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Role of the a1�1260� resonance in multipion decays of light vector mesons
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The contribution of the a1�1260� meson to the amplitudes of the decays ��770� ! 4�, !�782� ! 5�,
and ��1020� ! 5� is analyzed in the chiral model of pseudoscalar, vector, and axial vector mesons based
on the generalized hidden local symmetry added with the anomalous terms. The analysis shows that
inclusion of a1 meson in the intermediate states results in enhancement of the branching ratios of the
above decays by the factor ranging from 1.3 to 1.9 depending on the mass of a1 meson ranging from
1.23 GeV to ma1 � m�

���
2
p
� 1:09 GeV, the greater factor standing in case of lower mass of the a1.
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I. INTRODUCTION

In the low-energy domain, quantum chromodynamics
(QCD) manifests as an effective theory formulated in terms
of colorless degrees of freedom [1]. They are introduced on
the basis of chiral G � U�3�L � U�3�R symmetry of the
QCD Lagrangian with approximately massless u, d, and s
quarks. This symmetry is supposed to be spontaneously
broken to H � SU�3�R�L. As is well known, the sponta-
neous symmetry breaking [2] is followed by the appear-
ance of massless bosons [3], in the present case, nine
pseudoscalar mesons ��, �0, K�, K0, �K0, �, and �0.
Their effective Lagrangian, including the interaction terms,
is fixed by the symmetry breaking pattern G! H, accord-
ing to which the fields of Goldstone bosons are treated as
the coordinates in the space G=H [4,5]. Adding the Wess-
Zumino term [6] to the effective Lagrangian removes the
spurious selection rule which forbids the processes with
odd number of Goldstone bosons.

There are several models which incorporate the low-
lying vector mesons ��770�, !�782�, ��1020� etc. into
the chiral theory, see Refs. [4,7–10]. As far as nonanom-
alous sector is concerned, there is the equivalence of such
models, see [8,10,11]. However, the anomalous couplings
are most conveniently incorporated into chiral theory in the
framework of approach based on the hidden local symme-
try (HLS) [9,12]. The above vector mesons are the gauge
bosons of HLS. In particular, the convenience of HLS rests
on the fact that �, !, and � mesons can be accounted for
without violation of the low-energy theorems [9,11]. To
avoid such a violation, other chiral models of vector and
pseudoscalar mesons rely essentially on the subtraction to
the gauged Wess-Zumino term [6]. The question of the
validity of each specific model is acute because in the well-
studied decays �0 ! ���
, !! ���
�0 the final
pions are not soft enough to use the decay amplitudes in
the tree approximation. On the other hand, the multipion
decays of vector mesons �0�770� ! ���
���
,
���
�0�0 [13–17], ���770� ! �������0,
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���0�0�0 [17] and !�782�; ��1020� !
�����
�
�0, ���
�0�0�0 [18], where the final
pions are truly soft to rely on the lowest order Born
amplitudes, can be good candidates for testing the chiral
models of vector and pseudoscalar mesons [17,18]. A brief
accounts of the !! 5� and �! 5� results are given,
respectively, in Refs. [19,20].

In Refs. [17,18] devoted to the evaluation of the branch-
ing ratios of the above multipion decays, we neglected the
contribution of the axial vector a1�1260� meson. The
present paper addresses the question to what extent the
inclusion of this resonance affects the branching ratios of
the decays listed above. As is known, chiral models admit
the contribution of the axial vector mesons like a1�1260�,
see reviews [8,9]. We shall use the generalized hidden local
symmetry model (GHLS) [21] because it accounts for the
contributions of the vector and axial vector resonances in a
most elegant way.

The material of the paper is organized as follows. In
Sec. II, starting from the GHLS Lagrangian [21], the
Lagrangian of �, �, !, and a1 mesons is obtained at the
lowest number of derivatives necessary for the derivation
of the �! 4�, !! 5�, and a1 ! 3� decay amplitudes.
Sec. III is devoted to the derivation of the a1 ! 3� decay
amplitude, with the emphasis on its behavior at the vanish-
ing pion momenta. Using the derived expression, the a1 !
3� decay width is evaluated assuming different masses of
the a1 meson. The contribution of the a1�1260� resonance
to the �! 4� decay amplitude is found in Sec. IV. Its
influence on the!! 5� and�! 5� decay amplitudes is
discussed in the same section. The results of the evaluation
of the branching ratios of the decays �! 4�, !! 5�,
and �! 5�, taking into account the contributions of the
a1 meson and the additional ���� vertex Eq. (2.11), are
presented in Sec. V. Section VI is devoted to a brief
discussion of the results obtained in the present paper.

II. CHIRAL INVARIANT LAGRANGIAN OF �, �, !,
AND a1 MESONS WITH LOWEST NUMBER OF

DERIVATIVES

The basis of the derivation is the Lagrangian of the
generalized hidden local symmetry model [21] (GHLS)
-1  2005 The American Physical Society
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which, in the gauge �M � 1, �
y
L � �R � �, looks as
L �GHLS� � a0f2�Tr
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The notations, assuming the restriction to the sector of the
nonstrange mesons, are
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where ��, !�, � are the vector meson �, ! and pseudo-
scalar pion fields, respectively, A� is the axial vector field
(not a1 meson!), � is the isospin Pauli matrices, f� �
92:4 MeV is the pion decay constant, 
; � stands for com-
mutator. Hereafter the boldface characters, cross (� ), and
dot ( � ) stand for vectors, vector product, and scalar prod-
uct, respectively, in the isotopic space. The constants a0,
b0, c0, d0,  4;5 are specified below. The relevant terms of
the Lagrangian describing a1 meson and its couplings to
the �� and 3� systems can be obtained from Eq. (2.1)
following the steps [21] outlined below. First, we exclude
the mixing term

�L�a1
�� / trA�
@��y�
 @���y

2i

/ A�

�
@���

1

6f2�

�� ��� @���� � � � �

�

(2.3)

by introducing the field of a1 meson

a� �
�
�

2
� a�

�

as follows:

A� � a� 

b0

g�b0 � c0�

@��
y�
 @���

y

2i
: (2.4)

Note that in distinction with Ref. [21], where the mixing
term A�@�� with the lowest order derivative in pion field
is rotated away, we do so with the entire nonlinear combi-
nation Eq. (2.3). We postpone the justification of our choice
until discussing the 3� decay width of a1 meson in Sec. III.
034015
The above diagonalization introduces the unwanted mo-
mentum dependence of the ��� vertex, which can be
cancelled by the counter terms [21]. They are represented
by the terms containing the parameters  4;5 in Eq. (2.1).
Following Ref. [21], we retain only the terms with
 4 �
 5 �  6 � 0, with the further fixing
 4 �  5 � 1 [21].
The second step is the renormalization f� ! Z
1=2f�,
�! Z
1=2�, �a0; b0; c0; d0� � Z�a; b; c; d�; where

�
d0 �

b0c0
b0 � c0

�
Z
1 � 1:

The last step is the choice [21] a � b � c � 2, d � 0
which results in the universality g��� � g and vector
dominance of the ��� coupling, the Kawarabayashi-
Suzuki-Riazzuddin-Fayyazuddin (KSRF) relation [22]

2g2���f
2
�

m2�
� 1; (2.5)

and the Weinberg relation [23]

ma1 �
���
2
p
m� � 1:09 GeV; (2.6)

see Eq. (2.8) and (2.11). The ��� coupling constant
resulting from Eq. (2.5) is g��� � 5:9. Finally, using the
weak field expansion
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(2.7)

one obtains the following Lagrangian of the �, !, a1, and
� mesons at the order required for the evaluation of the a1
meson contribution to the decay �! 4�:

L �GHLS� � L�HLS� ��L�GHLS�;

where
-2
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is the weak field limit of the Lagrangian of HLS including
the terms / m2� which explicitly violate the chiral symme-
try,

��� � @��� 
 @��� � g
�� � ���;

!�� � @�!� 
 @�!�
(2.9)
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are the field strengths of the isovector �� and isoscalar !�
fields, g is the gauge coupling constant, a � 2 is HLS
parameter. As is clear from Eq. (2.8),

g��� �
1
2ag; m2� � ag2f2� (2.10)

are the ��� coupling constant and the � mass squared,
respectively. Note that m! � m� in HLS. The Lagrangian

�L�GHLS� � L�a1��� �L������ �L�4��

is the contribution of that part of the GHLS Lagrangian
Eq. (2.1) which contains the axial vector field A�, the terms
originating from the diagonalization of A
 � mixing
Eq. (2.3), and the counter terms. It consists of the terms
responsible for the free a1 field and its interaction with the
�� and 3� states,
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the term describing the ���� and the higher derivative pointlike �! 4� vertex vertices
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and the higher derivative 4� vertex:

L �4�� �
1

64g2f4�

@��� @���

2: (2.13)

Note that when deriving the above Lagrangians, we have not used the equation of motion of the fields �, �, and a1. One
should have in mind that in the decays of our interest the final pions are nonrelativistic, p� � �m�; 0; 0; 0�. The direct
calculation shows that the ratio of the contribution from Eq. (2.13) to the lowest derivative �� scattering amplitude is
about �m�=4gf��2 � 4� 10
3, in agreement with the expectations of the chiral perturbation theory. Hence, we shall
ignore this contribution in what follows. In the meantime, the higher derivative pointlike vertex �! 4� in Eq. (2.12)
cannot be omitted, because it is essential for validity of the Adler condition for the contribution to the �! 4� decay
amplitude originating from Eq. (2.12). See details in Sec. IV.

The terms of the effective Lagrangian necessary for the calculation of the !! 5� decay amplitude are obtained from
the weak field limit of the terms [9,11] induced by the anomalous term of Wess and Zumino [6]. The corresponding
expression looks as
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[18], where nc � 3 is the number of colors, c1;2;3 are
arbitrary constants multiplying three independent struc-
tures in the solution [9,11] of the Wess-Zumino anomaly
equation [6]. The normalization of c1;2;3 is in accord with
Ref. [11]. As is evident from Eq. (2.14), the !�� coupling
constant is

g!�� � 

ncg2c3
8�2f�

: (2.15)

Assuming in what follows the relation

c1 
 c2 
 c3 � 0; (2.16)

i.e., the absence of the pointlike !! ���
�0 amplitude
[24], and using the !! ���
�0 partial width to extract
g!��, the �! ���
 partial width and Eq. (2.10) to
extract g � g��� � 6 (assuming a � 2), one finds c3 �
1. Hereafter we use the particle parameters (masses, full
and partial widths, etc.) taken from Ref. [25]. The decay
�! 5� is described by the effective Lagrangian similar to
034015
Eq. (2.14), see Ref. [18]. The evaluation of the branching
ratios of the decays !;�! 5� with the neglect of the a1
meson and counter term contributions is performed in
Ref. [18].

III. THE WIDTH OF a1 RESONANCE IN GHLS

Let us find the width of the decay a1 ! 3� in GHLS.
This task is necessary, because the original Ref. [21] con-
tains only the discussion of the a1 ! �� decay width
which, as it will be clear, overestimates the true a1 ! 3�
decay width. When so doing, the pointlike a1 ! 3� vertex
is essential. The amplitude of, say, the decay a01 !
���
�0 can be found from the Lagrangian Eq. (2.11):
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where * stands for the four-vector of polarization of the a1
meson, particles are labeled by their four-momenta, and
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Hereafter Pij is the operator that interchanges the four-
momenta qi and qj,
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is the inverse propagator of the � meson whose energy
dependent width above the ���
 threshold and below the
K� �K one includes the ���
, K �K, and !� decay modes:
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Here 0 is the usual step function, while
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is the momentum of the final state particle in the rest frame
system of the decaying particle. In case of energies E�
m� discussed in the present paper, only the ���
 decay
mode is essential. In the quark model, the coupling con-
stants are related in the following way: g2�K �K �

1
2 g
2
�K �K,

g�!� � g!��, where g�K �K is calculated from the �!
K �K decay width.

One can convince oneself that the expression (3.1) van-
ishes at the vanishing four-momentum of any final pion.
This property called the Adler condition, expresses the
chiral invariance of the underlying theory. [To be more
precise, the check based on the Adler condition hereafter is
applied in the narrow � width approximation. Indeed, it
should be recalled that the finite width effects are attributed
to the loop corrections which are beyond the tree approxi-
mation adopted in the present paper. Numerically, at en-
ergies of our concern the invariant mass of a pion pair is
m< 0:6 GeV, so that m���m�=�m2� 
m2�< 0:26, and the
effects of the �width in the diagrams with the non resonant
� meson are small.] The � pole contribution without the
pointlike a1 ! ���
�0 vertex does not possess this prop-
erty. Remarkably, the Adler condition for the a1 ! 3�
decay amplitude Eq. (3.1) is valid even in the case of the
off-mass-shell a1 meson. This is very useful because one
can safely add the a1 contribution to the amplitudes which
satisfy the Adler condition, without spoiling this property.
At this point, one can justify the choice of the diagonaliza-
tion of the A
 � Lagrangian used in Sec. II. Indeed, when
the A
 � mixing is excluded in the first order in the �
field, it is equivalent to the adding the term

i�M�a01Q ! ��q1�


q2�

0
q3� �

g
3f�
�*; q1 � q2 
 2q3�

�
1

4gf3�

�*q3��Q; q1 � q2�


 �*; q1 � q2��Qq3�� (3.6)

to the right hand side of Eq. (3.1). Hereafter �a; b� stands
for the Lorentz scalar product in cases when the four-
-4
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vectors a or b are sums of other four-vectors. As is evident
from Eq. (3.6), i�M does not vanish at q1 � 0 but rather
reduces to the expression

iM�a01Q ! ��q1�0�


q2�

0
q3� �

g
f�
�*q2�

�
1


Q2

m2a1

�
;

wherem2a1 � 4g
2f2�, which vanishes only on the mass shell

of the a1 meson. This would result in the breaking of the
Adler condition for the!;�! 5� decay amplitudes upon
taking the a1 resonance into account. In turn, it would
demand adding further counter terms, besides those pro-
posed in Ref. [21], to make the amplitude chirally invari-
ant. The above amplitudes with the neglect of the a1 meson
were shown to obey the Adler condition [18].

The energy dependence of the a01 ! ���
�0 decay
width can be found from the expression
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Z �m
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(3.7)
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FIG. 1. The energy dependence of the a01 ! ���
�0 decay
width calculated in the generalized hidden local symmetry
model.
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where jM�a0 ! ��q1�


q2�

0
q3�j

2 is the modulus squared of
the amplitude Eq. (3.1) summed over three polarization
states of the a1. It should be expressed through the invari-
ant Kumar variables [26] m2 � �q1 � q2 � q3�

2, s1 �
�q2 � q3�

2, u1 � �q1 � q3�2. The limits of integration
over u1 are

u1� �
1

2
�m2 � 3m2� 
 s1� �

1

2s1

�
��������������������������������������������������������
%�s1; m2�;m2��%�m2; s1; m2��

q
;

where

%�x; y; z� � x2 � y2 � z2 
 2xy
 2xz
 2yz: (3.8)
The results of the evaluation are shown in Fig. 1. The above
width rises rapidly with increasing m. In particular, one
obtains �a1 � �a01!���
�0�m� � 320, 860, 1024 MeV at,
respectively,m � 1090, 1230, 1260 MeV. For comparison,
the a1 ! �� decay width in the narrow � width approxi-
mation is 420, 1100, 1240 MeV, respectively. Since

���
s
p
�

m� � 1020 MeV is of our main concern, the upper kine-
matical bound of the invariant mass of the three pion
system is 740 MeV. In the mass range m � 740 MeV the
a1 width is rather small, �a1 < 1:7 MeV, and can be safely
neglected.
IV. THE a1 AND COUNTER TERM
CONTRIBUTIONS TO THE �! 4� DECAY

AMPLITUDE

The �! 4� decay amplitudes obtained in Refs. [17,18]
from the HLS Lagrangian Eq. (2.8), upon neglecting the a1
meson contribution, obey the Adler condition. In the
GHLS approach, the additional terms originate, first,
from the Lagrangian Eq. (2.11) and are represented by
the diagram Fig. 2(a), where, for each specific decay �0 !
���
���
, ���
�0�0, �� ! �������0,
���0�0�0, one should take the sum of the diagrams
with all possible permutations of the final pion momenta.
Second, there are the terms which do not contain a1 meson
explicitly but result from the exclusion of the axial vector-
pseudoscalar mixing term Eq. (2.3). They are represented
by the diagrams Fig. 2(b) and 2(c) and correspond to the
first and second term in the right hand side of Eq. (2.12).
Again, one should include the sum of the diagrams with all
possible permutations of the final pion momenta. The a1
contribution to the �! 4� decay amplitude can be ob-
tained in the following way. When so doing, we present the
details for the �0 ! ���
���
 decay mode only, since
other modes can be treated similarly. One has
-5
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respectively. The shaded circle in (a) denotes the a1 ! 3� decay amplitude similar to Eq. (3.1).
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where the inverse propagator of the a1 meson is
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* is the polarization four-vector of the initial �meson, and J��a�1 ! ��q1�
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overall sign. The expression for J���0q ! a
1 �
�
q2� is obtained from Eq. (4.3) by inverting the sign while the expression for

J��a


1 ! ��q1�



q3�



q4� is obtained from J��a

�
1 ! ��q1�

�
q2�



q3� upon the charge conjugation followed by the replacements

q1 !q3, q2 !q4 of the final pion momenta. One can directly show that the amplitude Eq. (4.1) obeys the Adler condition
at the vanishing of any pion momentum.

Next let us give the expressions for the contribution to the �! 4� decay amplitudes generated by the terms Eq. (2.12).
They are

i�M��������0q!��q1�
�
q2�



q3�



q4� �
i

ag

8f2�
�1�P12��1�P34��1�P24��1
P13�

�
�1
P12��*q1��q2q4�

D��q1�q3�


�*q1��q2q3�

m2�

�
;

i�M��������0q!��q1�


q2�

0
q3�

0
q4� �
i

ag

8f2�
�1�P34��1
P12�

�
�1
P13�

�1
P14��*q1��q2q4�
D��q1�q3�



�*q1��q2q3�

m2�

�
;

i�M��������
q !��q1�


q2�



q3�

0
q4� �
i

ag

8f2�
�1�P23�

�
�1
P24�

�1
P12��*q1��q2q3�
D��q2�q4�

� �1
P12�
�1
P13��*q1��q3q4�

D��q1�q2�
� �1
P14�

�1
P12��*q1��q2q3�
D��q1�q4�

� �1
P24��1�P13�
�*q2��q1q4�

m2�

�
;

i�M��������
q !�
q1�
0
q2�

0
q3�

0
q4� � i

ag

8f2�
�1�P23�P24��1
P12��1�P34�

�
�1
P13��*q1��q3q4�

D��q1� q2�


�*q1��q2q3�

m2�

�
:

(4.4)
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The total amplitude for the decay �! 4� is obtained upon
adding the pure HLS contribution M�HLS� from
Refs. [17,18] and the above mentioned Eq. (4.1) (and
similar expressions) together with Eq. (4.4):

M�!4� � M�HLS��!4� � �M
�a1���
�!4� ��M

������
�!4�

� *�J���! �q1�q2�q3�q4�: (4.5)

The expressions for J���! �q1�q2�q3�q4� are exces-
sively lengthy, even with the use of the permutation opera-
tors Pij, so we do not give them here.
φω,  

ρ 

π  π  

π  

π  

π  

φω,  

π  

π  

π  

π  

π  

π  

π  

π  

π  
φω,  

ρ 

π  

ω

(a) 

(c

(d)

FIG. 3. The schematic diagrams for the amplitude of the decay �;!
to the �! 4� transition amplitude Eq. (4.5) and �! 3� vertex g

034015
The detailed analysis of the!! 5� and�! 5� decay
amplitudes is given elsewhere [18]. As was shown there,
the �! 4� transition amplitude enters into the dominant
diagrams in Fig. 3(a) corresponding to the process !;�!
��! 5�, in the following way:

M!q;�q!5� �
g���g!;�!��

f2�
"��%&q�

� *�

�q5%J&��! �q1�q2�q3�q4�

D��q
 q5�
� � � �

�
;

(4.6)
φω,  

ρ  

π  

π  

π  

π  

π  π  

π  

π  

π  

π  
φω ,  

π  

π  

φ,  

ρ 

ρ 

π  

π  

π  

π  

π  

(b)

)

(e) 

! 5�. The shaded circle in (a), (b), and (c) refers, respectively,
iven in Refs. [17,18].
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where particles are labeled by their four-momentum, *� is
the polarization four-vector of the decaying !;�, and � � �
means the terms obtained from the written one by the
permutation of the pion momenta plus the contributions
from the remaining diagrams in Fig. 3(b)–3(e). Taking into
account the a1 resonance in the generalized hidden local
symmetry approach reduces to the use of the total �! 4�
decay current in that part of the !;�! 5� decay ampli-
tude which corresponds to the process!;�! 5� with the
resonant intermediate � meson, see the diagram Fig. 3(a).
The latter term means hereafter that the upper kinematical
bound on the invariant mass of the four-pion system in the
final state of the decay !;�! 5� can be greater than the
�mass. As can be seen from Eq. (4.6), the amplitude obeys
TABLE I. The width of the decay �! 4� 
keV
local symmetry [21], at different masses of the
central values set to about 10% is due to the diffe
g � g��� found from the �! ���
 decay wid

ma1 
GeV� ��0!2��2�
�m
2
�� ��0!���
2�0 �

1.09 1.84 0.81
1.23 1.59 0.75

no a1 0.94 0.59

034015
the Adler condition. Indeed, the contribution without the
a1 resonance was shown to obey this condition [18], while
the a1�� and ���� terms discussed earlier in this paper
satisfy this property separately. We do not give here the
explicit expressions for the full amplitudes because they
are very cumbersome.
V. BRANCHING RATIOS OF THE DECAYS �! 4�,
!! 5�, AND �! 5� EVALUATED WITH THE a1

CONTRIBUTION

Using Eq. (4.5), the �! 4� decay width is evaluated
according to the expression
��!4��s� �
1

3� �6 � s3=2 � 212 � Ns

Z s1�

s1

ds1

Z s2�

s2

ds2

Z u1�

u1


du1
%1=2�s; s2; s02�

Z u2�

u2

du2

Z 1


1

d72
�1
 722 �

1=2

� jM�!4�
s; s1; s2; u1; u2; t2�72��j
2; (5.1)

where the modulus squared of the matrix element summed over the polarization states of the initial � meson,
jM�!4�
s; s1; s2; u1; u2; t2�72��j2, is expressed through the Mandelstam-like invariant variables s � q2, s1 � �q
 q1�2,
s2 � �q3 � q4�2, u1 � �q
 q2�2, u2 � �q
 q3�2, t2 � �q1 � q4�2, s02 � �q1 � q2�

2. See Ref. [26], where the expressions
for the limits of integration and t2 � t2�72� are given. The Bose symmetry factor is Ns � 2 for the decay modes �0 !
���
�0�0, �� ! �������0, Ns � 4 for the mode �0 ! ���
���
, and Ns � 6 for the decay mode �� !
���0�0�0. Notice that the isotopic mass difference of the charged and neutral pion is taken into account both in the phase
space volume and the decay matrix element. The results of calculation are given in Table I, where the �! 4� decay
widths are presented in the cases of ma1 � m�

���
2
p
� 1:09 GeV (the Weinberg relation), ma1 � 1:23 GeV (the PDG value

[25]), and in case when the a1 and counter term contributions are neglected. One can see that the lower mass of the a1
meson results in a greater decay rate. This enhancement is due to the low-energy tail of the a1 Breit-Wigner factor.

The partial width of the decay !;�! �q1�q2�q3�q4�q5 , where the pions are labeled by their four-momenta, is
evaluated according to the expression

�!;�!5��s� �
�2

���
s
p

8� 3� Nsym � �2��
11

Z s1�

s1

ds1

Z s2�

s2

ds2

Z s3�

s3

ds3

Z u1�

u1

du1

Z u2�

u2


du2

%�s; s2; s02�%�s;m

2
3; u2��

1=2

�
Z u3�

u3


du3

%�s; s3; s

0
3�%�s;m

2
4; u3��

1=2

Z t2�

t2


dt2

%�s; t1; t

0
1��1
 �

2
2��1
 �

2
2��1
 7

2
2 ��

1=2

�
Z t3�

t3


dt3jM!;�!5��s; s1; s2; s3; u1; u2; u3; t2; t3�j
2


%�s; t2; t02��1
 �
2
3��1
 �

2
3��1
 7

2
3 ��

1=2
; (5.2)

where s � �
P5
a�1 qa�

2; the Bose symmetry factor is Nsym � 4, six in case of the final state 2��2�
�0, ���
3�0,
respectively. The basic integration variables due to Kumar [26] are
� evaluated in the model of generalized hidden
a1 resonance. The uncertainty of the quoted
rence in the value of gauge coupling constant
th or from KSRF relation Eq. (2.5).

m2�� ���!2�����0 �m
2
�� ���!��3�0 �m

2
��

1.53 1.17
1.38 1.00
0.99 0.59
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s1 � �q
 q1�
2; s2 � �q
 q1 
 q2�

2;

s3 � �q
 q1 
 q2 
 q3�2; u1 � �q
 q2�2;

u2 � �q
 q3�
2; u3 � �q
 q4�

2;

t2 � �q
 q2 
 q3�2; t3 � �q
 q2 
 q3 
 q4�2;

(5.3)

t1 � u1, t01 � m22. The variables s02 � �q1 � q2�
2, s03 �

�q1 � q2 � q3�
2, t02 � �q2 � q3�

2, �2;3, �2;3, and 72;3 can
be expressed through the ones Eq. (5.3), see Ref. [26]. The
limits of integration in Eq. (5.2) are also given there.
jM!;�!5��s; s1; s2; s3; u1; u2; u3; t2; t3�j2 is the modulus
squared of the !;�! 5� decay amplitude summed over
polarization states of the decaying particle. It should be
expressed through the same variables. The necessary ex-
pressions of the scalar products �qaqb�, a; b � 1; � � � 5 can
be found in Ref. [18]. The latter reference is devoted to the
evaluation of the branching ratios of the decays !;�!
���
3�0 and !;�! 2��2�
�0 in the HLS scheme
using the Lagrangian Eq. (2.14) in the case of the !�782�
and analogous Lagrangian in the case of ��1020�. Taking
the a1 resonance into account in GHLS model reduces to
using the total �! 4� decay current obtained in the
previous section, in that part of the !;�! 5� decay
amplitude which corresponds to the process !;�!
��! 5� with the resonant intermediate � meson. See
Eq. (4.6).

As was pointed out in Ref. [18], the Lagrangian
Eq. (2.14) induced by the anomalous term of Wess and
Zumino (and analogous expression in the case of�) can be
used for the evaluation of the !;�! 5� decay rates only
under the definite assumptions about arbitrary parameters
c1;2;3 ( and analogous parameters in the case of �). The
choice

c1 � c3; c2 � 0; a � 2: (5.4)

made in Ref. [18] is used here, too. With this choice, the
!! 5� decay rate is determined by the coupling constant
Eq. (2.15) only. The variation of c1;2;3 within rather wide
margins around the values given by Eq. (5.4) imply no
significant changes in the branching ratio. As for the �!
5� decay, its branching ratio is determined within the
accuracy 20% by the effective coupling constant g���
TABLE II. The branching ratios of the decays !
the model of generalized hidden local symmetry [2
at different masses of the a1 resonance. The u
parameter dependence of the anomaly induced te

ma1 
GeV� B!!���
3�0 �m
2
!� B!!2��2�
�0 �m

1.09 4:2� 10
9 3:8� 10
9

1.23 4:1� 10
9 3:7� 10
9

no a1 3:6� 10
9 3:3� 10
9

034015
extracted from the�! ���
�0 decay width. The results
are insensitive to the choice of free parameters analogous
to Eq. (5.4). See Ref. [18] for the detailed study of this
question. The results of the evaluation are presented in
Table II. Notice the difference in the central value of
B�!2��2�
�0 � 5:0� 10


7 in the lower line of this table
with the figure �6:9� 1:4� � 10
7 given in Ref. [18]. This
is due to the typesetting error in the program code for the
nonleading contribution represented by the anomaly in-
duced terms corresponding to the process �! !�!
4�. Such terms refer to higher derivatives in the effective
Lagrangian. The tail of this error disappears upon the
energy decrease. Indeed, the value of B!!2��2�
�0 here
and in Ref. [18] differs by the factor 1.06. The error is fixed
when preparing the present paper.

It is interesting to plot the mass spectrum of the four-
pion subsystem in the final five-pion state. This can be
fulfilled straightforwardly for the distribution over the
Kumar variable

�����
s1
p

, see Eq. (5.3). The corresponding
curves for the decays �! 2��2�
�0 and �!
���
3�0 are shown in Fig. 4 and 5 in the cases when,
first, no a1 resonance is present and, second, the a1 reso-
nance is included with the above chosen masses ma1 �
1:09 and 1.23 GeV. The spectra look different. Specifically,
both spectra has the peak due to the � pole. In the mean-
time, the mass spectrum of the subsystem ���
�
�0

possesses the second peak, while the �
�0�0�0 one
does not. This is due to the presence of the strong energy
dependent anomaly induced contribution �
 ! !�
 !
���
�
�0 in the decay �! �
�� ! �����
�
�0

followed by the necessary phase space kinematical cutoff.
There is no anomaly induced enhancement in the decay
�! �
�� ! ���
�0�0�0. The distributions over in-
variant mass of the remaining four-pion subsystems,�����������
u1;2;3
p

and
�����
s05

q
, where s05 � �q
 q5�

2 [26], in principle,

can be obtained upon inserting the corresponding : func-
tion into Eq. (5.2). In practice, however, this demands the
complex rearrangements of the sequential integration
bounds in Eq. (5.2) [26]. We do not make this task here.
Instead, we restrict ourselves by drawing the qualitative
conclusions that the mass spectra of the subsystems
���
�0�0 and ���
���
 should look similar to
ones shown in Fig. 4 and 5, respectively, because in the
former, like in the plotted ���
�
�0 one, there is also
�782� ! 5� and ��1020� ! 5� evaluated in
1] added with the anomaly induced terms [9],
ncertainty of the central values due to the
rms is set to �20%, see Ref. [18].

2
!� B�!���
3�0 �m

2
�� B�!2��2�
�0 �m

2
��

4:4� 10
7 8:8� 10
7

3:9� 10
7 7:7� 10
7

2:5� 10
7 5:0� 10
7
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the anomaly induced contribution �0 ! !�0 !
���
�0�0 while in the latter one there is no such con-
tribution, see Ref. [17] for more detail. To summarize the
discussion of the mass spectrum of the four-pion subsys-
tem, we point out that, as is evident from Fig. 4 and 5, the
greater part of the total number of events of the decay�!
5� should originate from the � 1

2 �� vicinity of the � peak
in the process �! ��! 5�.

VI. DISCUSSION

Let us compare the part of our results concerning the
widths of the decays �0 ! 2��2�
 and �0 ! ���
2�0

with those of Ref. [16]. One can see that our calculation in
cases when the a1 resonance is taken into account, gives
the partial widths which exceed those obtained in Ref. [16]
by a factor ranging from 1.5 to 1.8, depending on the mass
of the a1 meson. In the meantime, our calculation gives the
coinciding results in the model without a1 meson. When
making such a comparison, note, first, that here we take
into account the mass difference of the charged and neutral
pions both in matrix elements and the phase space volume,
while the authors of Ref. [16] set all pion masses equal to
the mass of ��. Second, we fix g��� from the �! ���


width while in Ref. [16] it is fixed by Eq. (2.5). The
mentioned difference between the results, in all appear-
ance, could be attributed to the way of taking into account
034015
the contribution of the a1 resonance. Indeed, as is dis-
cussed in Sec. III, there are different ways of taking into
account the additional terms arising due to the diagonal-
ization of the axial-pseudoscalar mixing. This could result
in the terms similar to Eq. (3.6), which, in principle, could
affect the specific value of the �! 4� width.
Unfortunately, the authors of Ref. [16] did not give the
necessary details to make the comparison and reveal the
reason of the discussed discrepancy.

The KLOE collaboration at DA#NE � factory has
collected the total number of events at

���
s
p
� m� equivalent

to the luminosity integral
R
Ldt � 500 pb
1 [27]. Using

the Table II, one can estimate the expected number of
events N�!5� of the decay �! 5� which already could
be present in the whole KLOE statistics. One obtains
N�!5� � 1340, 2070, 2360, respectively, in the HLS
model without a1 meson, in the GHLS model which in-
corporates the a1 meson with the mass ma1 �
1:23 GeV; 1:09 GeV.
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