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Quantum Hall states of gluons in dense quark matter
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We have recently shown that dense quark matter possesses a color ferromagnetic phase in which a
stable color-magnetic field arises spontaneously. This ferromagnetic state has been known to be Savvidy
vacuum in the vacuum sector. Although the Savvidy vacuum is unstable, the state is stabilized in the quark
matter. The stabilization is achieved by the formation of quantum Hall states of gluons, that is, by the
condensation of the gluon’s color charges transmitted from the quark matter. The phase is realized
between the hadronic phase and the color superconducting phase. After a review of quantum Hall states of
electrons in semiconductors, we discuss the properties of quantum Hall states of gluons in quark matter in
detail. Especially, we evaluate the energy of the states as a function of the coupling constant. We also
analyze solutions of vortex excitations in the states and evaluate their energies. We find that the states
become unstable as the gauge coupling constant becomes large, or the chemical potential of the quarks
becomes small, as expected. On the other hand, with the increase of the chemical potential, the color
superconducting state arises instead of the ferromagnetic state. We show the region of the chemical
potential of the quarks in which the color ferromagnetic phase is realized. We also show that the quark
matter produced by heavy ion collisions generates observable strong magnetic field ~10'* G when it is in

the ferromagnetic phase.
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I. INTRODUCTION

Quark matter is known or expected to have several
phases, hadronic phase, quark-gluon plasma phase and
color superconducting phase [1]. When the density of the
quarks is small, the hadronic phase arises in low tempera-
ture owing to very strong gluonic interactions. Thus, the
quarks in the phase are confined [2,3] in the hadrons. On
the other hand, when the density of the quarks is suffi-
ciently large, the color superconducting phase is expected
to arise. In such a case, gluonic interactions are small so
that attractive forces operate perturbatively between anti-
triplet pair of the quarks. Thus, the condensation of the
pairs arises to make the superconducting phase realized.
When the temperature is sufficiently high, quark matter in
both phases melts and forms the quark-gluon plasma.
Among the phases only the hadronic phase is observed.
Although the color superconducting phase is very intrigu-
ing, present experiments could not produce the phase
because large chemical potentials of the quarks such as
1 GeV is needed for the production of the phase.

We have recently discussed [4] a possibility of the stable
color ferromagnetic states in dense quark matter. The
ferromagnetic state is caused by the condensation of the
color-magnetic field, not by the alignment of the quark’s
magnetic moments. The states are realized between the
hadronic state and the color superconducting state when
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the chemical potential is varied. Thus, the phase could be
observed in the present experiments. The ferromagnetic
states possess a spontaneously generated color-magnetic
field in maximal Abelian subalgebra and also involve a
quantum Hall state of off-diagonal gluons. The gluons have
been known to have unstable modes [5] in the color-
magnetic field B. They occupy the lowest Landau level
with their spins pointed to the magnetic field and with their
energies being imaginary. The existence of these unstable
modes implies that the naive ferromagnetic state (Savvidy
vacuum [6]) is unstable. We have recently shown [4] that
the formation of the gluon’s quantum Hall state (QHS)
caused by the condensation of the unstable modes stabil-
izes the ferromagnetic state.

In this paper we review QHS [7] of electrons in semi-
conductor and Chern-Simons gauge theory [8] for describ-
ing the QHS in the next section. This is because the
phenomena and its theory are not popular in hadron phys-
icists. In Sec. III, applying the theory to the unstable
gluons, we discuss the properties of QHS of the gluons;
incompressibility, Laughlin quasiparticle, etc. Especially,
we numerically show that the energy of the Laughlin
quasiparticle becomes smaller as the gauge coupling con-
stant becomes larger. Since it may vanish at the infinite
coupling constant, a bound state of the quasiparticle and
antiquasiparticle is expected to a state with zero energy
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even at finite coupling constant. This implies that the QHS
of the gluons becomes unstable against the creation of the
bound states at the coupling constant. These excitations
destroy Laughlin state of the gluons. As a result, the QHS
decays and the ferromagnetic state also decays. Instead,
quark confining state would appear at such large coupling
constant. In other word, at such small chemical potentials
the hadronic phase arises instead of the ferromagnetic
phase. In the Sec. IV we show that the color superconduct-
ing state is more favored than the ferromagnetic state when
the number density of the quarks is sufficiently large. In
Sec. V we determine the critical chemical potential beyond
which the color ferromagnetic phase arises. In Sec. VI we
consider phenomenological implications of the color fer-
romagnetic states of the quark matter. Finally in Sec. VII
we discuss that the existence of the ferromagnetic phase is
a very natural consequence in the gluon and quark
dynamics.

II. QUANTUM HALL STATE OF ELECTRONS

A. Integer quantum Hall state

QHS of electrons was discovered [9] in 1980 by von
Klitzing. He has observed quantized Hall conductivities
0, with the unit of the fundamental constant e?/2mhin a
two-dimensional quantum well fabricated of a semicon-
ductor. (In the notation of Ty the direction of x is that of
the electric current flowing and the direction of y is that of
the Hall voltage arising.) It is called quantum Hall effect.
The observation indicated the existence of a specific state
of two-dimensional electrons in the well under the strong
magnetic field, B, typically 103 G. In these experiments,
electrons are trapped in two-dimensional quantum well
with its width ~10 nm so that their motions are restricted
in two-dimensional space. In order to move in a direction
perpendicular to the space, electrons need to gain energies
~100 eV. Thus, in experiments with low temperature
~1 K, electrons move only in the two-dimensional space.

The two-dimensional electrons in the magnetic field
make cyclotron motions with their radius €z = 1/+/eB
and their states are specified by Landau levels. Each of
them has a large number of degenerate states; the degen-
eracy per unit area is given by eB/2r. The original QHS
was called integer quantum Hall state since the state is
observed at filling factor being integer; the filling factor is
defined as p./(eB/27) (p. is the two-dimensional number
density of electrons, typically 10!' /cm?.) Thus, the filling
factor means a fraction of electron occupation in a Landau
level. For example, the filling factor » = 1/3 implies that
electrons occupy a third of the lowest Landau level. The
integer filling factor implies that some of Landau levels are
completely occupied.

Integer quantum Hall effect can be understood as a
localization property of each two-dimensional electrons;
some of them are localized due to impurities and some are
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not localized in the magnetic field in spite of the impurities.
In general, all two-dimensional electrons must be localized
around impurities. This is well known as Anderson local-
ization. Then, the system is an insulator because there are
no carriers of electric currents; localized electrons do not
carry the currents. But the localization theorem does not
hold when the magnetic field is present. We note that the
effect of the impurities splits the degeneracy of the states in
a Landau level. Thus, the density of the states is not of the
delta function of the electron’s energy, but has a finite
width. Under this circumstance, almost all of the states
are still localized. But, electrons occupying the states
around the center of the Landau level are extended all
over the system so that they can carry electric currents.
This fact generates plateaus around v = integers in Hall
conductivity vs magnetic field diagram. In this way, integer
quantum Hall effects are caused by the interplay of the
impurities and each electron, and many-body correlations
among electrons are not important.

B. Fractional quantum Hall state

Fractional quantum Hall effects were observed [10] in
1982 by Tsui at the filling factor being fractional numbers,
e.g., 1/3,2/3. (He observed plateaus at such fractional
filling factors.) Electrons occupy a fraction in the lowest
Landau level. The QHSs have been understood to be
caused by many-body effects of electrons, just like super-
conductivity. Impurities do not play important roles in
these QHSs. Laughlin [11] proposed a wave function for
this QHS, called Laughlin wave function at the filling
factor being 1/n,

V= l_[(zi —z;)" exp(—eBZIzi|2/4>, (1)
i 7

with z = x + iy denoting complex coordinate of electrons
with charge —e, where we have used a symmetric gauge
potential A® = (yB/2, —xB/2,0) for the magnetic field.
Here, n is an odd integer for the Fermi statistics of elec-
trons. Numerical simulations show that the ground states of
the electrons at the fractional filling factors are well de-
scribed by the Laughlin wave functions even if the repul-
sive Coulomb interaction is replaced by a delta function;
the precise form of the interaction between electrons is not
important for the realization of QHS.

In general, a system of electrons partially occupying the
lowest Landau level is compressible, namely, the system
has no gap; excitation energies are distributed continuously
above the ground-state energy. On the other hand, the QHS
has a gap just like the BCS state. Hence, the QHS is
characterized as a state with gap. We should remember
that free electron gas has no gap so that even with the
Coulomb interaction taken into account the gas does not
gain the gap in general. But the BCS states are gapped
states formed from Fermi gas with a small attractive force
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among electrons around Fermi surface. Similarly, the
QHSs are gapped states formed from the gas of two-
dimensional electrons interacting repulsively with each
other under the strong magnetic field. These gapped states
arise at the fractional filling factors.

If we add an electron to the QHS with the filling factor
v = 1/n there appear n Laughlin’s quasiparticles each of
which possesses a fractional charge of —e/n. On the other
hand, if we extract an electron from the state, there appear
n Laughlin’s antiquasiparticles, each of which possesses a
fractional charge of e/n. They carry electric currents.
Therefore, in the fractional QHS only these quasiparticles
carry electric currents so that the Hall conductivity is given
by e/2m X e/n. The plateaus at the fractional filling factor
are understood as the localization properties of these qua-
siparticles, not of electrons. The excitations on the QHS are
given by bound states of the quasiparticle and antiquasi-
particle; they attract each other because of the Coulomb
interaction. The gap of the QHS is given by the energy of
this bound state of the Laughlin’s quasiparticles.

C. Chern-Simons gauge theory of quantum Hall state

We have the BCS theory for understanding supercon-
ducting states. But we do not have a similar theory for the
QHS. Namely, there is no appropriate theory of fermionic
electrons producing Laughlin wave functions. We under-
stand simply that numerical simulations confirm the valid-
ity of the wave functions and the gap in the state. In the
case of the superconductivity we have a bosonic theory
well known as Landau-Ginzburg theory. Similarly, we have
Chern-Simons gauge theory of bosonized electrons for
understanding the QHS. In this section, we wish to explain
it.

It is well known that BCS states are described by
Landau-Ginzburg effective Lagrangian,

LBCS = |(la/.1, + 26A/.L)¢|2 + m2|¢|2 - A|¢|4

1
——F

4 ,U«VF’W’ (2)

where ¢ and A, denote Cooper pair of electrons and
electromagnetic fields, respectively. The ground state is

given by (¢) = \/m?/2A. Namely, it is a condensed state
of the Cooper pairs. Since the gauge symmetry, ¢ —
de*™ and A,—A, + GMA/2e, is spontaneously bro-
ken, we have vortex excitations with the magnetic flux
27r/2e. These are magnetic vortices penetrating supercon-
ductors. When we switch off the gauge interaction, we
have an effective model of superfluids.

Similarly, there is a bosonic theory for the QHS of
electrons. It is a theory of composite electrons described
by Chern-Simons gauge theory [8,12],
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Lous = dl(iay — ag)d. + c.c.
1

Mme

|(lal + EA? - ai)(zbelz - VCoulomb

1
+ @E’LV"auayaV 3)

where m, denotes mass of electrons and Vcgyomp =
[ @xdylelp. (01> — pl(1/2]x — yDlelp()I* — p] de-
scribes the Coulomb interaction between electrons with
background positive charges p. The term A% describes
the external magnetic field imposed for the realization of
QHS and has no kinetic term. The factor of « should be
taken as 77 X odd integer for the boson field ¢, describing
real electrons.

The boson field ¢, describes composite electrons; boson
¢, attached with flux of a;. That is, particles with Fermi
statistics can be described in two-dimensional space by
bosonic particles attached with a fictitious flux 2a of
Chern-Simons gauge field a;. Owing to this flux, the
exchange of the bosonic particles induces a phase e'® in
their wave function. Thus, with the choice of @ = 7 X
odd integer, the wave functions describe particles with
Fermi statistics. This situation is mathematically described
by LQHS'

Using the Hamiltonian derived from the Lagrangian, we
can obtain the Schrodinger equation for electrons with
Fermi statistics. In that sense, the Lagrangian correctly
describes the two-dimensional system of electrons in the
magnetic field. We should note that if Chern-Simons gauge
fields are absent in the above Lagrangian and ¢, obeys
Fermi statistics, the Lagrangian describes ordinary electron
system.

Using equations of motions derived from Lqys, we can
see that QHSs are obtained as ground-state solutions such
as (@.) # 0 similar to the case of BCS states. These
solutions can be obtained only for the case that the relation,
eA? = qa;, holds. Namely, the magnetic field eA? is can-
celed by the Chern-Simons gauge field a;; the field can be
represented by the density p. of electrons d)ér ¢, such as
bl ¢. = —€;;0;a;/2a, an equation derived by taking var-
iational derivative of Lgys in ay. Hence, the solutions can
be obtained only when the filling factor ¥ = 27p./eB is
given by 77/a. In this way we can understand that QHSs
are condensed states of bosonized electrons ¢, and are
realized only at v = 1/3, 1/5, etc., for @ = 3, 57, etc.

In order to see [12] that the states are really QHSs
with appropriate Hall conductivities, o,,, we derive o,
in the following. We introduce a gauge potential A, of
electric field E = —dyA — dA, in Lous; bl(iog — ay +
eAy)p. + ---. Shifting the integration variable of a,
in the functional integral Z(A,) = [D¢.Da, X
exp(i [ d*xdtLqgys) suchas a, — a, + eA,, we calculate
electric current j, = —id, logZ, which is given by
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¢’E,/2a in the state of (p) = ./p. and (—dpa, —
dyag) = 0. Thus, the Hall conductivity is correctly given
by ve?/2. In this way we find that the condensed state of
the bosonized electrons is the QHS. [One (A.L) of the
authors has previously shown [13] that Laughlin wave
functions can be derived from the condensed states of the
field ¢..]

Laughlin’s quasiparticles are excited states of the QHS.
In the picture of the bosonized electrons, they are presented
by vortex excitations on the state of (¢.) = /p. # 0,
where U(1) gauge symmetry (¢, — ¢.e’® and a, —
a, — 9,0) is spontaneously broken and hence there are
topological excitations associated with the symmetry.
Actually, we can find a vortex soliton such that ¢.(x) =
f(r)exp(in@) with boundary conditions, f(r) — ,/p. and
a; — —0,(nf) + eA;as r — coand f(r = 0) = 0, where 6
is an azimuthal angle and » is an integer. This vortex is
similar to the magnetic vortex in the superconductor, but in
the case of QHS the vortex has a quantized electron num-
ber contrast to the quantized magnetic flux in the case of
the superconductivity. This is because the flux quantization
-/ dzxe,-ja,-aj = 2mn implies the electron number quan-
tization N, = — [d’xe€;;0;a;/2a = mwn/a of the vortex
solutions. Thus, Laughlin’s quasiparticles have a fractional
electric charge such as e/3. This fractionality of the elec-
tric charges has been observed [14]. In this way the theory
of the composite electrons can describe, in the mean field
approximation, the QHSs as condensed states of bosons
just like Landau-Ginzburg theory of superconducting
states. (This similarity can naturally lead to a prediction
of the presence of Josephson effects in bilayer quantum
Hall systems [15].)

III. QUANTUM HALL STATE OF GLUONS

A. Unstable gluons in color-magnetic field

Up to now, we have given a brief review of the theory of
QHSs in ordinary two-dimensional electron system. We
now apply the idea to analyze a QHS of gluons, which
appears in dense quark matter. We discuss SU(2) gauge
theory with two flavors for simplicity.

It has been known [6] in the SU(n,) gauge theory with n;
flavors that a one-loop effective potential for the color-
magnetic field has a nontrivial minimum; V(gB)=
B?/2+(11N/9672)g* B*[log(gB/A*) — 11— (i/8m)g* B>,
with an appropriate renormalization of the gauge coupling
g, where N =n, — 2n;/11; N = 18/11 in the case of
SU(2) gauge theory with two flavors. [Beyond the one-
loop approximation, the presence of the nontrivial mini-
mum in gB has been proved [16] in general under the
reasonable assumption that the running coupling constant
2(gB) becomes infinity at a finite gB.] This apparently
seems to imply spontaneous generation of the color-
magnetic field, namely, the realization of a ferromagnetic
state. But it is not so simple since the imaginary part in
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V(gB) is present when g B # 0. It means that the state with
the magnetic field is unstable as well as the perturbative
vacuum state with g2B = 0. Actually, the unstable modes
of gluons are present in the state with the magnetic field
(ferromagnetic state). Thus, this naive ferromagnetic state
is unstable [16]. The modes are expected to make some
stable condensed states. What kind of the stable state is
formed of the unstable gluons? We have shown [4] that the
state is a QHS of the gluons with the color-magnetic field.
In order to explain it, we decompose the gluon’s
Lagrangian with the use of the variables, ‘“‘electromagnetic
field” A, = A3 and “charged vector field” ®, = (A}, +
iA%)/ /2, where indices 1 ~ 3 denote color components,

1.,
L= _ZF/J’V

1 2 1 2
= _Z(G'U'AV - BVAM) - ElDl"(I)V - DV(I),Ml

2
+ig(aRAY — 9AR)DE D, + %(@M@I ~ ®,dh)?
4

with D, = 9, + igA,. We have omitted a gauge term
D, ®# = 0. Using the Lagrangian we can derive that the
energy E of the charged vector field @, = e in the
magnetic field, A, = A5, is given by E* = k3 + 2¢B(n +
1/2) = 2gB with a gauge choice, Af = (0, x,B,0) and
(0, + igAB)DH =0, where we have taken the spatial
direction of B being along x; axis. +2¢B (the integer n =
0) denotes the contribution from spin components of ®,,
(Landau levels) and k3 denotes momentum in the direction
parallel to the magnetic field.

Obviously, the modes with E*(n = 0) <0 are unstable
modes occupying the lowest Landau level and with spin
parallel to B. Among them, the modes with k3 = 0 are the
most unstable ones, which means that they have the largest
negative value of E*(k; = 0). Thus, they are expected to
form a stable state. Here we should remember a simple
model of a scalar field with a double-well potential,
—m?|p|> + Alp|*/2. The state (¢) = 0 is unstable and
unstable modes ¢ (k) with their energies E? = K —m?<
0 arise on the state. In this case, the most unstable uniform

mode, ¢(k = 0), among ¢(E), condenses to form a stable

state {¢) = \/m?/A. Therefore, the most unstable modes
with k3 = 0 are relevant to the formation of the true ground
state also in the gauge theory. Since they have no x;
dependence, they are two-dimensional objects occupying
the lowest Landau level. The situation is quite similar to
the case in the two-dimensional electrons forming QHSs
just as mentioned above. The only difference is that in the
gauge theory gluons are bosons, while electrons are
fermions.

In order to find the stable state in the gauge theory, we
extract only the most unstable modes from the Lagrangian,
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Eq. (4), ignoring the other modes coupled with them and
obtain a two-dimensional Lagrangian,

. A
Lunstable = |(lall - gAg)d)ulz + 2g3|¢u|2 - §|¢u|4) (5)

with A = g2/€, where the field ¢, = (P, — i®,)\/(/2
denotes the unstable modes in the lowest Landau level. €
denotes the coherent length of the magnetic field, namely,
its extension in the direction of the field. Here we are
thinking the quark matter with its length scale €. Then,
obviously, a condition of £ > €5 =1/ \/g_fB must be sat-
isfied for the consistency. The index v runs from 0 to 2. We
note that the field ¢, has a color charge associated with 75
of SU(2) algebra. This color charge is only a conserved
quantity when the spontaneous generation of the color-
magnetic field « 73 occurs in the SU(2) gauge theory.
This Lagrangian is quite similar to the Lagrangian in
Eq. (2) of the superconductivity. It apparently seems that
the ground state is simply given by {(¢,) = /2gB/ A, the
condensed state of the field ¢,. But it is impossible be-
cause the term of Aﬁ is present in the kinetic term. If this
term vanishes, the term of the negative mass also vanishes
so that the solution (¢,) # 0 does not exist. Physically, the
Lagrangian L ;4.1 describes such a system that the parti-
cles of ¢, move in the magnetic field and interact with
each other through a repulsive potential of a delta function.
There is a numerical simulation [17] that the nonrelativistic
particles with such an interacting potential can form a
Laughlin state even if they are bosons. Thus, the gluons
represented by ¢, may form a quantum Hall state.

B. Quantum Hall state of unstable gluons

In order to see explicitly the QHS of the field, we
introduce Chern-Simons gauge field to make composite
gluons; bosons attached with the Chern-Simons flux. Then,
a relevant Lagrangian is given by

. A
Ly =10, = 8A, + a,)$, 1> +2¢Blg > = S 1b,
e,ul//\
4da

—+

a,d,a,, (6)

where the statistical factor a should be taken as @ = 27 X

integer to keep the equivalence of the system described by
L, to that of L ,q.p1e- The field ¢, represents the composite
gluons attached with the Chern-Simons flux a;.

The equivalence between L. and L, has been
shown [18] in the operator formalism although the equiva-
lence had been known in the path integral formalism using
the world lines of the ¢, particles. [In the formalism the
last term in Eq. (6) produces a phase, ¢/*/7, in wave
functions when trajectories of two particles are inter-
changed.] This Lagrangian corresponds to Lgys of com-
posite electrons. Obviously, there is the U(l) gauge
symmetry such that ¢, — ¢,e™* and a, — a, + 9,A;
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a nonvanishing term, (e*"*/4a)d,Ad,a, in L, under the
gauge transformation vanishes in the action integral
f d’xL, with appropriate boundary conditions.

In deriving equations of motion, we need to impose a
condition of the modes ¢, (or ¢,) occupying the lowest
Landau level, namely, the lowest Landau level condition
[19]. The condition was used when L e Was derived.
The condition is given by (DY + iD5)¢, = 0 with iD¢ =
i0; — gA; + a;. [In the case of ¢, the condition is (D; +
iDy)¢p, = 0.] Thus, adding a term C(D{ + iD5)¢, to L,
with a Lagrange multiplier C, we derive equations of
motion by taking functional derivatives in ¢,, a,, and C,

. 1
plidgd, + c.c. + 2agl ¢, > = _geijaiajr (7)

€;0;|p|> + 8,1i(—C, + CTpl) + 5,(Ch, + CT )

1
= €;;(dpa; — 0;a), (8)

(idg + ap)’ ¢, + (8B — €;;0,a;)d, — (D¢ — iD§)CY
= Mo, > ¢, )

(DY +iD3)$, =0, (10)

where we have used a formula [19] of [d?x|D¢¢,|* =
[@x(I(D§ + iD§) ¢ |* + (¢B + €;;0,a,)|$,I*); surface
terms are omitted in this formula.

We find that the solution of the uniform ground state is
given such that C = 0, a; = gA%, and qay, ¢, are solutions
of the equations,

B

8
2a0|¢a 2= %

That is, the QHS represented by the condensed state,
(¢p,) =v # 0, arises only when the magnetic field is
canceled by the Chern-Simons field, —¢;;0,a; = gB =
2ap.; p. is given by the left hand side of Eq. (7), i.e., p, =
2ayv?. This p, represents color-charge density possessed
by the gluons ¢,. The composite gluons condense to form
the QHS only when v = 27p./gB is equal to 77/ «. This is
quite similar to the case of the ordinary QHS mentioned
above. It is easy to show that this state possesses appro-
priate Hall conductivity o, = (7/a)g?/2. Therefore,
we understand that the condensed state (¢,) # 0 is a
QHS of gluons. It apparently seems that there are infinitely
many QHSs with the filling factor v = 77/« because « can
take infinitely many values such as n X 7 with positive
even integer n. In the QHSs of electrons, the states with
small filling factors have low densities of electrons. In such
a case electrons forming Wigner crystal is energetically
more stable than electrons forming the QHSs. Actually,
such QHSs with small filling factors, e.g., 1/9, have not
been observed. We expect that similarly in the gauge
theory, Wigner crystal of gluons would be realized when

and a3 +2gB= A, (1)
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the filling factor is much small » < 1. The analysis is now
in progress.

We should mention that the QHS of gluons is realized in
a sector with nonzero color charge, not in the vacuum
sector; the condensed state of ¢, possesses a color charge.
Such a state can arise in dense quark matter where the color
charge of quarks is transmitted to the condensate. This fact
leads to the minimum number density of quarks for real-
izing a QHS, for example, QHS with » = 1/2 where the
color-charge density of the condensate given by gB/4m(
must be supplied by the quarks. Since the color charge of
the quarks is a half of the gluon’s, g/2, the number density
pq of the quarks for producing the QHS of the gluons must
be larger than a critical one given by

_ gB/2 (dk:;
pq = p(+) + p( ) = 2p(+) = 2n; P 2_7:
_nikgB/2 _ 8ByYw —mg B 1)
7’ 72 27l

with number density p*) of positive (negative) colored
quarks, where n; = 2 is the number of flavors. k; denotes

the Fermi momentum given by ,/u* — mj with the con-

stituent quark mass m,, and the chemical potential u of the
quarks at zero temperature. (We discuss mainly the chemi-
cal potential of the quarks, which gives the chemical
potential of baryons, up = 3u.) Here, we have assumed
that the quarks occupy only the lowest Landau level, that

is, u = ,/gB + m2.
Therefore, it turns out that the minimum chemical po-
tential u for realizing the QHS is given by

\Jm; + (m/2€)*>. We should mention that this quantity

does not depend on the unknown value of gB. We also
note that this value of w is necessary, not sufficient for the
realization of the state. In this way, the presence of the
dense quark matter is necessary for producing the QHS of
gluons. On the other hand, when we are concerned with the
vacuum sector, such a QHS cannot arise so that the ferro-
magnetic state is unstable. Probably, the large fluctuation
of the unstable modes may form a confining vacuum called
a spaghetti vacuum [20].

In order to calculate the ground-state energy we derive
Hamiltonian,

H= jdzx[a(z)|¢a|2 + (gB + €;0,a)| P,
2, A 4
_2g3|¢a| +E|¢a| ] (13)
Thus, the energy density E,(v) of the QHS is given by
E>(v) = ajv? — 2gBv* + 4 v*. We should note that E,(v)

represents the energy density in two-dimensional space
and that the three-dimensional one is given by E,(v)/¥.
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The behavior of the ground-state solution with respect to
the coupling A = g?/€ and the filling factor v = 7/« is
given by

gB 1/3
v— R
(401\/X)

heB A A (14)
& . ay— — for — < €z
o o

BA\1/3
ag — <g47a> for A — oo,

v —

Thus, we find that the ground-state energy density
[ = E;(v)/€ + ReV(gB)] in three-dimensional space be-
comes large such as E; ~ 1.5A'3(gB/4a)*3/€ as the
gauge coupling constant becomes large, A — oo (or as
the length scale of the system in the direction of the
magnetic field becomes small, £ — 0). The fact implies
that the QHS becomes unstable as the coupling becomes
large. This is because the energy of the ferromagnetic state
(B # 0) involving the QHS becomes larger than the en-
ergy of the perturbative ground state with B = 0; we have
normalized the energy such that the energy of the pertur-
bative ground state vanishes at gB = 0. This is consistent
with naive expectation that at sufficiently large g2, the
hadronic state (B = 0) is realized instead of the ferromag-
netic state: the hadronic or confining ground state is more
stable than the perturbative ground state for such a large
coupling. Therefore, at large coupling constants the ferro-
magnetic state becomes unstable and the hadronic state
would be realized.

On the other hand, E; ~ —0.5(2gB)?/(A€) as A — 0.
This implies that when the coupling constant is sufficiently
small, the ferromagnetic state is stable since it has much
small energy. It apparently seems to be unnatural because
the perturbative ground state may be realized at the small
coupling. But we should mention that the QHS of the
gluons is realized only in dense quark matter, not in the
vacuum because for the realization of the QHS, the color
charge associated with 73 must be supplied from some-
where in the neutral system: The condensate of ¢, pos-
sesses the color charge, which must be supplied from the
quark matter. Therefore, even at small coupling constants,
the QHS can arise as a stable state in the quark matter. (In
the vacuum the perturbative ground state is realized at such
small coupling since there are no color charges.)

Analyzing small fluctuations 6¢,, etc., around the so-
lution of the ground state, we can see that the energy of the

fluctuations has a real positive gap given by {/4a3 + 2Av2.

The fluctuations represent extended collective motions,
while there are individual localized collective motions,
namely, Laughlin’s quasiparticles. They are vortex topo-
logical solitons in the Chern-Simons gauge theory. We find
from numerical analysis of such solutions that the energies
of the solitons are positive. Therefore, no instability in the
ferromagnetic state (B # 0) appears as a result of the
formation of the QHS of the gluons. In the next subsection
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we discuss the vortex solitons in the QHS of the gluons in
detail.

C. Vortex excitations in the quantum Hall state

The vortex solitons arise owing to the spontaneous
breakdown of the U(l) gauge symmetry of the
Lagrangian in Eq. (6) describing spatially two-dimensional
gluons. The vortex solutions can be obtained in the follow-
ing. The lowest Landau level condition, (D{ + iD5)¢, =
0 leads us to the form of ¢, = f(z)e®™) with an arbitrary
function f(z) of z = x + iy. Here, a(x) is defined such that
a; = gA; + €;0;a. We assume that the solutions are
spherically symmetric, namely, a(r) and ay(r) are func-
tions only of the radial coordinate r = \/x*> + y*. Then,
when we take f(z) = vz" = vr"e™?, it represents a solu-
tion of a vortex with vorticity being equal to a positive
integer n. Hereafter, we consider a solution with n = 1, for
simplicity. Boundary conditions are imposed such that
re? — 1 (or ¢, — v), ag(r)—ay as r— oo, and
re®”) — 0 as r — 0 to avoid singularity at » = 0. These
boundary conditions lead to a quantization of color charges
carried by the topological soliton. Namely, the soliton has
the flux [d*x(—¢;;0,a; — ¢B) = [d*xd?a = 27 due to
the boundary condition. This means that the color charge
of the soliton is given by 7/a, because the color-charge
density is defined as the left hand side of Eq. (7). In general
the charge is given by n X 7/« for the soliton with the
vorticity of n. Thus, we can see that the color charge of the
soliton is quantized.

In order to obtain the vortex solutions, we derive varia-
tional equations by inserting ¢, = vze®”) into the
Hamiltonian, Eq. (13),

B+ 92
2aq(r)v?re?n) = §2 7 TN o a(r)’ (15)
aog(r)* + 2¢B + 9%a(r)
1 ay(r)
_ 2f L0\ 22 2a(r)
20222 / ( 2a vire )
= \v2r2e2aln), (16)

These are derived also from Egs. (7)—(9), by taking C =
Z2b(r) with b(r) being function only of r. We solved the
equations numerically to obtain their configurations and
energies for various coupling parameter A = g2/¢ and «
(Figs. 1 and 2).

We can see that the energy of the vortex soliton ap-
proaches zero as A goes to infinity. We note that the typical
energy scale of the solution is governed by v?(A), which
goes to zero as A — oo. That is why the energy of the
solution goes to zero as v*(A) — 0. This indicates a pos-
sibility that the QHS becomes unstable at sufficiently large
coupling constant of A since the energy of the bound state
of a vortex (n = 1) and an antivortex (n = —1) can be-
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FIG. 1. Profile of the vortex. The size of the vortex is deter-
mined by the magnetic length €5 as in QHS of electrons.

come negative at large coupling constants. They have
opposite color charges with each other and their binding
energy may become larger than the intrinsic energies of the
vortices at sufficiently large coupling constants. Then, such
excitations of the bound states are produced unlimitedly
and consequently, the QHS decays: The whole space is
occupied by such solitons and the condensate melts be-
cause the condensate of the gluons vanishes at the center of
the vortex; ¢,(r = 0) = 0. This bound state corresponds
to the roton excitation in the QHS of electrons.

Actually, we estimated the critical coupling constant and
have found that it is given by A/\/gB = g>€3/€ =~ 20 for
¢=3fm and €5~ 0.5fm or \/gB =400 MeV. The
critical coupling becomes large for the larger magnetic
length €5. When we take the value of the strong coupling
constant g?/4m = 1 at the energy scale of 1 GeV, the
critical baryonic chemical potential is evaluated as
~300 MeV with an assumption of g(u)?> « u~? for the

02 04 06 08 1 12 14 16 18 2 g

FIG. 2. Coupling dependence of the vortex excitation energy.
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small energy scale. [This behavior of the coupling constant
comes from the assumption that the linear potential ( <« r)
among quarks arises such as g(r)?/r.] The result simply
indicates that at small chemical potentials the quantum
Hall state becomes unstable. The value of the critical
chemical potential estimated here is consistent with ones
obtained in the latter section, where we discuss a transition
between the hadronic phase and the color ferromagnetic
phase at small chemical potentials.

We found that the dependence of the energy on a or the
filling factor, 7/, is very small. We also mention that the
energy of the vortex becomes a nonzero constant as « goes
to infinity. The color-charge density of the condensate is
very small at small filling factors, but the value of the field
(¢,) = v is never small. The energy of the soliton is
governed by {¢,), so that the energy never becomes small
even as the filling factor becomes small. In this respect, we
cannot find any instabilities of the QHS at small filling
factors 7/a. But similarly to the QHS of electrons, the
state might be unstable at such a small filling factor be-
cause a Wigner crystal of the vortices is energetically more
stable than the QHS at such small color-charge density of
gluons. We remember that the number difference of posi-
tively color-charged quarks and negatively charged quarks
is also small in such a case. Thus, for example, the ex-
cessive negatively charged quarks form a Wigner crystal.
Therefore, by the formation of the vortex’s Wigner crystal
with positive charges, the system reduces color Coulomb
energy; in the QHS the color-charge distribution of the
gluons is uniform, while the Wigner crystal is not so.
Accordingly, it is natural to expect that the QHS at much
small filling factor is unstable.

D. Effects of the third spatial dimension

Up to now, we have considered the ground-state struc-
ture of gluons in two-spatial dimension. This is because the
unstable modes are two-dimensional objects and they may
form a stable ground state with their condensation. The
unstable modes, in general, depend on all of the coordi-

nates in three dimensions; ¢ (k; <./gB) ~ explik,x, +
ikyxs — iE(k3)t]exp[—(x; — ko€3)?/2€3] with E(k3) =

\/—&B + k3. But, among them the modes with the largest

amplitude as r — oo, ¢(k; = 0), depend only on x; and x,.
They are two-dimensional objects and form the stable
ground state, namely, the QHS of gluons as we have
shown. In the derivation of the QHS we have used
Chern-Simons gauge theory, which can be used only in
two-dimensional space. In this way we have fully used
two dimensionality of the problem. We may wonder
whether or not unstable modes with small, but nonvanish-
ing k3 (<K \/ﬁ) contribute to the ground-state structure.
We have a symmetry of the rotation around the magnetic
field and of the translation along it. Thus, it is natural to
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expect that the ground state should be uniform in the x5
direction. Then, the modes should not be important, other-
wise their contributions make the ground state nonuniform
in the direction. Therefore, it is reasonable to expect that
three-dimensional effects on the ground state change our
main result; the stable QHS of gluons is realized in the
ferromagnetic state (Savvidy vacuum).

We also found the gap energy, A, above the ground-state
energy based on the two-dimensional theory. The effect of
x5 direction is simply that the corresponding mode propa-

gating in the direction gains the energy, ,/A? + k3. This is
because the relativistic covariance in the direction still
remains at least in the limit of infinitely large quark matter
(£ — o). We may also wonder whether or not the gapless
mode with E = |k;| exists. In order to see it, we may
assume that the fluctuation 6 ¢, does not have dependence
on any spatial coordinates. We found that there is no such
solution; the condition of d;8¢; = 0 has been taken into
account explicitly in our treatment. Therefore, the QHS we
have found is really the stable gapped state of the unstable
gluons.

IV. COLOR FERROMAGNETISM VS COLOR
SUPERCONDUCTIVITY

Until now, quarks do not play any roles for the realiza-
tion of the ferromagnetic phase except for supplying color
charges for the condensate of the gluons. But, quarks play
important roles for the realization of the phase. Here, we
show the region of the chemical potential u of the quarks
in which the phase is realized between the hadronic phase
and the color superconducting phase. Especially, we de-
termine the critical chemical potential at which the color
superconducting state arises.

In general, the energy density of the quarks in the
magnetic field is smaller than that of the free quarks
without the magnetic field. (This fact is favorable to the
ferromagnetic state.) The fact is easily understood intui-
tively in the case of strong magnetic field. When the
magnetic field is sufficiently strong, all of the quarks
occupy the lowest Landau level; their energy is given by

\/m2 + k3 with the degeneracy of gB/4 per unit area

where k3 denotes the momentum parallel to the magnetic
field of the quarks. Hence, the energy density of the quarks
in the strong magnetic field is much lower than that of the
free quarks without the magnetic field. On the other hand,
for sufficiently large number density of the quarks, equiv-
alently, for sufficiently weak magnetic field, the quarks
occupy much higher Landau levels. Eventually, both en-
ergy densities (with and without gB) approach each other
in the limit of p or u — c0. We can show that the energy
density, Equ(gB, w), of the quarks in the magnetic field
is lower than Eg,«(¢B = 0, u) for any strength of the
magnetic field gB. Furthermore, in the case of massless
quarks Egu,n (g8, 1) behaves such as
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Eqak(8B, ) = Egua(gB = 0, u)
X [1 - 0.43(‘1—?)3/2 + “higher order”:|
a7

as u’/gB goes to infinity, where we have numerically
obtained the second term.

In the color ferromagnetic phase we have the gluon
condensation forming the quantum Hall state. As we
have shown, the condensation energy is approximately
given by —2B? = —2(gB)?/g> when the size £ of the
quark matter is larger than 3€z. On the other hand, the
color superconducting phase possesses the condensate of
Cooper pair of quarks, which leads to the decrease of the
energy in the quark matter. The Cooper pairs are formed by
quarks around the Fermi surface with its width approxi-
mately given by the gap energy A of the state; their binding
energy is also approximately given by A. Thus, the gain of
the energy due to the condensation is approximately given
by

A f Pk _ A
pu—Ap<lkl<pt+a Q@) 2w

where we have assumed the formula of the free quark gas
with gB = 0 because the quark matter behaves as the free
gas in the limit of u?/gB — 0. Since the energy density
of the quarks in both phases is almost identical in the limit
of large w, we compare this condensation energy of the
diquark with the condensation energy of the gluons;
2(gB)?*/g* vs A’u?/(27%). Obviously, for much large u
the color superconducting phase is energetically favored as
expected. Thus, we can determine the critical chemical
potential u,. which is given by

¢B 50 MeV
(200 MeV)?2 A

(18)

pe=2.5GeV

19)

where we have taken g?/4m = 1.

This critical value is large sufficiently for neglecting the
effects of the quark mass so that we may use the formula in
Eq. (17). We should comment that our result of the color
superconducting phase being realized at larger chemical
potential than 1 GeV is consistent with the results of
others.

Here we make a comment on the case of SU(3) gauge
theory. In the gauge theory the color ferromagnetic state
can coexist with the color superconducting phase, 2SC.
This is possible only when the direction of color-magnetic
field generated spontaneously is pointed into A3 in the
color space. Since the diquark condensate in 2SC is color
antitriplet, (0, 0, v # 0), the magnetic field does not affect
the condensate. Therefore, in the 2SC, the color-magnetic
field can still be present as well as the gluon condensation.
We also note the chiral symmetry is restored in the 2SC and
that the formula Eq. (17) can be used. Thus, the critical
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chemical potential in SU(3) gauge theory is the one sepa-
rating the color ferromagnetic state without the 2SC and
with the 2SC. Then, we compare the energy decrease of the
quark matter Eq,,q (B = 0, u) X 1(¢B/u?)*? with the
energy decrease due to the Cooper pair condensation
A?p?/Q2m?),

‘B
Mo = \/nggA—2

_ gB gB/(200 MeV)?
08 Gev\/ 200 MeVR (8100 Mev)? 20

As we will show in the next section, the value of the
magnetic field is probably larger than ~(200 MeV)?, the
estimation of u, = 0.8 GeV gives a minimum one.
Therefore, we find in the SU(3) gauge theory that the color
superconducting state arises at the chemical potential
larger than u,. ~ 0.8 GeV.

In this way, the quarks play the role of realizing the color
superconducting phase for sufficiently large chemical po-
tential. As we have mentioned before, the quarks also play
the important role of realizing the color ferromagnetic
state; the quarks supply color charges for the gluon con-
densation. In the sense the chemical potential necessary for

the realization of the phase is given by /mg + (7/2€)* =
300 MeV\/m%,/(?SOO MeV)? + 0.12(3 fm/€)?. The value is

necessary, but not sufficient. In the next section we discuss
more details of the critical point.

V. HADRON PHASE VS COLOR
FERROMAGNETIC PHASE

We now discuss the critical chemical potential at which
the phase transition from the hadronic phase to the color
ferromagnetic phase occurs. In the hadronic phase the
gauge symmetry is exact, but {tr(F,,, F*”)) # 0. The chiral
condensate also exists which breaks the chiral symmetry.
These condensates make the energy of the real vacuum
lower than that of the perturbative vacuum. We denote the
energy decrease by E,,., which has been estimated as

300 MeV = E%? = 350 MeV. We use these values even
at finite chemical potential as far as the chemical potential
of the nucleon is smaller than the nucleon mass. On the
other hand, in the color ferromagnetic phase we have the
gluon condensate (Aj-) # 0 (ij = 1, 2) which forms a quan-
tum Hall state under the spontaneously generated color-
magnetic field ( * A3). This condensate makes the energy
of the vacuum in the gluon sector lower than that of the
perturbative vacuum by —28B2. We take account of these
vacuum energies as well as the nucleon energy and the
quark energy for the determination of the critical chemical
potential. In this section, we consider the realistic case, i.e.,
SU(3) gauge theory with two flavors, and use the observed
nucleon mass. In the hadron phase we assume an equal
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number of free protons and neutrons for simplicity. The
energy density of the free nucleons is given by

Ex = g | 2mtush = M2+ M iy = 1)

1
472
pn tyud — Mz}

— M*log A

2D

with the chemical potential for the nucleon, w,, and the
nucleon mass, M. In the color ferromagnetic phase the
magnetic field is assumed to point to the direction of A3
in the SU(3) maximal Abelian subalgebra. Then, only the
quarks with colors (1, 0,0) and (0, 1, 0) are trapped by the
magnetic field. The energy density of the quarks interact-
ing with the color-magnetic field is given by

A fng’/Zfdk e
ng/2< = mg +m210g “M —m>

(22)

with the chemical potential w and the quark mass m,
where n; = 2 represents relevant number of flavor degrees
of freedom. Here we have assumed that the quarks occupy
only the lowest Landau level. In addition to E,, we have a
contribution from the quark with color (0, 0, 1), which does
not couple with the color-magnetic field o« A5. Its energy
density, Ej, is given by Ey/81 when uy =3u and
M =3m,.

We can easily see that the energy density of the nucleons
is smaller than that of the quarks when the chemical
potential, w(= u,/3), is very small, u/m, < 1. Thus,
at such a small chemical potential, the hadron phase is
realized. Increasing the chemical potential the energy den-
sity of the nucleons increases more rapidly than that of the
quarks. Eventually, at large chemical potential the color-
magnetic phase is energetically favored. Inclusion of the
vacuum energies in two phases does not change this result.

Consequently, the critical chemical potential, u ., can be
determined by the condition that the energy density of the
hadron phase measured from the perturbative vacuum co-
incides with that of the color ferromagnetic phase:

Ey — Eye = E, + El, — 2B* + ReV(gB). 23)
We have included the real part of the potential V(gB) in the
SU(3) gauge theory with two flavors; ReV(gB) = B?/2 +
29g2B?[log(gB/A?) — 1/2]/967* and take A to be
250 MeV. We assume that the critical chemical potential,
M, 18 not so large and that the chiral symmetry is only
partially restored at .. Therefore, in Eq. (23) we take the
quark mass to be 50 MeV = m, = 250 MeV. Further-
more, we assume tentatively g?/47 = 1, that is, the gauge
coupling constant does not depend on u and gB. The
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different value of g%/4 does not seriously affect our final
results: The phase transition from the hadronic phase to the
color ferromagnetic phase occurs at baryon chemical po-
tentials less than 900 MeV. We have checked that the
critical chemical potential, u., obtained from Eq. (23) is
consistent with the above assumption of the lowest Landau

level, namely, u =< ,/gB + m2.

In solving Eq. (23) for the chemical potential, we have
much ambiguity in the values of the color-magnetic field,
gB and the quark mass, my, in dense matter, while not so
much ambiguity in E,,.. Thus, fixing tentatively m, =
250 MeV and E%é = 300 MeV, we try to find the critical
chemical potential, u,. by changing \/g_fB from 100 to
600 MeV. (We note that the vacuum energy, E,,. in the
hadronic phase at finite chemical potential is expected to
be smaller than that in the real vacuum so that the choice of
E,,. = 300 MeV is reasonable.) The results are as follows,
The critical chemical potential is a smoothly decreasing
function of gB; the dependence on gB is very weak.
Furthermore, we find that when we take the large values
of \/g_B such as 600 MeV, the color ferromagnetic phase is
energetically favored more than the hadronic phase at any
chemical potentials. That is, the hadronic phase does not
exist in nature. Thus there are no solutions in Eq. (23). This
is due to the presence of the large condensation energy,
—27B? in the color ferromagnetic phase. Accordingly, the
value of \/g—B is restricted phenomenologically such as
V2B = 550 MeV. The lowest Landau level condition re-
stricts the value such as 180 MeV = ,/gB.

We now evaluate w. by changing the quark mass with
taking \/g_B = 300 MeV; the different choice of the value,
\/ﬁ, does not affect the final result so much. Then, it
follows that contrary to the case of the magnetic field, the
critical chemical potential is a smoothly increasing func-
tion of m,. Thus, it turns out that the critical chemical
potential w,. depends slightly both on the mass of the
quarks and the magnetic field. Therefore, we find that the
critical baryonic chemical potential is given such that
600 MeV = up =900 MeV, depending on the quark
mass, 50 MeV = m, = 250 MeV, and the magnetic field,
200 MeV = ,/gB = 500 MeV, in dense quark matter
when the vacuum energy, E%? = 300 MeV, in the had-
ronic phase is taken.

We find that u,. depends slightly on the magnetic field.
On the other hand, obviously the quark number density,

pq = 8B, /u? — mZ/m?*, depends heavily on the magnetic
field. For example, p,=0.34/fm® with g¢B=
(400 MeV)> and mg = 150 MeV for which pu. =
231 MeV, while the nucleon number density, py =
18(u2 — m2)3/2/7* = 1.26/fm>, does slightly depend on
gB. Although we do not know exactly the critical nucleon
number density, it is reasonable to suppose it being given
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approximately by 5 ~ 10 times the normal nuclear density,
i.e., 0.85 ~ 1.7/fm3. Thus, the choice of the parameters
such as gB = (400 MeV)? and m, = 150 MeV, is physi-
cally reasonable since it leads to py =~ 1.26/fm® and Py =
0.34/fm’. Unfortunately, we have no idea about the critical
quark number density. Thus, we cannot further limit the
physically acceptable range of the parameters.

In order to obtain the critical point more precisely we
need to determine precisely the dependence of the coupling
constant, g2 /44r, and the quark mass, my, on and gB.
Furthermore, we need to include interactions of nucleons
as well as those of quarks. As we pointed out, the critical
nucleon number density is very large so that their short
range interactions are important. On the other hand, the
critical quark number density is so small that their long
range interactions are important. Since including these
interactions is a difficult task, we have much ambiguity
in the determination of the critical baryonic chemical
potential. But we expect that the ambiguity gives rise to
a change of a few factors in our result.

In concluding this section we should mention the fol-
lowing: Although there are ambiguities in the values of the
parameters such as my, gB, g2/47r, E,., Ey, and Eq, the
color ferromagnetic phase must arise at a baryon chemical
potential less than 900 MeV; it never being larger than
2 GeV. This baryon chemical potential is accessible at
present experimental apparatus.

VI. OBSERVATIONAL IMPLICATION

As we have shown previously, the color ferromagnetic
phase with QHS of gluons is realized in quark matter at
baryon chemical potentials wup; roughly, 600 MeV ~
900 MeV = up =2 GeV. The matter can be produced
by heavy ion collisions. The matter produced in the colli-
sions initially has high temperature so that it is in the phase
of the quark-gluon plasma. After that, it gradually loses its
energy and then enters into the phase of the color ferro-
magnetic state with the QHS of gluons if the value of the
chemical potential is appropriate. (We have shown in the
previous paper [4] that the critical temperature is less than

\/¢B at small chemical potentials such as u ~ 230 MeV.)
How do we detect whether or not the matter is in the phase?
We cannot observe the color-magnetic field, which is con-
fined in the matter. But we show that the matter in the phase
possesses a large observable magnetic moment, in other
words, it produces strong observable magnetic fields out-
side of the matter. The point is that the difference between
the number of positively color-charged quarks and that of
negatively charged quarks generates a rotation of the quark
matter as a whole. The difference is a result of the realiza-
tion of the QHS. When the quark matter is not electrically
neutral, the rotation generates a magnetic moment.
Suppose that the quark matter is composed of up and
down quarks, and that the number difference between
positively and negatively color-charged quarks is identical
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in each flavor. We consider the QHS with » = 1/2. Then,

the density difference, p}f) - p(f+), of each flavor is given

by the color-charge density of gluons in the QHS; Ap =
P,S:) — p_(fﬂ = gB/8wf. A quark with electromagnetic
charge e, =2/3 (or —1/3) X e generates a magnetic
moment ( = JE(gB + e,B)/IB|z—), which is of the or-
der of ey/(2,/gB) in the strong magnetic field \/gB = m,.
Hence, the magnetization of the quark matter is given by

A J J £
/3~ 1/3)e 2P — N8B _ (5 ey 8B _3Mm
2JgB 48wl 200MeV ¢

~3.5X 10 G, (24)

where we have assumed that the strength of the color-

magnetic field is \/g_B = 200 MeV and the size of the
quark matter is € = 3 fm. We have taken the value of
gB as a reference point based on the discussion in the
previous section. The observation of this strong magnetic
field can be an evidence of the presence of the ferromag-
netic phase in the quark matter.

VII. DISCUSSION

As is well known, the Savvidy vacuum is unstable; when
the color-magnetic field is spontaneously generated some
gluonic modes become unstable. It has been a long stand-
ing problem how the unstable modes form a new stable
state, i.e., the physical vacuum, which has not been fully
solved yet. In this paper we have shown that in quark
matter the Savvidy vacuum is stabilized by the condensa-
tion of the unstable gluons, which leads to a ferromagnetic
QHS of gluons.

In general, there exist two possibilities in order to sta-
bilize the Savvidy vacuum in quark matter: one is that large
masses for unstable gluons are generated by dynamical
gauge symmetry breaking or Higgs mechanism and the
other is that the gauge symmetry is not broken but the
average value of the color-magnetic field vanishes due to
large fluctuations of the magnetic field. In the color ferro-
magnetic phase the gauge symmetry is broken due to the
spontaneous generation of the color-magnetic field and the
condensation of unstable gluons. Also in the color super-
conducting phase the gauge symmetry is broken by the
effects of quarks. In these two phases the first possibility is
realized. On the other hand, in the hadronic phase the
gauge symmetry is not broken and the second possibility
is expected to be realized.

In this paper we have discussed mainly the case of the
SU(2) gauge theory. Similar results hold even in the SU(3)
gauge theory although possible structures of QHSs are
much richer in SU(3) case than in SU(2) case because of
the presence of more unstable modes [4]. A particular point
in the SU(3) gauge theory is the presence of a phase with
the coexistence of color ferromagnetism and color super-
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conductivity (so-called 2SC) at large chemical potential.
This is because the direction of the magnetic field in the
color space is normal to the direction of the quark pair
condensate. For more details, refer to our paper [4].

Quark confinement (hadron phase) is caused mainly
by gluon’s dynamics, namely, the SU(3) gauge theory.
Ground-state structure of QCD is determined by analyzing
nonperturbative dynamics of gluons in the phase. Espe-
cially, we need fully dynamical treatment in the gauge
theory for revealing the property of the confinement. The
quarks play no dominant roles for the confinement. For
example, in the large N expansion of the SU(N) gauge
theory the confinement is realized at Oth order of the
expansion, in which the quark loops do not arise. The
contribution of the quarks appears in the higher order of
the expansion so that the effects of the quarks can be
treated perturbatively in the expansion.

On the other hand, the dynamics of the quarks play an
important role for the color superconductivity in the region
of large chemical potential of the quark number. Gluons
simply give perturbation, an attractive force in an appro-
priate channel of the quarks; it makes the Fermi gas of free
quarks unstable and realizes the superconducting state of
the quarks.

The color ferromagnetic phase is realized between the
hadron phase and the color superconducting phase when
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the chemical potential is varied. Thus, it is natural to expect
that both gluon and quark dynamics play important roles
for the phase. As we have explained, indeed, the gluon
dynamics plays the main role in leading to the stable
ferromagnetic phase along with quantum Hall state of
gluons when the quark matter is present. In such a case,
the quark dynamics plays a role of choosing the ferromag-
netic phase when the chemical potential is small. On the
other hand at large chemical potential the quark dynamics
plays a role of leading to and of choosing the supercon-
ducting phase. In other words, the gluon dynamics plays a
main role in realizing the ferromagnetic state at small
chemical potential, while the quark dynamics plays a
main role in realizing the color superconducting state at
large chemical potential.

In this way, in QCD the player of the main role for
determining various phases of quark matter changes from
the gluons to the quarks when we increase the number
density of the quarks. Probably, recent observations of
multiquark hadrons are a step toward revealing the pres-
ence of these phases we have discussed.
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