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Exotic hybrid mesons in hard electroproduction
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We estimate the sizeable cross section for deep exclusive electroproduction of an exotic JPC � 1��

hybrid meson in the Bjorken regime. The production amplitude scales like the one for usual meson
electroproduction, i.e., as 1=Q2. This is due to the nonvanishing leading twist distribution amplitude for
the hybrid meson, which may be normalized thanks to its relation to the energy-momentum tensor and to
the QCD sum rules technique. The hard amplitude is considered up to next-to-leading order in �S and we
explore the consequences of fixing the renormalization scale ambiguity through the Brodsky-Lepage-
Mackenzie (BLM) procedure. We study the particular case where the hybrid meson decays through a �	
meson pair. We discuss the �	 generalized distribution amplitude and then calculate the production
amplitude for this process. We propose a forward-backward asymmetry in the production of � and 	
mesons as a signal for the hybrid meson production. We briefly comment on hybrid electroproduction at
very high energy, in the diffractive limit where a QCD Odderon exchange mechanism should dominate.
The conclusion of our study is that hard electroproduction is a promising way to study exotic hybrid
mesons, in particular, at JLAB, HERA (HERMES), or CERN (Compass).
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I. INTRODUCTION

Within quantum chromodynamics, hadrons are de-
scribed in terms of quarks, antiquarks, and gluons. The
usual, well-known, mesons are supposed to contain quarks
and antiquarks as valence1 degrees of freedom while glu-
ons play the role of carrier of interaction, i.e., they remain
hidden in a background. On the other hand, QCD does not
prohibit the existence of the explicit gluonic degree of
freedom in the form of a vibrating flux tube, for instance.
The states where the q �qg and gg configurations are domi-
nating, hybrids and glueballs, are of fundamental impor-
tance to understand the dynamics of quark confinement
and the nonperturbative sector of quantum chromodynam-
ics [1–5].

The study of these hadrons outside the constituent quark
models, namely, exotic hybrids, is the main reason of the
present paper. We investigate how hybrid mesons with
JPC � 1�� may be studied through the so-called hard
reactions. We focus on deep exclusive meson electropro-
duction (see, for instance [6]) which is well described in
the framework of the collinear approximation where gen-
eralized parton distributions (GPDs) [7] and distribution
amplitudes [8] describe the nonperturbative parts of a
factorized amplitude [9].
e 7644 du CNRS
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e degrees of freedom define the charge and other
bers of corresponding hadrons, while the sea
do not change the quantum numbers.
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In a previous paper [10] we showed that contrary to
naive expectations, the amplitude for the electroproduction
of an isotriplet exotic meson with JPC � 1�� may be
written in a very similar way as the amplitude for nonexotic
vector meson electroproduction. The main observation of
our work was that the quark-antiquark correlator on the
light cone includes a gluonic component due to gauge
invariance and leads to a leading twist hybrid light-cone
distribution amplitude. In this paper, we extend our analy-
sis of the electroproduction process and calculate the dif-
ferential cross section as a function of Q2.

We also study the hybrid meson as a resonance in the
reaction ep! ep��0	�. The first experimental investiga-
tion of the hybrid with JPC � 1�� as the resonance in
��	 mode was implemented by the Brookhaven
Collaboration E852 [11]. Present candidates for the hybrid
states with JPC � 1�� include �1�1400� which is mostly
seen through its �	 decay and �1�1600� which is seen
through its �	0 and �� decays [12]. Theoretically these
states are objects of intense studies [1], mostly through
lattice simulations [5].
II. HYBRID MESON PRODUCTION AMPLITUDE

We propose to study the exotic hybrid meson by means
of its deep exclusive electroproduction, i.e.,

e�k1� � N�p1� ! e�k2� �H�p� � N�p2�; (1)

where we will concentrate on the subprocess:

��
L�q� � N�p1� ! HL�p� � N�p2� (2)
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when the baryon is scattered at small angle. This process is
a hard exclusive reaction due to the transferred momentum
Q2 being large (Bjorken regime). Within this regime, a
factorization theorem is valid, at the leading twist level,
which claims that a partonic subprocess part described in
perturbative QCD (pQCD) can be detached from universal
soft parts, which are generalized parton distributions and
meson distribution amplitudes. Below we will analyze in
more details how this factorization theorem applies to the
process under study.

In this paper, the main object of our investigation is the
isotriplet of mesons with quantum numbers JPC � 1��.
Such mesons can be named as exotic mesons because they
do not exist within the usual quark model. To illustrate the
latter we shortly remind the main steps of the description
and classification of meson states in the quark model.

A. Quark model and spectroscopy

It is well known that in the quark model the hadrons,
mesons, and baryons are bound states of quark-antiquark
or three-quarks systems. Let us consider the mesons, i.e.,
the quark-antiquark systems. Their total angular momen-
tum results from the summation of spin S and orbital L
angular momenta of quarks. Neglecting a spin-orbital in-
teraction, the quantum numbers S and Lmay be considered
as additional quantum numbers for the classification of
hadron states. Therefore, the eigenvalues of the squares
of the angular momenta read:

J 2 � J�J� 1�; S2 � S�S� 1�;

L2 � L�L� 1�; J � S�L;
(3)

where the number L may take all positive integer values
(including zero). The meson octets correspond to the case
where S � 0, 1. For given values of S and L, the total
angular momentum J can take the values

J � S� L; S� L� 1; . . . ; jS� Lj: (4)

The values S and L are related to the C- and P-parity of the
quark-antiquark system in the form:

C � ���L�S; P � ���L�1: (5)

Consequently, in the quark model, the quantum numbers S,
L, J, P,C and the relations between them (4) and (5), allow
to introduce the following classification of the meson
states:
(1) S
 � 0, L � J:

JPC � 0��; 1��; 2��; 3��; . . . (6)
(2) S
2Within the infinite momentum frame, the parameter 
 may be
chosen as P�. Here, A� � �A0 � A3�=

���
2

p
.

� 1, L � 0, J � 1:

JPC � 1�� (7)
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(3) S
-2
� 1, L � 1, J � 2, 1, 0:

JPC � 0��; 1��; 2�� (8)
(4) S
 � 1, L � 2, J � 3, 2, 1:

JPC � 1��; 2��; 3�� (9)
and so on. From this, one can see the mesons with JPC �
0��; 0��; 1��; . . . ; are forbidden. However, such mesons
may be described beyond the quark model. Indeed, we may
add an extra degree of freedom (a gluon, for instance) to
get the needed quantum numbers, see for instance [3].
Below we will consider this case in more details.

B. Kinematics and leading order amplitude

Let us fix the kinematics of the deep electroproduction
process. We are interested in the scaling regime where the
virtuality of the photon Q2 � �q2 is large and scales with
the energy of the process. We denote by p1 (p2) the
momentum of the incoming (outgoing) nucleon, while p
is the momentum of the longitudinally polarized hybrid
meson of mass MH. We construct the average momentum
P and transferred momentum 	:

P �
p2 � p1

2
; 	 � p2 � p1; 	2 � t: (10)

It is convenient to introduce the following two light-cone
vectors:

n� � 
�1; 0T; 1�; n �
1

2

�1; 0T;�1�;

n� 
 n � 1;
(11)

where 
 is an arbitrary dimensionful parameter.2 Then the
Sudakov decompositions for all the relevant momenta take
the form:

	���2�n����M
2n��	T

�; 	T 
n�	T 
n� �0;

P��n���
M2

2
n�; P2�M2; ��

����������
�	2

p

2M
�1;

q���2~�n���
Q2

4~�
n�;

p��q��	��2��� ~��n���
�
Q2

4~�
��M2

�
n��	T

�:

(12)

Here, the parameters � and ~� are related by

M2
H � 4��� ~��

�
Q2

4~�
� �M2

�
� 	2

T: (13)

The photon longitudinal polarization vector can be written
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as

"L� �
2~�
Q
n�� �

Q

4~�
n�; (14)

where the notation Q �
������
Q2

p
is introduced.

The leading order amplitude for the process (1) corre-
sponding to the diagrams in Fig. 1 is

A � "�L
Z
d	eiq
	hN�p2�H�p�j

 S
 A��	�

jN�p1�i; (15)

where the S-matrix is given by

S � Texp
�
i
Z
d4x�LQCD�x� �LQED�x��

�
: (16)

Applying the factorization theorem, this amplitude can be
written at leading twist and when �t� Q2 as

A �
Z 1

0
dz

Z 1

�1
dx�H�z;�2�H�x; z;Q2; �2; �2

R�F�x;�
2�

� �H �H � F; (17)

where the parameters �2 and �2
R are the factorization and

renormalization scales, respectively. Throughout this pa-
per, we will adopt the ‘‘naive’’ convention that � � �R.
The arguments in favor of such a choice in the case of the
pion form factor are discussed, e.g., in [13,14]. In what
follows we neglect the possible influence of another scale
choice discussed in [14] on the final result. In Eq. (17),H is
the hard part of amplitude which is controlled by pertur-
bative QCD. The hybrid meson distribution amplitude �H
describes the transition from the partons to the meson, and
F denotes generalized parton distributions which are re-
lated to nonperturbative matrix elements of bilocal opera-
tors between different hadronic states.
qγ∗ (    )

N(p1) N(p2)

H(p)

FIG. 1. Typical diagram describing the electroproduction of a
meson at lowest order. The gray blobs are nonperturbative matrix
elements, namely, the meson distribution amplitude and the
nucleon generalized parton distribution.
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More precisely, the factorized amplitude (17) may be
written as:

A �q� �
e��sfHCF���

2
p
NcQ

�euH
�
uu � edH

�
dd�V

�H;��; (18)

where

H�
ff �

Z 1

�1
dx

�
U�p2�n̂U�p1�Hff0 �x� �U�p2�

�
i,��n�	�

2M
U�p1�Eff0 �x�

	

�

�
1

x� �� i-
�

1

x� �� i-

	
;

V �M;�� �
Z 1

0
dy/M�y�

�
1

y
�

1

1� y

	
:

(19)

Here, functions H and E are standard leading twist GPD’s
and their properties are fairly well known (see, for in-
stance, a review of Diehl in [7]). In (19), we include the
definition of H�

ff and V �M;�� which will be useful for the
comparison with the � meson case. The hybrid meson
distribution amplitude which enters Eq. (19) is a new
object and we will carefully study it in the next subsection.
Note that the simple pole over y in (18) does not lead to any
infrared divergency if the function /H�y� vanishes when
the fraction y goes to zero or unity.

C. Hybrid meson distribution amplitude

In this subsection, we will consider in detail the proper-
ties of the hybrid meson distribution amplitude (see also
[10]). The Fourier transform of the hybrid meson-to-
vacuum matrix element of the bilocal vector quark operator
may be written as

hH�p; 0�j � ��z=2�����z=2; z=2� �z=2�j0i

� ifHMH

��
e�0�� � p�

e�0� 
 z
p 
 z

�

�
Z 1

0
dyei� �y�y�p
z=2/H

T �y� � p�
e�0� 
 z
p 
 z

�
Z 1

0
dyei� �y�y�p
z=2/H

L �y�
	
; (20)

where e�0� with 0 � �0;�1;�1� describes the polarization
states of the hybrid meson. It is convenient to define the
four-vector e�0�L corresponding in the ultrarelativistic limit
to the longitudinal polarization as

e�0�L� �
e�0� 
 z
p 
 z

p�: (21)

For the longitudinal polarization case, only the term with
/H
L contributes, so that
-3
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hHL�p; 0�j � ��z=2�����z=2; z=2� �z=2�j0i

� ifHMHe
�0�
L�

Z 1

0
dyei� �y�y�p
z=2/H

L �y� (22)

where �y � 1� y and H denotes the isovector triplet of
hybrid mesons; fH denotes a dimensionful coupling con-
stant of the hybrid meson, so that /H is dimensionless. We
will discuss its normalization later.

In (20) and (22), we insert the path-ordered gluonic
exponential along the straight line connecting the initial
and final points �z1; z2� which provides the gauge invari-
ance for bilocal operator and equals unity in a lightlike
(axial) gauge. For simplicity of notation we shall omit the
index L from the hybrid meson distribution amplitude.

Although exotic quantum numbers like JPC � 1�� are
forbidden in the quark model, it does not prevent the
leading twist correlation function from being nonzero.
The basis of the argument is that the nonlocality of the
quark correlator opens the possibility of getting such a
hybrid state, because of dynamical gluonic degrees of
freedom arising from the Wilson line. This may be seen
easily through a Taylor expansion of the nonlocal correla-
tor

hH�p; 0�j � ��z=2�����z=2; z=2� �z=2�j0i

�
X
n odd

1

n!
z�1

. . . z�n
hH�p; 0�j � �0���D�1

$
. . .D�n

$
 �0�j0i;

(23)

where D� is the usual covariant derivative and D�
$

� 1
2 �

� ~D� �D�
� �. The term corresponding to z � 0 refers to the

standard quark model contribution, which is zero for the
exotic hybrid quantum numbers. The first nonzero contri-
bution arises from the first derivative contribution in this
expansion, and one can check that, more generally, only
odd terms contribute in this expansion. It is clear that due to
gauge invariance, such occurrence of operators D�

$
natu-

rally provides gluonic degrees of freedom, which enables
the production of hybrid state at twist two level. One can
check explicitly that the corresponding quantum numbers
are indeed the one of the hybrid state (see detailed dis-
cussion in [10]). Using charge-conjugation invariance of
H0; one can show that the corresponding distribution am-
plitude is antisymmetric, namely

/H�y� � �/H�1� y�: (24)

The result of this analysis is that the hybrid light-cone
distribution amplitude is a leading twist quantity which
should have a vanishing first moment because of the anti-
symmetry property of the distribution amplitude. This
distribution amplitude obeys usual nonsinglet evolution
equations [8] and has an asymptotic limit [15]

�H � 30y�1� y��1� 2y�: (25)

The normalization factor (coupling constant) fH is defined
034021
through the matrix element of the energy-momentum ten-
sor [16]. It may be related, by making use of the equations
of motion, to the matrix element of quark-gluon operator
and estimated with the help of the techniques of QCD sum
rules [17]. One of the solutions corresponds to a resonance
with mass around 1.4 GeV and normalization factor3

fH � 50 MeV: (26)

If it turns out that only one resonance can be attributed to
such a hybrid state, this QCD sum-rule analysis is suffi-
cient to fix the value of fH. If the scenario with two
resonances is confirmed, this value of fH corresponds to
an effective coupling to the total contribution of these two
resonances. Despite the fact that QCD sum rules cannot
distinguish at the level of the coupling between two very
close resonances and a single one, if one would define f1

(resp. f2) the coupling to the first resonance (resp. second),
one should write

f2
H � f2

1 � f2
2: (27)

Thus, when selecting experimentally each resonance by
their decay modes, we know for sure that one of the
coupling should be larger than fH=

���
2

p
: Thus, the fact that

the exotic hybrid quantum numbers could be attributed to
two very close resonances does not spoil the conclusion
about the expected order of magnitude of the hybrid dis-
tribution amplitude. From now on, we will consider the
case where only one of the �1 candidates is an exotic
hybrid meson.

The coupling constant fH is the subject of evolution
given by the formula, see, e.g., [18]

fH�Q
2� � fH

�
�S�Q2�

�S�M2
H�

	
K0

; K0 �
2�QQ�0�

40
; (28)

where the anomalous dimension �QQ�0� � 16=9 and 40 �

11� 2nf=3. The exponent K0 is thus a small positive
number which drives slowly to zero the coupling constant
fH�Q

2�. Since experiments are likely to be feasible at
moderate values of Q2, we neglect this evolution.
III. CROSS SECTIONS FOR HYBRID MESON
ELECTROPRODUCTION

In this section, we focus on the computation and analysis
of the differential cross section for longitudinally polarized
hybrid meson electroproduction. The experimentally ac-
cessible differential cross section corresponds to the pro-
cess (1) for which the reaction (2) is the subprocess. We
assume that the virtual photon has a longitudinal polariza-
tion, so that the factorization theorem is valid owing to the
absence of infrared divergences. We restrict ourselves to
the leading twist contributions.
-4
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When we estimate hybrid meson electroproduction
cross section, we systematically compare it with the similar
contribution (i.e., without gluon GPDs) to the cross section
for longitudinally polarized � meson electroproduction.
The unpolarized cross section corresponding to the reac-
tion (2) is defined by4

d,L
dt̂

�
1

16��ŝ�m2
N�0�ŝ;�Q

2; m2
N�

1

2

X
pol:

jA�q�j
2; (29)

where the amplitude A�q� is determined by (18); ŝ, t̂ are
4The flux factor is chosen as in [19].
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the usual Mandelstam variables and mN is the nucleon
mass. The function 0 is standardly defined by

02�x; y; z� � x2 � y2 � z2 � 2xy� 2xz� 2yz: (30)

To calculate the cross section (29), we need to model the
corresponding GPD’s. We apply the Radyushkin model
[20] where the function H, see (18), is expressed with
the help of double distributions Fq�x; y; t�. We have
Hq�x; �; t� �
6��� x�
1� �

Z minf�x���=2�;�1�x�=�1���g

0
dyFq

�
x� �� 2�y

1� �
; y; t

�
�
6��� x�
1� �

�
Z minf���x�=2�;�1�x�=�1���g

0
dyF �q

�
�� x� 2�y

1� �
; y; t

�
: (31)
1 10
10-2

10-1

100

101

102

103

104

 ρ0 - meson, x
B
 = 0.18

 ρ0 - meson, x
B
 = 0.33

 H0 - meson, x
B
 = 0.18

 H0 - meson, x
B
 = 0.33

d σ
/d

t (
 t=

t m
in
) 

(n
b/

G
eV

2 )

Q2 (GeV2)
where standard notations are used. For the double distri-
bution Fq�X; Y; t�, we assume the ansatz suggested by
Radyushkin [20]:

Fq�X; Y; t� �
Fq1 �t�
Fq1 �0�

q�X�6
Y�1� X� Y�

�1� X�3
; (32)

and a similar expression for the antiquark contribution. As
shown in [21], this definition of the double distribution is
not completely compatible with the structure of the corre-
sponding matrix elements; introducing D-terms restores
the self-consistency of this representation. Taking into
account these D-terms, the GPD’s (31) are modified into:

Hq
D�x; �; t� � Hq�x; �; t� � 6��� jxj�

D�x=�; t�
Nf

; (33)

where D�x=�; 0� is given as in [22]. In the present paper,
we concentrate on the region where the values of the
skewedness parameter � are rather small. Hence, it is
legitimate to neglect these D-terms in the amplitude of �
meson production. Meanwhile their contributions to the
hybrid meson production always vanish owing to the anti-
symmetric properties of these D-terms.

In (32), functions q�x� and �q�x� are the ordinary quark
and antiquark distributions in the nucleon for which we use
the MRST98 parametrization [23]. An important aspect of
each model of GPD’s is its dependence of t [24]. Here it is
assumed to be factorizable through the functions Fq1 �t� for
each flavor, which are equal to

Fu1 � 2Fp1 � Fn1 ; Fd1 � 2Fn1 � Fp1 ; (34)

where Fp1 and Fn1 are the proton and neutron electromag-
netic form factors. Note that we neglected the strange form
factor because it is small. In the same way, we can write the
expression for the function E. We neglect here its contri-
bution because it is small and quite model-dependent.
Finally, to get prediction for the cross sections we need
to fix the renormalization scales. In order to estimate
theoretical uncertainties of this procedure we fix the scale
�2
R in two different ways: first, in the default way, by

assuming �2
R � Q2, and second, by applying the BLM

prescription [25].
The resulting differential cross sections for hybrid me-

son and � meson (quark contribution only) production are
shown on Fig. 2 for xB � 0:18 and 0.33, using the above-
mentioned default scale fixing.

The BLM procedure, which is discussed in detail in [26],
leads to the following values of the renormalization scales:

�2
R � e�4:9Q2; for � meson;

�2
R � e�5:13Q2; for H meson;

(35)

for the case � � 0:2 (or xB � 0:33), and
FIG. 2 (color online). Differential cross section for � and
hybrid meson production with the default choice of the renor-
malization scale and different xB values.
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1 10

10-1

100

101

102

103

104

 ρ0 - meson, µ2

R
=e- 4.9Q2

 ρ0 - meson ( M.V. et al ) 

 H0 - meson,  µ2

R
=e- 5.13Q2

d σ
/d

t (
 t=

t m
in
) 

(n
b/

G
eV

2 )

Q2 (GeV2)

FIG. 3 (color online). Differential cross section for exotic
hybrid meson electroproduction (dashed line) with �2

R �
e�5:13Q2 compared with the quark contribution to �0 electro-
production (solid line) with �2

R � e�4:9Q2, as a function of Q2,
for xB � 0:33. The dashed-dotted line is the result of
Vanderhaegen et al. [19] for � electroproduction.
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�2
R � e�4:68Q2; for � meson;

�2
R � e�5:0Q2; for H meson;

(36)

for the case � � 0:1 (or xB � 0:18).
Note that taking into account theD-terms diminishes the

value of the � meson BLM scale. For instance, in the case
xB � 0:33 we have

�2
R � e�5:4Q2: (37)

These renormalization scales have rather small magni-
tudes. This has a tendency to enlarge the cross sections but
may endanger the validity of the perturbative approach.
However, it is possible that the coupling constant �S stays
below unity and the perturbative theory does not suffer
from the IR divergencies. We will use the Shirkov and
Solovtsov’s ansatz [27] where the analytic running cou-
pling constant takes the form:

�anS ��2
R� �

4�
40

�
1

ln�2
R=


2
QCD

�

2
QCD


2
QCD ��2

R

	
: (38)

Here 
QCD is the standard scale parameter in QCD and we
neglect the effect of the analytic modification on its nu-
merical value. The second term in (38) assures the absence
of a ghost pole at �2

R � 
2
QCD and has a nonperturbative

source. Detailed discussion on this point may be found in
[28] and references therein. We took here the leading order
expression for analytic charge, assuming that next-to-
leading order (NLO) analysis is used entirely for the
BLM scale fixing (neglecting the analytic modification
effects) while the leading expression (38) is used for the
calculation of amplitude.5

Recently, in [19] the role of power corrections due to the
intrinsic transverse momentum of partons (the kinematical
higher twist) has been investigated. In that approach the
inclusion of the intrinsic transverse momentum depen-
dence results in a rather strong effect on the differential
cross section before the scaling regime is achieved. In [19],
the renormalization scale �2

R is defined by the gluon vir-
tuality so that the scale is a function of parton fractions
flowing into the corresponding gluon propagator.

On Fig. 3, we present our results for the differential cross
section of the hybrid meson electroproduction compared to
the � meson electroproduction, using the BLM scales. We
can see that the hybrid cross section is rather sizeable in
comparison with the corresponding � meson cross section.
We also show the results obtained in [19] for the � meson
electroproduction. We see that in the region Q2 � 5�
10 GeV2 the size of the � meson cross section obtained
with the inclusion of transverse momentum effects is very
close to the analogous cross section computed with the
BLM scale and without the intrinsic transverse momentum
dependence. On the other hand, for higher values ofQ2 the
5The connections between analytic modification and BLM
setting are discussed in detail in [29].
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leading order amplitude computed with the BLM scale
fixing is falling faster than the corresponding amplitude
derived in Ref. [19], whereas for smaller values of Q2 it is
larger than that prediction. We do not want to claim here
that kinematical higher twist contributions have no effects
at low values of Q2 but rather that a rather strong effect on
theQ2 dependence of the cross sections may be dictated by
another mechanism which is much more controllable since
it depends on the estimate of higher order perturbative
contributions.

All this shows that the scale fixing ambiguities lead to a
non-negligible theoretical uncertainty on the absolute
value of cross sections. It is important however to under-
stand that most of this uncertainty does not apply to ratios
of cross sections, and, in particular, to the most interesting
ratio d,H:d,�, which measures the expected cross section
for hybrid production with respect to the well-measured
and large cross section for � meson production. Indeed, as
shown on Table I, this ratio is very insensitive to the scale
fixing procedure. Moreover it is not small when xB is large
enough and almost Q2 independent. The decreasing value
of the ratio when xB diminishes comes from the relative
sign of the two terms contributing in (18), i.e., when �! 0
the structure H� goes to zero too.

In conclusion of this section, we would like to stress that
the present work has demonstrated the feasibility of hybrid
meson production experiments in electroproduction at
moderate energies. An obvious remaining question is
how much of the cross section is observable in a dedicated
experiment. If the experiment is able to detect the final
state electron and baryon and to measure their momenta
with good accuracy, a missing mass analysis may allow to
identify and study all decay channels of the hybrid. In the
next sections, we discuss the cases where the hybrid meson
is detected through a particular decay channel.
-6



η

π(     )
γ∗ (    )q

p
π

N(p2)

pη(      )

TABLE I. Ratio d,H:d,� for both the default and BLM scales and for the different values of
xB.

xB 0.33 0.18

Q2 (GeV2) 3.0 7.0 11.0 17.0 3.0 7.0 11.0 17.0
�2
R � Q2 0.123 0.123 0.123 0.123 0.0325 0.0326 0.0326 0.0326

�2
R � �2

BLM 0.131 0.133 0.133 0.134 0.0356 0.0362 0.0365 0.0367
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IV. STUDY OF HYBRID MESONS VIA THE
ELECTROPRODUCTION OF �� PAIRS

In the case where there is no recoil detector which allows
to identify the hybrid production events through a missing
mass reconstruction, one will have to base an identification
process through the possible decay products of the hybrid
meson H0. Since the particle �1�1400� has a dominant �	
decay mode, we now proceed to the description6 of the
electroproduction process

e�k1��N�p1�!e�k2���
0�p���	�p	��N�p2� (39)

or

���q� � N�p1� ! �0�p�� � 	�p	� � N�p2�: (40)

To perform a leading order computation of such process
(see Fig. 4) we need to introduce the concept of generalized
distribution amplitude (GDA) [30] for �	.

A. �� generalized distribution amplitude

In this subsection, we briefly introduce and discuss the
generalized distribution amplitude related to the �	-to-
vacuum matrix element. On the basis of Lorentz invari-
ance, the �0	 GDA may be defined7 as:

h�0�p��	�p	�j � f2
��z=2�����z=2; z=2�;3

f2f1
 f1

��z�j0i

� p��	
Z 1

0
dyei� �y�y�p�	
z=2���	��y; <; m2

�	�; (41)

where the total momentum of �	 pair is p�	 � p� � p	
whilem2

�	 � p2
�	. We omit theQ2 dependence of the �0	

GDA’s which is the same as the one discussed above for the
hybrid meson distribution amplitude. Note that the �	
distribution amplitude ���	� describes nonresonant as
well as resonant contributions. It does not possess any
symmetry properties concerning the <-parameter.

Let us now discuss the <-parameter. When the two
mesons have equal masses, the parameter < is usually
defined as < � p�

�=p
�. In the case of two different parti-

cles it is more convenient to define the parameter ~< in the
following way:
6A very similar analysis may be carried for the �	0 decay
mode of the candidate �1�1600�:

7A straightforward generalization enables us to write similar
equations for charged states.
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~< �
p�
�

�p� � p	��
�
m2
� �m2

	

2m2
�	

;

1� ~< �
p�
	

�p� � p	��
�
m2
� �m2

	

2m2
�	

:

(42)

Then, we get the ordinary relation between ~< and the angle
6cm, defined as the polar angle of the �meson in the center
of mass frame of the meson pair:

2~< � 1 � 4 cos6cm: (43)

In (43), the standard 4-function is given by

4 �
2jpj
m�	

; (44)

where jpj denote the modulus of the three-dimensional
momenta of � and 	 mesons in their center-of-mass
system.

In the reaction under study, the �	 state may have total
momentum, parity, and charge conjugation in the follow-
ing sequence

JPC � 0��; 1��; 2��; . . .

that corresponds to the following values of the �	 orbital
angular momentum L:

L � 0; 1; 2; . . . ;
N(p1)

FIG. 4. Typical diagram describing the electroproduction of
�	 pair. The higher and lower blobs represent the GDA’s and
GPD’s, respectively.
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8Here, "2 is the energy of the scattered lepton.
962 defines the polar angle of the final lepton.
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respectively. We can see that a resonance with a �	 decay
mode for odd orbital angular momentum L should be
considered as an exotic meson.

The mass region around 1400 MeV is dominated by the
strong a2�1329��2

��� resonance [31]. It is therefore natu-
ral to look for the interference of the amplitudes of hybrid
and a2 production, which is linear, rather than quadratic in
the hybrid electroproduction amplitude. Such interference
arises from the usual representation of the �	 generalized
distribution amplitude in the form suggested by its asymp-
totic expression:

���	�;a�y; ~<;m2
�	� � 10y�1� y�C�3=2�

1 �2y� 1�

�
X2
l�0

B1l�m2
�	�Pl�cos6�: (45)

Keeping only L � 1 and L � 2 terms, we model the �	
distribution amplitude in the following form:

���	��y; <; m2
�	� � 30y�1 � y��2y� 1�

� �B11�m2
�	�P1�cos6�

� B12�m
2
�	�P2�cos6��; (46)

with the coefficient functions B11�m2
�	� and B12�m2

�	�

related to the corresponding Breit-Wigner amplitudes
when m2

�	 is in the vicinity of M2
a2

, M2
H. We have (see

the technical details about how to calculate these coeffi-
cient functions in the Appendix):

B11�m
2
�	�jm2

�	�M2
H
�

5

3

gH�	fHMH4

M2
H �m2

�	 � i$HMH
(47)

and

B12�m2
�	�jm2

�	�M2
a2
�

10

9

iga2�	fa2
M2
a2
42

M2
a2
�m2

�	 � i$a2
Ma2

: (48)

In the a2 case, we use the results and conventions of
[32]; note that the coupling constant ga2�	 has mass di-
mension equal to �1.

The coupling constants gH�	 and ga2�	 may be esti-
mated through the approximate measurements of the par-
tial widths of the a2 and hybrid meson in the �	 decay
channel, we have:

$�H ! �	� �
1

16�
g2
H�	

03�M2
H;m

2
�;m

2
	�

M5
H

;

$�a2 ! �	� �
1

24�
g2
a2�	

05�M2
a2
; m2

�;m2
	�

M7
a2

:

(49)

Neglecting the masses of � and 	 mesons compared to the
a2 and hybrid meson masses, we get

g2
H�	 �

16�
MH

$�H ! �	�;

g2
a2�	 �

24�

M3
a2

$�a2 ! �	�:
(50)
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B. Differential cross section for �� electroproduction

Let us first fix the kinematics (see Fig. 5). For reaction
(39) we choose:

k1 � �"1; "1 sin61; 0; "1 cos61�; p1 � �E1; 0; 0; p
3
1�;

q � k1 � k2 � �q0; 0; 0;�p
3
1�;

p2 � �E2; jp2j cos/ sin6; jp2j sin/ sin6; jp2j cos6�:

(51)

The following Mandelstam and dimensionless variables
can be defined as (here, the ‘‘hatted’’ symbols refer to the
subprocess (40))

ŝ � �p�	 � p2�
2 � �q� p1�

2; t̂ � �p2 � p1�
2;

S � �k1 � p1�
2; (52)

and

xB �
Q2

2p1 
 q
; yl �

p1 
 q
p1 
 k1

: (53)

In (51), the energies and momenta can be expressed as8

"1 �
S�m2

N �Q2

2
���̂
s

p ; "2 �
S� ŝ

2
���̂
s

p ;

E1 �
ŝ�m2

N �Q2

2
���̂
s

p ; E2 �
ŝ�m2

�	 �m2
N

2
���̂
s

p ;

q0 �
ŝ�m2

N �Q2

2
���̂
s

p ; jqj � jp1j �
0�ŝ; m2

N;�Q
2�

2
���̂
s

p ;

jp�	j � jp2j �
0�ŝ; m2

�	;m
2
N�

2
���̂
s

p ; (54)

where the kinematical function 0 is defined in (30).
The corresponding angles take the forms9

cos62 �
2Q2ŝ

�S� ŝ�0�ŝ; m2
N;�Q

2�
�
ŝ�m2

N �Q2

0�ŝ; m2
N;�Q

2�
;

cos6 �
2ŝ�t̂� 2m2

N� � �ŝ�m2
N �Q2��ŝ�m2

�	 �m2
N�

0�ŝ; m2
N;�Q

2�0�ŝ; m2
�	;m

2
N�

:

(55)

It is useful to note the following relations between the
invariants:

xB �
Q2

ŝ�Q2 �m2
N

;

yl �
Q2

xB�S�m2
N�

�
ŝ�Q2 �m2

N

S�m2
N

;

Q2 � xByl�S�m2
N�; ŝ �

1� xB
xB

Q2 �m2
N:

(56)

One may also work within the center-of-mass system of
the meson pair, where we have after the corresponding
boost,
-8
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FIG. 5. Typical process describing the electroproduction of a
�	 pair.
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p� � �E�; jpj sin6cm; 0; jpj cos6cm�;

p	 � �E	;�jpj sin6cm; 0;�jpj cos6cm�;
(57)

where the energies and momenta of the mesons take the
forms

E� �
m2
�	 �m2

	 �m2
�

2m�	
; E	 �

m2
�	 �m2

� �m2
	

2m�	
;

jpj �
0�m2

�	;m
2
	;m

2
��

2m�	
: (58)

We now come to the expression for the differential cross
section of reaction (39). The amplitude of this reaction is
given by

T�
0	 � �u�k2; s2�� 
 "Lu�k1; s1�

1

q2 A
�0	
�q� ; (59)

leading to

jT�
0	j2 �

4e2�1� yl�

Q2y2l
jA�0	

�q� j
2: (60)

The amplitude of subprocess (40) reads

A �0	
�q� �

e��sCF
NcQ

�euH uu � edH dd�

� �B11�m2
�	�P1�cos6cm�

� B12�m
2
�	�P2�cos6cm��: (61)

Finally, the differential cross section of process (39)
takes the form

d,�
0	

dQ2dyldt̂dm�	d�cos6cm�
�

1

4�4��5

�
m�	4

yl02�ŝ;�Q2; m2
N�

jT�
0	j2:

(62)

V. CALCULATION OF THE ANGULAR
ASYMMETRY

Asymmetries are often a good way to get a measurable
signal for a small amplitude, by taking profit of its inter-
034021
ference with a larger one. In our case, since the hybrid
production amplitude may be rather small with respect to a
continuous background, we propose to use the supposedly
large amplitude for a2 electroproduction as a magnifying
lens to unravel the presence of the exotic hybrid meson.
Since these two amplitudes describe different orbital an-
gular momentum of the � and 	 mesons, the asymmetry
which is sensitive to their interference is an angular asym-
metry defined by

A�Q2; yl; t̂; m�	� �

R
cos6cmd,

�0	�Q2; yl; t̂; m�	; cos6cm�R
d,�

0	�Q2; yl; t̂; m�	; cos6cm�

(63)
as a weighted integral over polar angle 6cm of the relative
momentum of � and 	 mesons. The angle 6cm is related to
the parameter ~< by formula (43). Because of the fact that
the cos6cm-independent factors in both the numerator and
denominator of (63) are completely factorized and, on the
other hand, these factors are the same, we are able to
rewrite the asymmetry (63) as
A�m�	� �

R
d�cos6cm� cos6cmjB11�m2

�	�P1�cos6cm� � B12�m2
�	�P2�cos6cm�j2R

d�cos6cm�jB11�m
2
�	�P1�cos6cm� � B12�m

2
�	�P2�cos6cm�j

2 ; (64)
and, calculating the cos6cm-integral analytically, to obtain

A�m�	� �
N�m�	�

D�m�	�
; (65)

with

N �
8

15
<e�B11�m

2
�	�B

�
12�m

2
�	��;

D �
2

3
jB11�m

2
�	�j

2 �
2

5
jB12�m

2
�	�j

2:

(66)
While in the two-pion production case the interference
between the isoscalar and isovector channels can be inves-
tigated, we here restrict to the interference between L � 1
and L � 2 modes of �0	. As a result, the introduction of
the so-called intensity density (see [22]), i.e., the
integrated-over-invariants value, useful for the two-pion
modes, completely coincides with the value (65) for our
case.

Our estimation of the asymmetry (65) is shown on Fig. 6.
Since the numerator of (65), i.e., the real part of the product
of B11�m2

�	� and B�
12�m

2
�	�, is proportional to the cosine of
-9
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FIG. 6 (color online). The angular asymmetry as a function of
m�	.
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the phase difference 	 1;2 �  l�1 �  l�2 the zeroth value
of (65) takes place at 	 1;2 � �=2. This is achieved for
m�	 � 1:3 GeV. Besides, one can see from Fig. 6 that the
first positive extremum is located at m�	 around the mass
of a2 meson while the second negative extremum corre-
sponds to the hybrid meson mass.

Note that this angular asymmetry is completely similar
to the charge asymmetry which was studied in ����

electroproduction at HERMES [33].
VI. NOTE ON THE ��� CHANNEL

The hybrid candidate �1�1600� has been also seen
through a ��� decay channel. In that case the deep
exclusive electroproduction of three pions provides the
background which should be studied, including the pos-
sible interference effects of hybrid meson and the back-
ground. The analysis that we have described in Sections IV
and V may be adapted to the three-body case by using the
results of [34]. At the leading twist level the generalized
distribution amplitude of the charge-conjugation even state
may be written in complete analogy to the pion light-cone
distribution from the large distance matrix element

S�4 �
P�

2�

Z
dx�e�iy�P

�x��
out h���j � ��x

�v0� 4�0�j0iin

(67)

as

Sq;�4�
�
�4�5 �

i
f�

��
q �z; <0; <�; <�;W2

12; W
2
13; W

2
23; �P

�:

(68)

The three light-cone fractions are normalized by the con-
dition <0 � <� � <� � 1, making only two of them inde-
pendent, while the squared total energy of the three pions is
034021
W2 � W2
12 �W2

13 �W2
23 � 3m2

�, whereWij are the invari-
ant masses of the pairs of mesons.

Charge-conjugation invariance provides a symmetry re-
lation:

���y; <0; <�; <�� � ���1� y; <0; <�; <��: (69)

The asymptotic z-dependence is just

��
q �y; <0; <�; <�� �

1

6�1� a�
y�1� y��<0 � a<2

0 �; (70)

where a is an unknown parameter and the normalization
has been fixed with the help of the fact that putting both
charged pion momenta to zero, one should get the GDA
equal to the pion distribution amplitude. The QCD evolu-
tion is the same as for the pion distribution amplitude, i.e.,
with a vanishing anomalous dimension.

Conversely, the generalized distribution amplitude
���y; <0; <�; <�� of the charge-conjugation odd state
obeys the equation:

���y; <0; <�; <�� � ����1� y; <0; <�; <�� (71)

and its asymptotic z-dependence is

��
q �y; <0; <�; <�� � y�1� y��2y� 1�P�<0; <�; <��; (72)

where P is a polynomial of degree three with the symmetry
property

P�<0; <�; <�� � P�<0; <�; <��:

Its QCD evolution is the same as for the hybrid distribution
amplitude. The interference with �1�1600� may produce
an angular asymmetry similar to that of Section V,
although the appearance of third pion makes the analysis
more complicated.
VII. DIFFRACTIVE PRODUCTION OF THE
HYBRID AT LARGE ENERGY

At large energy, one should consider a different frame-
work, namely, the impact representation [2] where the
meson electroproduction amplitude is factorized in impact
factors and a Reggeized two or three gluon exchange
known as perturbative Pomeron or Odderon exchange.
Without performing a detailed phenomenology of this
reaction in this regime let us recall some well-known
formula and briefly propose a strategy to help future (or
present) experiments at high energy to search for hybrids.

The even charge conjugation of the hybrid meson selects
in this case the Odderon exchange [35] and the amplitude
for its electroproduction is equal to

MO � �
8�2s
3!

�
Z d2k1d

2k2d
2k3 

�2��k1 � k2 � k3 � pH0�

�2��6k2
1k

2
2k

2
3

� J�
�!H0

O 
 JN!N
0

O ; (73)
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where J�
�!H0

O �k1;k2;k3� and JN!N0

O �k1;k2;k2� are the
impact factors for the transition �� ! H0 via Odderon
exchange and of the nucleon in initial state N into the
nucleon in the final state N0. The impact factors are defined
as the s-channel discontinuities of the corresponding
S-matrices describing the ��O! H0 and NO! N0 pro-
cesses projected on the longitudinal polarizations of the
virtual gluons in the t-channel. These so-called ‘‘nonsense
polarizations’’ in the language of Regge theory lead
asymptotically to a scattering amplitude proportional to s
(see, for instance, [36]).

The upper impact factors are calculated by the use of
standard methods. The leading order calculation in pQCD
gives in the case of a longitudinal polarized photon (for the
simplicity of notations we omit the color indices of
t-channel gluons in the left-hand side of the following
equations; they are summed over in the product of the
two impact factors in Eq. (73)):

J�
�!H0

O �k1;k2;k3� � �
ieg3dabcQ

4NC

�
Z 1

0
dyy �yPO�k1;k2;k3�

1

3
�H0

�y�;

(74)

where k1 � k2 � k3 � pH0 and

PO�k1;k2;k3� �
1

y2p2
H0 ��2 �

1

�y2p2
H0 ��2

�
X3
i�1

�
1

�ki � ypH0�2 ��2

�
1

�ki � �ypH0�2 ��2

	
: (75)

The proton impact factor cannot be calculated within
perturbation theory. One may use phenomenological eiko-
nal models of these impact factors proposed in Ref. [37]
which read

JN!N
0

O � �i
�g3dabc

4NC
3�F�pH0 ; 0; 0� �

X3
i�1

F�ki;pH0 � ki; 0�

� 2F�k1;k2;k3��; (76)

where

F�k1;k2;k3�

�
A2

A2 � 1
2 ��k1 � k2�

2 � �k2 � k3�
2 � �k3 � k1�

2�

(77)

and A � m�=2. In these equations we denote the soft QCD
coupling by �g. A recent study of the data on elastic pp and
p �p scattering in the dip region [38] suggests �soft �
�g2=�4�� � 0:5 as a reasonable value.
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Since the Odderon amplitude is known to be rather
small, producing the hybrid in electroproduction at large
energy will be rather difficult. It will thus be useful to
search for the hybrid meson in this context through an
interference of a Pomeron mediated amplitude to an
Odderon mediated one, as discussed in [39]. The three-
pion channel discussed in the preceding section is interest-
ing in this respect since a charge asymmetry between the
�� and the �� will single out this interference. The charge
asymmetry to measure is defined as an integral weighted
with an antisymmetric function in the exchange <� ! <�,
the simplest example being <� � <�:

A�Q2; t; m2
3�� �

R
1
0 d<

�d<��<� � <��2<e�M
��
L
P �M

��
L
O ���R

1
0 d<

�d<��jM
��
L
P j2 � jM

��
L
O j2�

;

(78)

which is approximately equal to the ratio of the Odderon
exchange amplitude and the Pomeron exchange amplitude,
which one may approximate to the production of a JPC �
1�� state like !�1650�.

This may be related to a forward-backward asymmetry
in the rest frame of the two charged pions, the forward
direction being defined as the direction of the neutral �0

meson. Defining the 6 angle as the angle of the �� to the
�0 three-momenta in this frame, one gets

A�Q2; t; m2
3�� �

R
cos6d,�s;Q2; t; m2

3�; 6�R
d,�s;Q2; t; m2

3�; 6�

�
2
R

1
�1 d�cos6� cos6<e�M

��
L
P �M

��
L
O ���R

1
�1 d cos6�jM

��
L
P j2 � jM

��
L
O j2�

:

(79)
VIII. CONCLUSION

In conclusion, we have calculated in this paper the
leading twist contribution to exotic hybrid meson with
JPC � 1�� electroproduction amplitude in the deep ex-
clusive region. The resulting order of magnitude is some-
what smaller than the � electroproduction but similar to the
� electroproduction. The obtained cross section is sizeable
and should be measurable at dedicated experiments at
JLab, Hermes, or Compass.

We made a systematic comparison with the nonexotic
vector meson production. To take into account NLO cor-
rections, the differential cross sections for these processes
have been computed using the BLM prescription for the
renormalization scale. In the case of � production, our
estimate is not far from a previous one which took into
account kinematical higher twist corrections.

We have also discussed in detail the �	 mode corre-
sponding to the �1�1400� candidate in the reaction ep!
ep�0	. We have calculated an angular asymmetry implied
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by charge-conjugation properties and got a sizeable hybrid
effect which may be experimentally checked.

In the region of small Q2 higher twist contributions
should be carefully studied and included. Note that they
have already been considered in the case of deeply virtual
Compton scattering [40] where their presence was dictated
by gauge invariance, and for transversely polarized vector
mesons [41] where the leading twist component vanishes.
We leave this study for future works.

Finally, the diffractive production at very high energy
has been briefly studied. The weakness of Odderon medi-
ated processes makes the study of hybrid meson electro-
production a very difficult task for HERA experiments.

APPENDIX: FUNCTIONS B11�m
2
��� AND B12�m

2
���

We now proceed to the calculation of the functions
B11�m2

�	� and B12�m2
�	� related to the corresponding
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Breit-Wigner amplitudes. Let us start from the considera-
tion of the �	-to-vacuum matrix element of some vector
nonlocal quark operator. We have

h��p��	�p	�jOV
���z; z�j0i; (A1)

where OV
� � � ��z=2��� �z=2�. This matrix element can

be rewritten in the equivalent form:

h��p��	�p	�jH�p�i
1

M2
H � p2 � i$HMH

�hH�p�jOV
���z; z�j0i � �other reson:�: (A2)

We will, from now on, neglect the contribution from other
resonances. Note that owing to the momentum conserva-
tion law we have p2 � �p� � p	�

2 � m2
�	.

Further, we introduce the parametrization of the relevant
matrix elements:
h��p��	�p	�jH�p�i�G���
H�	�m

2
�;m2

	;M2
H��p��p	� 
e

�0�

��igH�	�p��p	� 
e�0�;

hH�p�jOV
���z;z�j0i� ifHMH

e��0� 
z
p 
z

p�
Z 1

0
dyei�1�2y�p
z=2/H

L �y�;

h��p��	�p	�jO
V
���z;z�j0i� �p��p	��

Z 1

0
dyei�1�2y��p��p	�
z=2���	��y; ~<;m2

�	�:

(A3)
Using the above-mentioned parametrization, Eqs. (A1) and
(A2) may be rewritten as

�p� � p	��
Z 1

0
dyei�1�2y��p��p	�
z=2���	��y; ~<;m2

�	�

� ifHMH��i�gH�	p�
z�

p 
 z
�p� � p	�4

�

P
0
e��0�� e�0�4

M2
H �m2

�	 � i$HMH

Z 1

0
dyei�1�2y�p
z=2/H

L �y�:

(A4)

The summation over polarization vectors reads
X
0

e��0�� e�0�4 � �g�4 �
p�p4
M2
H

; (A5)

therefore the contraction of corresponding vectors with
(A5) gives us

z�

p 
 z
�p� � p	�4

�
�g�4 �

p�p4
M2
H

�

� �
�p� � p	��

�p� � p	�
�
�
m2
� �m2

	

M2
H

: (A6)

Further, the term B11 corresponding to the hybrid meson,
see (46), can be rewritten in the form:

���	�
1�� �y; ~<;m2

�	��18y�1�y��2y�1�B11�m
2
�	�P1�cos6�;

(A7)
where Eq. (43) is used. Inserting this function into the left-
hand side of (A4) we get an explicit expression for the
function B11:

B11�m2
�	���

F

18G

gH�	fHMH

M2
H�m

2
�	� i$HMH

0�m2
�	;m

2
	;m

2
��

m2
�	

�

��
1�

m2
��m

2
	

m2
�	

�p��p	�
�

�p��p	��

	
�1

�
m2
��m

2
	

M2
H

�

�
�p��p	�

�

�p��p	�
�
�
m2
��m

2
	

m2
�	

	
�1
�
; (A8)

where

F �
Z 1

0
dyei�1�2y�p
z=2/H

L �y�;

G �
Z 1

0
dyei�1�2y��p��p	�
z=2y�1� y��2y� 1�:

(A9)

If we use the asymptotic form for the function /H
L �y�,

the expression (A8) is rewritten as

B11�m2
�	� �

5

3

gH�	fHMH

M2
H �m2

�	 � i$HMH

0�m2
�	;m2

	;m2
��

m2
�	

�

��
1�

m2
� �m2

	

m2
�	

�p� � p	�
�

�p� � p	��

	
�1

�
m2
� �m2

	

M2
H

�
�p� � p	��

�p� � p	�
�
�
m2
� �m2

	

m2
�	

	
�1
�
;

(A10)
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where the value m2
�	 is in the vicinity of the hybrid mass

MH. We thus have obtained the following expression for
the function B11

B11�m2
�	�

m2
�	�M

2
H

�
5

3

gH�	fHMH

M2
H �m2

�	 � i$HMH

�
0�m2

�	;m2
	;m2

��

m2
�	

m2
�	�M2

H

:

(A11)

We will now focus on the calculation of the function
B12�m2

�	�. As mentioned above, the a2-resonance formula
for the case m2

�	 � M2
a2

reads (cf. (A1) and (A2))

h��p��	�p	�jO
V
���z; z�j0i � h��p��	�p	�ja2�p�i

�
1

M2
a2
� p2 � i$a2

Ma2

�ha2�p�jO
V
���z; z�j0i:

(A12)

The parametrizations of matrix elements standing in (A12)
can be introduced in the following forms. First of all, we
write the parametrization for the �	-to-a2 matrix element:

h��p��	�p	�ja2�p�i � e�0��GV�G; (A13)

where

e�0��Gp� � e�0��GpG � 0; e�0��Gg�G � 0; e�0��G � e�0�G�:

(A14)

Because of the Lorentz invariance the most general repre-
sentation of the tensor V�G take the form

V �G � G�1�
a2�	�m

2
�;m

2
	;M

2
a2
�p��pG�

�G�2�
a2�	�m

2
�;m

2
	;M

2
a2
�p��pG	

�G�3�
a2�	�m

2
�;m

2
	;M

2
a2
�p�	pG�

�G�4�
a2�	�m

2
�;m

2
	;M

2
a2
�p�	pG	: (A15)

We fix the form factors G�i� as

G�1�
a2�	�m

2
�;m

2
	;M

2
a2
� � G�4�

a2�	�m
2
�;m

2
	;M

2
a2
� � iga2�	;

G�2�
a2�	�m

2
�;m

2
	;M

2
a2
� � G�3�

a2�	�m
2
�;m

2
	;M

2
a2
� � �iga2�	:

(A16)

In this case the parametrization of (A13) is reduced to the
form

h��p��	�p	�ja2�p�i� iga2�	e
�0�
�G�p��p	�

��p��p	�
G:

(A17)

The parametrization of vacuum-a2-meson matrix element
can be written as
034021
ha2�p�jOV
���z;z�j0i�fa2

M2
a2

e��0��4 z
�z4

�p 
z�2
p�

�
Z 1

0
dyei�1�2y�p
z=2/a2

L �y�: (A18)

Again, the asymptotic form of function /a2
L �y� can be

defined as

�a2
L �y� � 30y�1� y��2y� 1�: (A19)

Further, the a2-resonance part of �	 distribution ampli-
tude reads

���	�
2�� �y; ~<;m2

�	��18y�1�y��2y�1�B12�m2
�	�P2�cos6�:

(A20)

Thereafter, inserting the parametrical representations of
hadron matrix elements (A17), (A18) in Eq. (A12) with
(A19), (A20), one can see that

B12�m2
�	�P2�cos6� �

30

18

iga2�	fa2
M2
a2

M2
a2
�m2

�	 � i$a2
Ma2

�

�
�p� � p	�

��p� � p	�
G

�
z�z4

�p 
 z�2
X
0

e�0��Ge
��0�
�4

	
; (A21)

where as usual

X
0

e�0��Ge
��0�
�4 �

1

2
X��XG4 �

1

2
X�4XG� �

1

3
X�GX�4;

X�1�2
� �g�1�2

�
p�1

p�2

M2
a2

: (A22)

Using (43), the Legendre polynomial P2�cos6� can be
presented as

P2�cos6� �
3

2
cos26�

1

2

�
m4
�	

202�m2
�	;m

2
	;m

2
��

�

�
3�2~< � 1�2 �

02�m2
�	;m2

	;m2
��

m4
�	

	
: (A23)

A straightforward computation leads to

�p� � p	�
��p� � p	�

G z
�z4

�p:z�2
X
0

e�0��Ge
��0�
�4

�
1

3

2P2�cos6�0
2�m2

�	;m
2
	;m

2
��

m4
�	

�
1

3

�
3�2~< � 1�2 �

02�m2
�	;m2

	;m2
��

m4
�	

	
; (A24)

where we used that
-13
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z2 � 0; p� 
 p	 �
M2
a2
�m2

� �m2
	

2
: (A25)

ANIKIN, PIRE, SZYMANOWSKI, TERYAEV, AND WALLON
We have finally obtained the following representation for
the function B12�m

2
�	� in the vicinity of m2

�	 � M2
a2

:

B12�m
2
�	�

m2
�	�M2

a2

�
10

9

iga2�	fa2
M2
a2

M2
a2
�m2

�	 � i$a2
Ma2

�
02�m2

�	;m2
	;m2

��

m4
�	

m2
�	�M

2
a2

:

(A26)
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[39] P. Hägler, B. Pire, L. Szymanowski, and O. V. Teryaev,
Phys. Lett. B 535, 117 (2002); 540, 324(E) (2002); Eur.
Phys. J. C 26, 261 (2002).

[40] I. V. Anikin, B. Pire, and O. V. Teryaev, Phys. Rev. D
62, 071501 (2000); N. Kivel, M. V. Polyakov, and
034021
M. Vanderhaeghen, Phys. Rev. D 63, 114014
(2001); A. V. Radyushkin and C. Weiss, Phys. Lett. B
493, 332 (2000); A. V. Belitsky, D. Muller,
A. Kirchner, and A. Schafer, Phys. Rev. D 64, 116002
(2001).

[41] L. Mankiewicz and G. Piller, Phys. Rev. D 61, 074013
(2000); I. V. Anikin and O. V. Teryaev, Phys. Lett. B 554,
51 (2003).
-15


