x;Q2

0� � dV�x;Q2
0�	 � Ng:

(28)

Following Glück et al. [42], we fix Ng � 2, the minimum
number of gluons one needs to build a color singlet state. In
spite of the simplicity of the assumption in Eq. (27), the
analysis of Refs. [42,43] shows that the crucial ingredient
in the formulation of the radiative parton model is the
amount of gluon momentum more than its actual form.
Of course, to be really predictive one has to fit the form of
the gluon distribution in a quite precise way, an accuracy
which goes beyond the aim of the present study.

The total momentum carried at the scale Q2
0 (the scale of

the physical proton, which will be larger than the scale of
the bare proton �2

0 made up of three valence only) must
fulfill the requirement
-5
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FIG. 1. �d � �u distribution: at the scale Q2
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Z
dxx�G�x;Q2

0� � uV�x;Q2
0� � dV�x;Q2

0��

2� �u�x;Q2
0� �

�d�x;Q2
0��	 � 1; (29)

and consequently

Z
dxx�uV�x;Q2

0� � dV�x;Q2
0�	

�
1

1�
Ng

3

�1�
Z

dx2x� �u�x;Q2
0� �

�d�x;Q2
0��	 � 0:52:

(30)

In conclusion, by using the notation hfin �
R

dxxn�1f�x�
for the moments, we have huV � dVi2 � 0:52, hGi2 �
0:35, h2� �u � �d�i2 � 0:13, consistent with a next-to-leading
order (NLO) evolution of the moments (in the DIS renor-
malization scheme) with Q2

0 � 0:27 GeV2 and �NLO �
0:248 GeV [42,43].

The actual values of Q2
0 are fixed [43] evolving back

unpolarized data, until the valence distribution matches the
required momentum huV � dVi2 � 0:52. The procedure
makes use of the valence contribution only, and it does
not depend on the renormalization scheme. The value of
�NLO is suggested by the analysis of Glück et al. [42], the
coupling �s�Q2

0�jNLO is obtained evolving back the valence
distribution as previously discussed, and Q2

0 is found by
solving numerically the NLO transcendental equation

ln
Q2
0

�2NLO
�

4�
�0�s

�
�1
�20
ln

4�

�0�s
�

�1
�20

�
� 0; (31)

which assumes the more familiar expression

�s�Q2�

4�
�

1

�0 ln�Q
2=�2NLO�

�
1�

�0
�20

lnln�Q2=�2NLO�

ln�Q2=�2NLO�

�
(32)

only in the limit Q2 � �2NLO (an interesting discussion
about the effects of the approximation (32) can be found in
Ref. [44]).

The hadronic scale, �2
0, consistent with the presence of

valence degrees of freedom only (as discussed in Sec. II A),
is much lower and consistent with the constituent quark
mass, its actual value being �2

0 � 0:094 GeV2. The NLO
evolution of the unpolarized distributions is performed
following the solution of the renormalization group
equation in terms of moments, i.e., hf�Q2�in �R
1
0 dxf�x;Q2�xn�1, and involves kernels which have been

computed up to NLO in perturbation theory [45]. Since, in
our case, the starting points for the evolution (�2

0; Q
2
0) are

rather low, the form of the equations must guarantee com-
plete symmetry for the evolution from �2

0 to Q2 � �2
0 and

back avoiding additional approximations associated with
Taylor expansions and not with the genuine perturbative
QCD expansion [43,44].
034022
In Fig. 1 we compare our results for the �d � �u difference
with the data from the E866 experiment [12]. A QCD
evolution with an SU(6) symmetric input introduces a
very small amount of asymmetric sea at the experimental
scale. Within our approach such an assumption corre-
sponds to the perturbative contribution coming from three
valence quark distributions at the lowest hadronic scale as
predicted by the relativistic model of Eq. (9) [35]. The
presence of the nonperturbative sea introduced by means of
the meson-cloud model discussed in the present section
improves quite substantially the comparison with the ex-
perimental data. In particular let us note: (i) the important
role played also by perturbative evolution in the region x <
0:1 once the nonperturbative sea and gluon content is
introduced at the hadronic scale Q2

0; (ii) the satisfactory
result in spite of our simple model. All evolutions have
been performed according to Ref. [43]

IV. RESULTS AND DISCUSSION

Results are presented in this section according to the
model based on DDs as described in Sec. II. In parti-
cular, we will take: (i) forward parton distributions with
only valence quarks (Sec. II A) at input scale �2

0 �
0:094 GeV2 for the DDs, and (ii) parton distributions
generated including meson-cloud corrections as in
Eq. (22) and matched with the gluon distribution at an
input scale Q2

0 � 0:27 GeV2, as described in Sec. II B. In
both cases our input GPDs are continuous functions all
over the whole range x 2 ��1; 1	. The t dependence is
dropped from the very beginning and could be reintro-
duced in the final results by an appropriate t-dependent
factor. The D-term is omitted as well.

In addition to the results at the hadronic scale we will
discuss the evolution of GPDs at higher scale. The QCD
-6
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evolution was numerically performed to NLO accuracy (in
the MS scheme), according to a modified version of the
code of Ref. [30] (see also [46,47]). The modifications we
introduced in the main code are basically due to the need of
a complete NLO evolution which makes use of the correct
NLO transcendental Eq. (31). The original code makes use
of the simplified expression (32) largely unsatisfactory for
our purposes.

In Fig. 2 results are shown for the singlet-quark, non-
singlet-quark and gluon GPDs obtained with no initial
gluons and an input q��� in Eq. (7) simply given by the
bare (valence) parton distribution qbarep �x�, Eq. (9), derived
from the hypercentral CQM. The model already gives a
nonvanishing contribution to quark GPDs in the ERBL
region at the hadronic scale �2

0 without introducing dis-
continuities at x � � and with a weak � dependence. In
particular, the absence of the sea contribution gives HS �
HNS at x > �. After evolution up to Q2 � 5 GeV2 GPDs
are almost confined into the ERBL region with a significant
� dependence.

This behavior is in agreement with previous studies of
the GPD evolution showing that as the resolution scale
increases the distributions are swept from the DGLAP
domain to lie fully within the ERBL region [48,49].
Functions with support entirely in the timelike ERBL
region jxj < � are never pushed out of the ERBL domain.
In fact, the evolution in the ERBL region depends on the
DGLAP region, whereas the DGLAP evolution is indepen-
dent of the ERBL region.
034022
The same GPDs obtained when the input is implemented
with the sea according to the meson-cloud model, i.e.,
qp�x� of Eq. (22), are shown in Fig. 3. Now, the gluon
GPD does no more vanish at the initial hadronic scale, that
has to be redefined at Q2

0 � 0:27 GeV2 according to the
conclusion of Sec. III. After evolution the qualitative result
is similar to the case without the sea in spite of a more
evident � dependence of the singlet-quark GPD at the input
hadronic scale. However, the shape of the non-singlet-
quark GPD around x � 0 is sensitive to the input, and
the � dependence of the GPDs size is in general less
pronounced.
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Results have been presented for QCD evolution up to
Q2 � 5 GeV2. This is already a value where GPDs have
reached a stable configuration with respect to their asymp-
totic shape. In fact, the largest effects of evolution modify
the input GPDs within the first few GeV2 in the Q2 evolu-
tion, as can be seen in Figs. 4–6, where the singlet-quark,
non-singlet-quark and gluon distributions are plotted at
� � 0:2 as a function of Q2. A similar behavior has been
also found for the valence u GPD in the model of Ref. [26].

The results discussed until now have been obtained with
the usual choice bval � bsea � 1 and bgluon � 2 (compare
Eq. (8) and the discussion of Sec. II). It is known [50,51]
that in the DD-based model GPDs around x � � depend on
forward densities at x � �, with a special sensitivity to the
sea-quark density. This is particularly critical when using
q�x� and xg�x� taken from the global parton analyses [52]
because their singular behavior at x � 0 is responsible for
a substantial and unrealistic enhancement of the quark
singlet GPD relative to parton density in the DGLAP
region at x � �. In the model adopted here this singularity
does not occur. Nevertheless, introducing the sea has non-
negligible effects on the size of the ERBL response, espe-
cially for the gluon distribution, as can be appreciated by
looking at Fig. 7, where the same curves for � � 0:1 from
Figs. 2 and 3 are directly compared.

The value of the parameter b in the profile function
h��;��, Eq. (8), determines its width and has been shown
to be inversely related to the enhancement of the singlet
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quark GPD [47,50,51]. In principle, one could choose b
varying from the adopted values up to infinity, with a
Dirac-delta-like width and quark GPDs reducing to parton
densities. The b dependence of GPDs in the DD-based
model including the sea contribution according to the
meson-cloud model is illustrated in Figs. 8 and 9 for � �
0:1 and � � 0:5, respectively. Only the ERBL region is
affected by the choice of b. At the input hadronic scale the
b dependence is strong, increases with � and affects all
GPDs, not only the non-singlet-quark GPD. NLO evolu-
tion greatly reduces such a b dependence, and a similar
behavior is found for the evolution of GPDs also at LO.

As a final remark let us discuss the validity of our
evolution procedure. As already mentioned the evolution
has been performed by using a code due to Freund and
McDermott and modified to restore the correct NLO cou-
pling constant through the transcendental Eq. (31) (see
discussion in the previous section). The modification plays
a crucial role when the evolution starts from low hadronic
input as in the present investigation. With the caveat that
perturbative stability can be tested only at the level of
physical cross sections or observables like the unpolarized
structure function F2 (see, for example, Ref. [53]), we
show in Fig. 10 the results of LO and NLO evolution for
singlet, nonsinglet and gluon distributions up to Q2 �
5 GeV2 starting from a hadronic scale as low as Q2

0 �
0:27 GeV2 (where sea contributions are included). In the
singlet and nonsinglet sectors, the results at LO and at NLO
are quite close, showing that the evolution is clearly under
control and converging. Similar results hold also in the
case of the evolution of GPDs from the lower scale of
�2
0 � 0:094 GeV2, without the sea contribution. Only the

gluon distribution shows larger discrepancy between LO
034022
and NLO evolution. This is not a drawback of our model as
can be seen from analogous results of Ref. [30] which
make use of the standard (GRV98) [52] parametrization
for the diagonal partonic input at Q2

0 � 0:36 GeV2, com-
parable with our input scale. In fact, it is well known that
also in the case of parton distribution functions generated
from low-scale parametrizations, NLO gluons are affected
by renormalization scale dependence, a problem not yet
addressed for GPDs and deserving further investigation.
V. CONCLUSIONS

Different inputs at the hadronic scale have been consid-
ered in the QCD evolution of GPDs to study sensitivity of
the results to the nonperturbative nature of the low-scale
hadronic structure. In particular, the meson-cloud model
was assumed to include sea quarks in the partonic content
at the hadronic scale. Matching the sea and gluon distri-
butions with the valence-quark distributions derived in a
relativistic CQM, one starts evolution with continuous
functions all over the range �1 � x � 1. From the results
presented here we can draw the following conclusions.

As already noticed in previous analyses [48,49,54], evo-
lution in the DGLAP region is not very sensitive to the
input. The reason is twofold. At large x the valence con-
tribution dominates at the input hadronic scale and, as the
scale increases, the distributions are swept from the
-9
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DGLAP domain to lie entirely in the ERBL region. In
addition, evolution never pushes the input distributions
from the ERBL to the DGLAP region which then evolves
independently of the ERBL input. In contrast, the ERBL
region is rather sensitive to the input including or not the
sea.

Because of the mixing between singlet and gluon dis-
tributions in the evolution equations, even with a vanishing
gluon distribution at the hadronic scale one obtains a
significant gluon GPD in the ERBL region after evolution,
peaked around x � 0. The peak height depends on the
input and is higher when the sea is included.

The present results focus on the ERBL region as the
most interesting one to look at the nonperturbative effects
034022
surviving evolution. This is suggesting that one has to
investigate suitable processes under appropriate kinematic
conditions to study such effects. An analysis of possible
observables is in progress.
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