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Quark self energy and relativistic flux tube model
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The contribution of the quark self energy to the meson masses is studied in the framework of the
relativistic flux tube model. The equivalence between this phenomenological model and the more QCD
based rotating string Hamiltonian is used as a guide to perform the calculations. It is shown that the
addition of the quark self energy to the relativistic flux tube model preserves the linearity of the Regge
trajectories. But, following the definition taken for the constituent quark masses, the Regge slope is
preserved or decreased. In this last case, experimental data can only by reproduced by using a string
tension around 0:245 GeV2. Two procedures are also studied to treat the pure flux tube contribution as a
perturbation of a spinless Salpeter Hamiltonian.
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I. INTRODUCTION

A successful way of understanding the properties of the
mesons is to approximate the gluon exchanges between the
quark and the antiquark by a string (the QCD string),
characterized by its energy density, or tension. The rela-
tivistic flux tube model (RFTM) is a phenomenological
model based on this picture [1,2]. More recently, the
rotating string model (RSM) has been derived from the
Nambu-Goto Lagrangian as an effective model which also
describes a meson as a quark and an antiquark linked by a
string [3,4]. The physical content of these models is very
similar, and it has been shown that they are actually clas-
sically equivalent once the auxiliary fields appearing in the
RSM are completely eliminated [5,6]. A rather good de-
scription of the experimental meson spectrum can be ob-
tained with the original RFTM supplemented by a
Coulomb term [7]. But unfortunately, a strong coupling
constant larger than what it is expected from experimental
analysis and lattice simulations must be considered. The
necessity of finding new contributions arising from ne-
glected physical mechanisms is thus clear. Recently, a
quark self energy (QSE) contribution was introduced,
which is due to the color magnetic moment of the quark
propagating through the vacuum [8]. The QSE brings a
negative contribution to the hadron masses, and seems to
be an interesting way of reproducing the experimental data
with a smaller Coulomb term.

Our purpose here is to study the influence of the QSE on
the meson masses, especially using the RFTM. Our paper
is organized as follows. Sec. II is a short presentation of
both classical RFTM and RSM, where we also underline
their classical equivalence. Since the equations describing
these models are quite complicated, approximate equations
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are developed in Sec. III, from which an analytical mass
formula is derived in Sec. IV. In Sec. V, the quality of the
approximate equations are compared with the original
quantized RFTM. We then introduce the QSE in Sec. VI
and discuss its effects on the meson spectrum in Sec. VII. A
comparison with experimental data is performed in
Sec. VIII. Finally, some concluding remarks are outlined
in Sec. IX.
II. ROTATING STRING AND RELATIVISTIC
FLUX TUBE

We will present in this section two effective meson
models: the rotating string model (RSM) and the relativis-
tic flux tube model (RFTM). Our purpose is to give a
presentation of the principal features of these models,
and to underline their classical equivalence.

It has been shown in Ref. [3] that starting from the QCD
Lagrangian, the Lagrange function of a meson can be built
from the Nambu-Goto action. In first approximation the
contributions due to the quark spins can be neglected. For
two spinless quarks with masses m1 and m2, and a string
with tension a, this action has the well-known form

L � �m1
�����
_x21

q
�m2

�����
_x22

q
� a

Z 1

0
d�

����������������������������������
� _ww 0�2 � _w2w 02

q
:

(1)
In this action, xi is the coordinate of quark i and w is the
coordinate of the string. w depends on two variables de-
fined on the string worldsheet: one is spacelike � and the
other timelike �. We have also defined w 0 � @�w and _w �

@�w. Introducing auxiliary fields (also known as einbein
fields) to get rid of the square root in (1) and making the
straight line ansatz to describe the string connecting the
quark and the antiquark, an effective Hamiltonian can be
derived, which reads [9]
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pr is the common radial quark momentum. The parameter
� defines the position R of the center of mass: R � �x1 �
�1� ��x2, and L is the orbital angular momentum of the
system. The auxiliary fields �1 and �2 are seen as effective
masses of the quarks whose current masses are m1 and m2.
The last auxiliary field, 
, can be interpreted in the same
way as an effective energy for the string whose ‘‘static’’
energy is ar. One can get rid of these auxiliary fields by a
variation of the Hamiltonian (2). Their extremal values,
denoted as �i0 and 
0, are the solutions of

�H��i; 
�
��i

���������i��i0

� 0; (3a)

�H��i; 
�
�


��������
�
0

� 0: (3b)

The equations of the RSM can be derived from the
Hamiltonian (2) by the elimination of 
 thanks to the
condition (3b) [4]. We will consider in this paper the sym-
metrical case, where m1 � m2 � m and �1 � �2 � �

L

ar2
�

�y
ar

�
1

4y2
�arcsiny� y

��������������
1� y2

q
�; (4a)

HRS��� �
p2r �m2

�
���

ar
y
arcsiny��y2: (4b)

In the general case, where m1 � m2, a third equation has to
be taken into account, which expresses the cancellation of
the total momentum in the center of mass frame [6]. If one
considers � as a number, one can directly solve Eqs. (4)
and find the meson mass, after a minimization of this mass
with respect to � [4].

Since the RSM equations contain the remaining auxil-
iary field � and a variable y whose physical interpretation
is not a priori clear, it appears interesting to go a step
further and to get rid of �. As it is shown in Ref. [5], the
elimination of � with the condition (3a) leads to the
extremal value

�0 �

������������������
p2r �m2

1� y2

s
: (5)

Moreover, the replacement of � by �0 in Eqs. (4) leads to
the following expressions
034019
L
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�
1
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v?�?Wr � f�v?�; (6a)

HRS��0� � HRFT � 2�?Wr � ar
arcsinv?

v?

; (6b)

where we have defined

y � v?; �? �
1����������������

1� v2?
q ;

f�v?� �
arcsinv?

4v2?
�

1

4v?�?

and

Wr �
������������������
p2r �m2

q
:

(7)

Eqs. (6) are precisely those of the RFTM as they appear in
Ref. [1]. The mysterious variable y is now simply inter-
preted as the transverse velocity v? of the quarks, and the
physical content of � is clarified. Using definitions (7), we
can rewrite (5) in the form

�0 � Wr�?: (8)

Originally, the RFTM was built on phenomenological
arguments. But our derivation of the RFTM shows that it
can be derived from the Nambu-Goto Lagrangian. We also
clearly see the equivalence of the RSM and RFTM, when
the auxiliary fields are eliminated. Let us note that this
equivalence is also true in general, with m1 � m2 [6].

By application of the usual correspondence rules

p2r ! �
1

r
@2

@r2
r and L !

������������������
‘�‘� 1�

p
; (9)

the quantized equations of the RFTM are given by [1]

2
������������������
‘�‘� 1�

p
r

� fv?�?; Wrg � afr; f�v?�g; (10a)

HRFT � f�?; Wrg �
a
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r;
arcsinv?

v?

�
: (10b)

The anticommutators fA;Bg � AB� BA arise because
v?, r, and pr are non commuting operators. Let us note
that the RFTM is not a covariant model. Models of this
type, with square root operators for the kinetic energy, are
generally referred to as semirelativistic. We keep here the
name ‘‘Relativistic flux tube model’’ given in the original
paper [1].

The quantized equations of the RSM, which are not used
here, are given in Ref. [10]. The diagonalization of
Hamiltonian HRFT directly provides the physical masses
MRFT. Eqs. (10), as well as the quantized RSM ones, can be
numerically solved, as it is done in Refs. [7,10]. After
resolution, one observes that the quantized RFTM and
RSM are no more equivalent, and lead to results which
differ of about 10%. This is due to the auxiliary field �,
which is replaced by an operator in the RFTM, and treated
like a number in the RSM (see Ref. [10]). This difference
in the nature of the auxiliary field causes both models to be
-2
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nonequivalent in their quantized version. It has also been
showed that, supplemented by an appropriate short range
potential, like a Coulomb term, the quantized RFTM can
rather well reproduce the meson spectra [7].
III. STRING AS A PERTURBATION

When ‘ � 0, the RFTM reduces to a spinless Salpeter
Hamiltonian (SSH) with a linear confinement potential ar
[1]. If ‘ is small, the contribution of the string is also small,
and then it can be treated as a perturbation of the SSH. We
will show that the contribution of the string can be obtained
by two different procedures, that lead to different defini-
tions of the auxiliary field �0.

Let us start with the RSM and consider that the trans-
verse velocity of the quarks is small: y 
 1. We can
develop formulas (4) at the second order in y. We obtain
then

y2 �
‘�‘� 1�

r2�ar=6���2
; (11a)

HRS��� �
p2r �m2

�
��� ar�

�
ar
6
��



y2: (11b)

Inserting (11a) in (11b), and introducing ~p2 � p2r � ‘�‘�
1�=r2, we can write down an approximate Hamiltonian

HA��� �
~p2 �m2

�
��� ar�

a‘�‘� 1�
r��6�� ar�

; (12)

defining what we call here the perturbative flux tube model
(PFTM). We see that HA��� is the sum of an usual SSH
with linear confinement in the auxiliary field formalism [5]

HSS��� �
~p2 �m2

�
��� ar; (13)

and a specific contribution of the string, which reads

�Hstr��� � �
a‘�‘� 1�

r��6�� ar�
: (14)

Since we want to treat �Hstr��� as a perturbation, we will
eliminate � with the condition (3a) applied for the
Hamiltonian HSS���. This leads to the extremal value

�0 �
������������������
~p2 �m2

q
; (15)

and after replacement in (13), to the spinless Salpeter
Hamiltonian

HSS � 2
������������������
~p2 �m2

q
� ar: (16)

Let us note that formula (15) is different from the extremal
value (8). The string correction to compute is then given by
[11]
034019
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p
i � ahri�

; (17)

in which the mean value is performed with an eigenstate of
HSS. This string contribution was previously obtained in
Ref. [11], where it is shown that its accuracy is better than
3%.

We can now invert the order of the operations: Firstly to
eliminate � in the RSM and obtain the RFTM, then make
the same approximation as before. When v? 
 1, the
RFTM equations can be developed at the second order in
v? and we have

v? �

������������������
‘�‘� 1�

p
r�Wr �

ar
6 �
; (18a)

HRFT � 2Wr � ar� v2?

�
Wr �
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: (18b)

Replacing Eq. (18a) in Eq. (18b) leads to the Hamiltonian

~H A � 2Wr � ar�
‘�‘� 1�

r2�Wr � ar=6�
: (19)

Using the fact that

������������������
~p2 �m2

q
�

�������������������������������
W2

r �
‘�‘� 1�

r2

s
; (20)

we can rewrite Hamiltonian (19) in the form

~HA � 2
������������������
~p2 �m2

q
� ar� 2Wr � 2

�������������������������������
W2

r �
‘�‘� 1�

r2

s

�
‘�‘� 1�

r2�Wr � ar=6�
: (21)

Now, we make a new approximation and assume that
Wr �

������������������
‘�‘� 1�

p
=r. In this case, which is justified in the

limit v? 
 1, a first order expansion leads to�������������������������������
W2

r �
‘�‘� 1�

r2

s
� Wr �

‘�‘� 1�

2r2Wr
: (22)

With this approximation, we finally get from ~HA, a
Hamiltonian with an usual form (a kinetic part with opera-

tor
������������������
~p2 �m2

p
)

HA � 2
������������������
~p2 �m2

q
� ar�

a‘�‘� 1�
rWr�6Wr � ar�

: (23)

The approximate Hamiltonian (23) can again be seen as the
sum of the Hamiltonian HSS (16) and a contribution of the
flux tube

�Hrft � �
a‘�‘� 1�

rWr�6Wr � ar�
: (24)

As for formula (17), the flux tube contribution is given by
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�Mrft � h�Hrfti � �
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p
i�6h

������������������
p2r �m2

p
i � ahri�
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(25)

in which the mean value is again performed with an
eigenstate of HSS. We immediately see that formulas (17)
and (25) are different. In Sec. V, we will study the qualities
of both corrections, but one can see that

�Hstr��0� � �Hrft �O�‘2�‘� 1�2�: (26)

Lets us note that the first contribution, proportional to
‘2�‘� 1�2, is a positive one.
IV. A MASS FORMULA

In the following, we will specially focus on the massless
case, m � 0, for which we can expect the largest contri-
butions of the flux tube (� increases with the quark mass).
In this case, it is possible to find an approximate analytical
mass formula. This will allow a better understanding of the
effects of the QSE (see Sec. VI C). Starting from the
Hamiltonian (12), we define dimensionless conjugate var-
iables ~x and ~q by the following scaling

~r �
~x

��a�1=3
and ~p � ��a�1=3 ~q: (27)

In this section, we treat the auxiliary field � as a number
[8,11]. We can write the Hamiltonian (12) in the form

HSS��� �

�
a2

�



1=3

� ~q2 � x� ��; (28)

with x � j ~xj. Its eigenvalues are consequently

MSS
n‘ ��� �

�
a2

�



1=3

 n‘ ��; (29)

where  n‘ is an eigenvalue of the Hamiltonian � ~q2 � x�,
which is easy to solve numerically. Simple analytical
approximate expressions of  n‘ can be found for  n0 [5]
and  0‘ [12]

 n0 �
�
3!
4

�
2n�

3

2


�
2=3

; (30a)

 0‘ �
3

22=3

�
‘�

3

2



1=3

�
��‘� 2�
��‘� 3=2�

�
2=3

: (30b)

A more complicated approximate formula exists also in the
general case [13].

Assuming that the quantities  n‘ are known, we can
compute the extremal value of � by a minimization of
relation (29), which leads to

�0n‘ �
���
a

p
�
 n‘
3



3=4

; (31)
and

MSS
n‘ ��0n‘� � 4�0n‘: (32)

We will now drop the explicit dependence in n and ‘ of the
034019
different terms to simplify the notations. When the flux
tube contribution is added, the perturbation theory implies
that the total energy is

MA��0� � 4�0 �
a‘�‘� 1�

hri�0�6�0 � ahri�
; (33)

where h1=ri is replaced by 1=hri. The next step is to use the
Hellmann-Feynman theorem [5,14], which states that

MSS��0� � 4�0 � 2�0 � ahri: (34)

Extracting hri from relation (34) and replacing it in relation
(33), we finally obtain the mass formula

MA��0� � 4�0 �
a2‘�‘� 1�

16�30
; (35)

where �0 is given by formula (31).
The mass formula (35), even approximate, exhibits

Regge trajectories. This can be easily checked when n �
0. Using the fact that

lim
‘!1

 0‘ � 3
�
‘� 3=2
2



2=3

; (36)

with formula (31), we obtain the following expression for
the extremal value of the auxiliary field at large values of ‘

�0 �

������
a‘
2

s
: (37)

Replacing Eq. (37) into Eq. (35), we get

�MA��0��2 �
225

32
a‘: (38)

This linear relation between the squared mass and the
angular momentum reproduces qualitatively the Regge
trajectories. The Regge slope is here 7:03a, a higher value
than the one predicted by the RFTM, which gives a slope
equal to 2!a [1]. Finally, we can observe that

lim
‘!1

a2‘�‘� 1�=�16�30�
4�0

�
1

16
: (39)

When ‘ � 0, this ratio is vanishing. This justifies to treat
the contribution of the string as a perturbation.
V. COMPARISON BETWEEN EXACT AND
APPROXIMATE STRING CONTRIBUTION

Before studying the contribution of the QSE to the
RFTM, it is interesting to examine the relevance of the
approximate treatment for the flux tube developed in
Sec. III. For this purpose, we compare here some masses
computed with the ‘‘exact’’ RFTM by numerically solving
Eqs. (10), as it is done, for example, in Ref. [10], with
masses computed in the framework of the PFTM with both
string corrections (17) and (25).

The symbol ME designs a mass computed with the
RFTM, and MP1, MP2 the corresponding PFTM masses
evaluated with the string corrections (17) and (25), respec-
tively. The quantities
-4



TABLE I. �ME;P1 (correction (17)) in %, for different states,
with m � 0. In this case, �ME;P1 is independent of a. ‘ is the
orbital angular momentum of the state and n is the number of
nodes at finite distance.

‘ 1 2 3 4 5

n � 0 3:26 3:78 4:01 4:17 4:29
1 1:08 1:31 1:53 1:74 1:94
2 0:68 0:86 1:04 1:22 1:40
3 0:46 0:56 0:68 0:81 0:95
4 0:36 0:43 0:52 0:64 0:76
5 0:29 0:35 0:40 0:49 0:58

TABLE II. Same as in Table I but for �ME;P2 (correction
(25)).

‘ 1 2 3 4 5

n � 0 1:03 7:81 15:21 22:52 29:54
1 0:44 0:88 2:55 4:41 6:36
2 0:40 0:67 0:73 1:62 2:64
3 0:35 0:14 0:23 0:72 1:30
4 0:31 0:19 0:02 0:30 0:66
5 0:26 0:19 0:06 0:13 0:37
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�ME;Pi �

��������ME �MPi

ME

�������� (40)

measure the differences between the RFTM and its
approximations.

Table I presents the difference between the RFTM and
the PFTM with correction (17). As the basis of the ap-
proximation was to consider a small v?, it is not surprising
to see that �ME;P1 increases with ‘. On the contrary,
�ME;P1 decreases for an increasing radial quantum number
n. This can be understood by the presence of the operator
p2r in the denominator of Eq. (17). This term becomes
larger with n, and makes the contribution of the string
smaller, leading to a decreasing of �ME;P1. Globally, the
approximation considered in Table I is rather good, in
particular, when n � ‘.

Table II presents the difference between the RFTM and
the PFTM with correction (25). When n � 0, we immedi-
ately see that this approximation is not so good, because
�ME;P2 becomes large very quickly with ‘. As in Table I,
the situation is better for larger values of n, when our
approximation Wr �

������������������
‘�‘� 1�

p
=r is particularly justified.

This is also due to the presence of the operator p2r in the
denominator of Eq. (25). But the evolution is less mono-
tonic than in Table I. In particular, for a fixed value of n,
�ME;P2 decreases to a minimal value, and then increases
again with ‘.

In the framework of the PFTM, the correction (17),
proposed in Ref. [11], which contains all orders in ‘�‘�
1� (see Eq. (26)), seems preferable since it provides quite
globally good results. Let us mention that, in the frame-
work of the RFTM, the operator Wr arises naturally instead

of the operator
������������������
~p2 �m2

p
. The bad results obtained with

the correction (17) are due to the necessity to perform the
034019
approximation Wr �
������������������
‘�‘� 1�

p
=r, in order to obtain a

Hamiltonian with an usual form, that is to say an usual
kinetic part.
VI. THE QUARK SELF ENERGY

A. Definition

Recently, it was shown that the QSE contribution, which
is created by the color magnetic moment of the quark
propagating through the vacuum background field, adds a
negative constant to the hadron masses [8]. Its negative
sign is due to the paramagnetic nature of the particular
mechanism at work in this case. Other contributions due to
quark spin (spin-spin, spin-orbit) also exist but they are
smaller that the QSE one [3], and they are neglected in this
work. Using the Fock-Feynman-Schwinger representation
of the quark Green’s function, one can obtain the QSE
contribution as a shift of the squared mass of the quark
[8,15] which reads

�m2 � �3m
Z 1

0
dz z2K1�mz��D�z� �D1�z��; (41)

where D and D1 are quark correlators and K1 the Mac-
Donald function. The properties of these correlators were
studied by lattice simulations in the quenched case [16].
One has then

D�z� � 3D1�z� � D�0� exp��jzj��; (42)

with � � 1=Tg. Tg is the gluonic correlation length, whose
value is estimated at about 0.15–0.2 fm. This locates � in
the interval 1.0–1.3 GeV. The results (42) allow us to find
an analytic form for the integral (41)

�m2 � �4mD�0�’�m=��; (43)

where, defining  � m=�, we can write ’� � as
’� � �

8>>>><
>>>>:

1
�3
� �3 
�1� 2�5=2

ln�1�
���������
1� 2

p

 � � 1�2 2

 �1� 2�2
� � 1

�3
*1� �� < 1�

1
�3 �

�3 
� 2�1�5=2

arctan�
����������������
 2 � 1�

p
� 1�2 2

 �1� 2�2� � 1
�3*2� �� > 1�:

(44)
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One can check that *1�1� � *2�1� � 2=5, and that

lim
 !0

*1� � �
1

 
: (45)

For a purely exponential correlator, as it is the case here,
D�0� is connected with the string tension a by the relation

a �
1

2

Z
d2xD�x� �

!D�0�

�2
; (46)

so we find

�m2 � �
4am�2

!
’� �: (47)

For convenience, we define a new dimensionless function,
-� �, by

-� � � �3 ’� �: (48)

We see in Fig. 1 that -�0� � 1 and that -� � rapidly
decreases for increasing values of  .

Thanks to the definition (48), Eq. (47) takes its final form
[8]

�m2 � �
4a
!

-� �: (49)

An important ingredient we have used to get the contribu-
tion (49) of the QSE is the relation (42), derived in the
quenched case. In Ref. [15], the results obtained in the
unquenched case are quite different: the exponential form
of D remains the same, but now D1 is small enough to be
neglected. This approximation leads us, after the same
calculations as before, to

�m2 � �
3a
!

-� �: (50)

The two formulas (49) and (50) only differ by a constant
factor: 4 in the quenched case, 3 in the unquenched one.
Since this factor does not seem to be presently known with
FIG. 1. Plot of -� �.

034019
a great accuracy, we will finally use the following expres-
sion for the quark self energy

�m2 � �
fa
!

-�m=��; (51)

with f 2 �3; 4� and � 2 �1:0; 1:3� GeV.

B. Insertion of QSE in effective meson models

In the previous section, we showed how the QSE con-
tribution acts as a shift of the squared mass of the quarks.
We now have to insert this new term in the models we
described in Secs. II and III. If we make the substitution
m2i ! m2i ��m

2
i in the Hamiltonian (2), we find

H ! H� �HQSE; (52)

where

�HQSE �
X2
i�1

�m2i
2�i

� �
fa
!

X2
i�1

-�mi=��
2�i

: (53)

Eq. (53) is the total contribution of the QSE to the RS
Hamiltonian. This term has to be considered as a perturba-
tion of the original Hamiltonian, and thus one has not to
give much sense to the fact that for light quarks the total
mass m2 ��m2 is negative [8]. Since the QSE is a per-
turbation of the Hamiltonian, it has not to be included in
the elimination of the auxiliary field �. To take into
account the QSE in the RFTM, we suggest the following
procedure, inspired from Ref. [8]:
(1) T
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o find the eigenvalues and eigenfunctions of the
RFTM Hamiltonian.
(2) T
o compute the mean value h�0i of the extremal
field �0 with the eigenfunctions.
(3) T
o add to each eigenvalue the corresponding QSE
contribution (53) which reads, in the symmetrical
case,

�MQSE � �
fa
!

-�m=��
h�0i

: (54)
The problem is to choose the value �0 of the extremal
field. Within the PFT, this value is given by Eq. (15), and
the resulting QSE correction is given by

�MPFT
QSE � �

fa
!

-�m=��

h
������������������
~p2 �m2

p
i
; (55)

as it is done in Ref. [11]. On the other hand, if the equations
of the RFTM are not treated in perturbation, it seems
natural to take Wr�? for �0 (see Sec. II). Within this
framework, the QSE contribution is expected to be given
by

�MRFT
QSE � �

fa
!

-�m=��
hWr�?i

: (56)

Actually, we have to replace Wr�? by fWr; �?g=2 in order



FIG. 2. Main: Regge trajectories for n � 0 with (circle) and
without (triangle) QSE, computed with the RFTM. Small box:
Same Regge trajectories computed with the PFTM. Lines are
used to guide the eyes.

FIG. 3. QSE contributions, for n � 0, versus ‘. The QSE
contributions in the RFTM (filled circle) and with the PFTM
(open circle) are computed for different quark masses. Note that
when m � 0, the scaled results are not independent of a, which
is taken here equal to 0:19 GeV2.
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to keep the operator hermitian. We can expect that both
procedures will lead to different results, as in the case of
the contribution of the string as a perturbation (see
Sec. III). But the situation is somewhat different since no
approximation of type v? 
 1 is needed to obtain

Eq. (56). Moreover, both operators
������������������
~p2 �m2

p
and Wr�?

contain all orders in ‘�‘� 1�. A first order expansion
allows to have an idea of the differences between both
approaches������������������

~p2 �m2
q

� Wr �
‘�‘� 1�

2Wrr2
; (57a)

Wr�? � Wr �
‘�‘� 1�

2Wrr
2

1

�1� ar=6Wr�
: (57b)

Relation (57b) can be obtained only if we assume v? 
 1.

C. Regge trajectories

As mentioned in Ref. [8], the QSE correction preserves
the Regge trajectories. We can qualitatively understand this
thanks to the mass formula (35), to which we add the QSE
contribution (53). We have

MA��0� � 4�0 �
a‘�‘� 1�

16�30
�

fa
!

-�m=��
�0

: (58)

For large angular momentum, �0 becomes large. Keeping
only the dominant terms, we find the approximate mass
formula

�MA��0��2 � 16�20 � 8
fa
!

-�m=��: (59)

It appears that the Regge trajectories are preserved, since
the QSE only causes a global shift of the squared masses
and preserves the dominant 16�20 term, which grows like ‘.
This is particularly clear when n � 0 (see Eq. (37)).

VII. ADDING THE QSE

In this section, we compute numerically the contribu-
tions of the QSE for both the RFTM and the PFTM. We
will focus on the massless case, for which we expect the
largest effect since -�0� � 1 and the extremal field �0 is
minimal. In this special case, we are able to perform a
universal analysis of our results, since the meson masses
are then just scaled by the factor

���
a

p
. We will use in this

section f � 3:0, which is the value computed in the un-
quenched case.

We noticed in Sec. VI C that adding the QSE contribu-
tion did not destroy the Regge trajectories and the Regge
slope. This result was obtained using a mass formula, itself
an approximation of the PFTM. Since we are able to
numerically solve the RFTM without making approxima-
tions [10], we can directly study the influence of the QSE
correction on the Regge trajectories. The main graph of
Fig. 2 immediately shows the negative shift of the squared
masses when the QSE is added, as expected. If the linearity
034019
of the Regge trajectories is well preserved with the RFTM,
the Regge slope is not. In this figure, � is the Regge slope
with QSE and . is the corresponding one without QSE.
Both are rather different, and we obtain �=. � 0:88. This
diminution of the slope is caused by the QSE term (56).
The small box shows that when one is working with the
PFTM and the QSE term (55), as it is the case in [11], the
Regge slope is not affected, or a very little bit. We find
indeed �=. � 0:99.

We now have to understand why the QSE affects the
Regge slope in the RFTM and not in the PFTM. Figure 3
illustrates the differences between the QSE contributions
(55) and (56). When ‘ � 0 both contributions are equal
-7



FIG. 4. Regge trajectories, with n � 0, for the genuine RFTM
(filled circle), the RFTM with a theoretically expected QSE term
�MRFT

QSE (open circle) and with a QSE term inspired by the PFTM
�MPFT

QSE (triangle).
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since the PFTM and the RFTM reduce to the same spinless
Salpeter equation. In the massless case, the two contribu-
tions considerably differ for ‘ � 0. The QSE coming from
the RFTM is always the smaller one, and this causes the
Regge slope to be smaller when one solves the RFTM. As
expected, the difference between the two contributions
decreases when the quark mass increases. With a large
quark mass, both RFTM and PFTM have a common non
relativistic limit (when the approximation v? 
 1 is the
most justified). We could expect from Eq. (57) that hWr�?i

is approximately equal to h
������������������
~p2 �m2

p
i, but Fig. 3 shows

that for light quarks this is not verified. We show in Fig. 4
the effect of adding to the RFTM solutions a ‘‘theoretically
justified’’ QSE term (56) and a ‘‘PFTM-like’’ one (55). As
expected, the contribution (55) causes no diminution of the
Regge slope.
TABLE III. Two sets of possible physical parameters.

Type 1 Type 2

a�GeV2� 0:245 0:195
mn (GeV) 0:0 0:073
.S 0:4 0:4
f 3:2 3:0
� (GeV) 1:0 1:0
QSE term �MRFT

QSE �MPFT
QSE
VIII. EXPERIMENTAL DATA

Realistic meson masses cannot be computed with the
genuine flux tube Hamiltonian (10b). It can indeed give the
right Regge slope with a & 0:2 GeV, but the absolute
values of the masses are always too high. An attractive
Coulomb potential, simulating the one-gluon exchange
process, must be added

V�r� � �
4

3

.S

r
; (60)

where .S is the strong coupling constant. Using the tech-
nique of Sec. IV, the contribution of this potential is

hV�r�i � �
4

3

.S

hri
� �

4

3

.Sa
2�0

; (61)
034019
in first order perturbation theory. Formula (35) implies that
this contribution to the Regge trajectory is a simple shift in
square mass given by �16.Sa=3.

The coupling constant .S has, in principle, a
r-dependence and several forms are possible (see for in-
stance Refs. [7,17,18]). In this work, we focus only on light
quark systems because the largest differences between the
two QSE terms studied here are expected for such systems.
Only mesons containing heavy quarks have an enough
small radius to probe the very short range part of the
interaction, where .S deviates strongly from a constant.
As we are only interested in the main features of the meson
spectra, we use here a fixed value for .S.

Theoretical arguments as well as lattice calculations
agree with a value .S � 0:4 [19]. However, even such a
Coulomb term does not shift the masses enough to repro-
duce the data (see, for example, Ref. [7]), except if unre-
alistic too high values are chosen for .S. This means that
other contributions coming from neglected physical
mechanisms are still needed. The QSE seems to be an
interesting one, because its contribution to the mass is
negative, and rather large. This should allow to reproduce
the experimental data with an acceptable value for the
Coulomb term.

In Table III, we give the two sets of parameters we use to
compute the masses of some n )n states. Both have the same
value � and .S but differ for the other parameters. We have
checked than the masses of light mesons decrease by less
than 1% when � increases from one to 1.3 GeV (the meson
mass variation with � vanishes when m � 0 since the -
function depends only on m=�).

In the type 1, we make the usual choice mn � 0 and take
formula (56) as QSE term. This is the contribution that one
can theoretically expect. As we have seen that it causes a
diminution of the Regge slope, we have to take a �
0:245 GeV2 in order to obtain a final slope in agreement
with the experiment. Choosing a � 0:2 GeV2 is no longer
possible as it is the case with the PFTM [11]. This is the
unconventional aspect of type 1 set of parameters. On the
other side, with the type 2 set, it is possible to keep for a the
standard value, about 0:2 GeV2. The price to pay is to take
formula (55) as QSE term, an only ‘‘empirically’’ justified
choice, and to give a mass to the quark n. The value of
73 MeV can seem high, but it is smaller than constituent
-8



TABLE IV. Comparison between the spin averaged masses
Mav of the n )n states and the results of the RFTM plus a QSE
term. M1 and M2 are the masses computed with the set of
parameters 1 and 2, respectively. Masses are given in GeV.
The first three columns show the different states used to compute
the spin averaged masses.

State I �n� 1�2S�1LJ Mav M1 M2

! 0 13S1 0:773� 0:011 0:787 0:775
5 1 13S1
h1�1170� 0 11P1 1:265� 0:011 1:269 1:284
b1�1235� 1 11P1
f1�1285� 0 13P1
a1�1260� 1 13P1
f2�1270� 0 13P2
a2�1320� 1 13P2
!�1650� 0 13D1 1:676� 0:012 1:673 1:678
5�1700� 1 13D1
!3�1670� 0 13D3
53�1690� 1 13D3
f4�2050� 0 13F4 2:015� 0:012 2:016 2:006
a4�2040� 1 13F4
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masses, around 200–300 MeV, generally used in some
potential models. Moreover, a good agreement with data
can still be obtained with a smaller value of mn and a
slightly larger value for a.

The comparison between the experimental masses and
our results is given in Table IV. Since the RFTM includes
neither the spin (S) nor the isospin (I) of the mesons, the
experimental data we will try to reproduce here are the spin
and isospin averaged masses, denoted Mav. These are given
by [17]

Mav �

P
I;J
�2I � 1��2J� 1�MI;JP
I;J
�2I � 1��2J� 1�

; (62)

with ~J � ~L� ~S and MI;J are different masses of the states
with the same orbital angular momentum ‘. The first three
columns of Table IV show the experimental data concern-
ing n )n (n means u or d) states used to compute the spin-
isospin averaged masses. These data are taken from
Ref. [20]. We see that both models lead to masses close
to the spin-isospin averaged ones, our results being located
inside the error bar in almost every case.
IX. CONCLUDING REMARKS

The purpose of this work was to study the contribution
of the quark self energy to the meson masses in the frame-
work of the relativistic flux tube model. The equivalence
between this phenomenological model and the more QCD
based rotating string Hamiltonian is used as a guide to
perform the calculations.
034019
The equations defining the relativistic flux tube model
being rather complicated to solve, it seems interesting to
treat the flux tube contribution as a perturbation. Two
procedures have been studied. To eliminate firstly the
auxiliary field from the rotating string Hamiltonian, or to
make firstly the approximation of small transverse veloc-
ities in the rotating string Hamiltonian. We arrived in
Sec. III at two non equivalent terms for the flux tube
correction: the first one, obtained in the auxiliary field
formalism, was already known [11], and the second one,
obtained directly from the relativistic flux tube equations,
which can be considered as the zero order expansion in
‘�‘� 1� of the first one. The results of both contributions
are quite similar, but we showed in Sec. V that the first
approach is globally the best one.

Starting from the rotating string Hamiltonian and con-
sidering the auxiliary field associated with the quark mass
� as a simple number, an approximate but analytical mass
formula is established. It enables to understand at least
qualitatively why the quark self energy preserves the line-
arity of the Regge trajectories and decreases the squared
masses by a constant quantity (see Secs. IV and VI C).

The addition of the quark self energy to the relativistic
flux tube model (Sec. VII) preserves the linearity of the
Regge trajectories. But, for massless quarks, the Regge
slope is smaller by a factor 0:88 with the quark self energy
than without it (this value tends toward unity when the
quark masses increase). This effect does not exist when one
works within the framework of a perturbation theory, in
which the relativistic flux tube Hamiltonian reduces to a
spinless Salpeter Hamiltonian. It is due to the fact that
different extremal values of the field � are found,������������������
~p2 �m2

p
or Wr�?, considering the perturbation scheme

or not.
In the framework of the relativistic flux tube model, it is

possible to reproduce the experimental data with the theo-
retically expected quark self energy term (� � Wr�?) and
a realistic Coulomb term, if a larger value than usual,
0:245 GeV2, is chosen for the string tension a. As the
value of Regge slope is mainly determined by this parame-
ter, it is not possible to use a smaller value of a by changing
the values of the other parameters .S or �. On the contrary,
the usual value a � 0:2 GeV2 can be used by choosing a
quark self energy term coming from a perturbation ap-

proach (� �
������������������
~p2 �m2

p
).

We believe that the quark self energy term in which the
extremal field � is given by Wr�? must be used, because it
is the natural value associated with the relativistic flux tube
model. But, in this case, the value of the string tension must
be around 0:245 GeV2. We expect that the use the usual
value 0:2 GeV2 is possible if some physical mechanisms
neglected in this study (spin contributions, retardation
effects) are taken into account. More exotic phenomena,
like deviations from the straight line for the flux tube, are
also possible. Such a work is in progress.
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