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Transverse momentum distribution of � production in hadronic collisions
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We calculate the transverse momentum pT distribution for production of the � states in hadronic
reactions. For small pT�� M��, we resum to all orders in the strong coupling �s the process-independent
large logarithmic contributions that arise from initial-state gluon showers. We demonstrate that the pT
distribution at low pT is dominated by the region of small impact parameter b and that it may be computed
reliably in perturbation theory. We express the cross section at large pT by the O��3

s� lowest-order
nonvanishing perturbative contribution. Our results are consistent with data from the Fermilab Tevatron
collider.
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I. INTRODUCTION

The theoretical description of the transverse momentum
pT distribution of heavy quarkonium production in hadron
collisions raises interesting challenges. Most calculations
within the framework of perturbative quantum chromody-
namics (QCD) consider the distribution at large pT at
collider energies and tend not to address the region of
low pT where the cross section is greatest and the bulk of
the data lie [1–3]. A purely phenomenological fit to the low
pT data on � production [4] appears to require sizable
nonperturbative parton-kT smearing [5]. From a theoretical
point of view, the region of low pT is expected to be
influenced strongly by initial-state gluon showering. A
fixed-order perturbative treatment in QCD leads to singular
terms in the region of small pT of the type 1=p2

T , enhanced
by large higher-order logarithmic contributions caused by
initial-state gluon radiation. These contributions have the
form �slog2�M2

�=p
2
T� for every power of the strong cou-

pling �s, and reliable predictions, especially in the regions
of small and moderate pT , require that the logarithmic
contributions be summed to all orders in �s.

The Collins-Soper-Sterman (CSS) impact parameter
b-space resummation formalism [6] has been used success-
fully for the all-orders resummation of large initial-state
logarithmic terms in several cases of physical interest [7–
14]. In this paper, we argue and demonstrate that the
resummation formalism should apply at the scale of the
� mass in hadronic collisions at collider energies. We
extend the formalism and use it to compute the pT distri-
bution of the � states [15]. We obtain good agreement with
the data [4,16] on the pT distribution of � production at
Tevatron energies for all pT .

Different from the production of the W, Z, and Higgs
bosons, or of a virtual photon in the Drell-Yan process, the
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� is unlikely to be produced in pointlike fashion in a short-
distance hard collision. Instead, a bottom quark b �b pair is
produced in the hard collision and then transmutes into a
colorless � meson through soft radiation and coherent self-
interaction. Therefore, there are issues to address before
the CSS formalism can be applied to � production. These
include the color structure of the lowest order production
processes: q �q! b �b�Q� and gg! b �b�Q�, and the rela-
tively small value of the b �b pair mass Q.

Most applications of the resummation formalism are to
the production of systems that are color singlets whereas
the b �b system produced in q �q! b �b and gg! b �b need not
be color neutral. Nevertheless, because the b quark mass is
large, gluon radiation is suppressed from the final-state
heavy quark lines and from virtual exchange lines that
lead to the production of heavy quark pairs [10].
Correspondingly, the important logarithmic terms are as-
sociated with gluon radiation from the active initial-state
partons, the same as those in massive-lepton-pair (Drell-
Yan) and Higgs boson production. The process-
independent leading logarithmic terms do not depend on
the color of the heavy quark pair. Color dependence be-
comes relevant for the higher order terms, as explained in
Sec. IV.

The overall center-of-mass energy
���
S

p
dependence of the

CSS b-space distribution function is examined by Qiu and
Zhang in Ref. [8]. They show that the location of the saddle
point of this distribution can be well within the perturbative
region of small b for Q as small as 6 GeV at the Tevatron
collider energy. The resummed b-space distribution is
peaked strongly in the perturbative region of small b, as
we show in Sec. IV, and the pT distribution of � production
should be amenable to a resummation treatment. Despite
the fact that the logarithmic term lnQ is not large, the large
value of

���
S

p
opens a large region of phase space for gluon

emission. Correspondingly, as is demonstrated in this pa-
per, the shape of the pT distribution for � production is
determined by the resummable part of the gluon shower
and is predictable quantitatively at low pT .
-1  2005 The American Physical Society
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FIG. 1. Hadronic production of an � via an intermediate heavy
quark pair b and �b.
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We begin in Sec. II with the basic assumption that the pT
distribution of � production is derived from the pT distri-
bution for the production of a pair b �b of bottom quarks. We
express the differential cross section in terms of a two-step
factorization procedure. We present our fixed-order pertur-
bative calculation applicable at large transverse momen-
tum in Sec. III where we also describe models that specify
the manner in which the b �b pair transforms into the �. In
Sec. IV, we specialize to the situation at small pT and
summarize the required parts of the all-orders resummation
formalism. Section V is devoted to our numerical results
and comparison with data. We provide of our conclusions
and discuss potential improvements of our calculation in
Sec. VI.

II. PRODUCTION DYNAMICS

We use a two-step factorization procedure to represent
production of the � states, with particular attention to the
prediction of transverse momentum distributions. We be-
gin with the assumption that a pair of bottom quarks b �b is
produced in a hard-scattering short-distance process:

A�pA� � B�pB� ! b �b�Q��! ��p� � �X� � X0: (1)

Because the mass Q of the b �b pair is large, the pair is
produced at a distance scale 
1=�2mb� 
 1=45 fm. This
scale is much smaller than the physical size of a � meson.
The compact b �b pair may represent the minimal Fock state
of the �, but the overlap of this minimal Fock state with the
full wave function of the � is perhaps small, as is sug-
gested by the inadequacies of the color-singlet approach
[17] in some situations [3], and other components of the
wave function must be considered. Alternatively, one may
realize that the compact b �b system is unlikely to become
an � meson at the production point. Instead, the pair must
expand, and the b and �b will interact with each other
coherently until they transmute into a physical � meson.

Once produced in the hard-scattering, a b �b pair of
invariant mass Q> 2MB is more likely to become a pair
of B mesons. Therefore, the virtuality of the intermediate
b �b pair should be limited if an � is to result. This limitation
of the virtuality allows us to use perturbative factorization
and to write the differential cross section in the usual way
[18,19]. For pT � 2�MB �mb�, we write
d�AB!�X

dp2
Tdy


X
a;b

Z
dxa�a=A�xa�dxb�b=B�xb�

d�̂ab!�X

dp2
Tdy

:

(2)
In Eq. (2), pT and y are the transverse momentum and
rapidity of the final �. The functions �i�x� are parton
distribution functions; xa and xb are fractional light-cone
momenta carried by the incident partons; and Eq. (2) ex-
presses initial-state collinear factorization. The spectator
interactions between the beam remnants and the formation
of the � meson are suppressed by one or more powers of
1=p2

T .
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Since the momentum of heavy quark b ( �b) in the pair’s
rest frame is much less than the mass of the pair, Q�
2mb < 2MB � 2mb � 2mb, the parton-level production
cross section d�̂ab!�X=dp2

Tdy in Eq. (2) might be factored
further [19], as is sketched in Fig. 1. The incident partons
labeled xa and xb interact inclusively to produce an off-
shell b �b system plus state X0. In turn, the b �b system
evolves into the � plus a system labeled �X; X  X0 � �X.
This second factored expression is

d�̂ab!�X

dp2
Tdy

�
X
�b �b�

Z
dQ2

�d�̂ab!�b �b��Q�X0

dQ2dp2
Tdy

�
F �b �b�!� �X�Q

2�:

(3)

In writing Eq. (3), we approximate the transverse momen-
tum and rapidity of the b �b pair by pT and y, respectively,
because Q2 � 4m2

b � p2
T .

The function d�̂ab!�b �b��Q�X0=dQ2dp2
Tdy represents a

partonic short-distance hard-part for inclusive production
of a b �b pair of invariant mass Q and quantum numbers
�b �b�. This short-distance hard-part is calculable in pertur-
bation theory with the parton momenta of all light partons
off-mass-shell by at least min�4m2

b; p
2
T�. The function

F �b �b�!� �X�Q
2� represents a transition probability distribu-

tion for a b �b pair of invariant mass Q and quantum num-
bers �b �b� to transmute into an � meson. It includes all
dynamical b �b interactions of momentum scale less than
Q2 � 4m2

b. Different assumptions and choices for the tran-
sition probability distribution F �Q2� lead to different mod-
els of quarkonium production. We return to the topic of
these models in Sec. III.

The basic assumptions of this section imply that the
transverse momentum distributions of the � states at trans-
verse momenta pT 
M� will reflect the shape of the
transverse momentum distribution for production of a b �b
pair whose mass Q
M�. In this paper, we focus on the
region below pT 
M�. If p2

T � Q2, all final-state loga-
-2
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rithmic terms of the form ��s log�p
2
T=Q

2��N can be re-
summed perturbatively to all orders in �s [20].

III. FIXED-ORDER CALCULATION: pT 
M�

When the transverse momentum pT 
O�M��, the col-
linear factorized expression in Eqs. (2) and (3) remains
reliable with the partonic short-distance hard-parts in
Eq. (3) computed as a power series in �s in QCD pertur-
bation theory.

The transition probability distribution F �Q2� is intro-
duced in Sec. II. Different assumptions and choices for
F �Q2� correspond to different models of quarkonium pro-
duction. In the color evaporation (or color-bleaching)
model (CEM) [2,21], an assumption is made, based quali-
tatively on semilocal duality, that one may safely ignore
the details of the formation of color-neutral bound states
with specific quantum numbers JPC. In particular, in the
case of states such as the J= and � that have JPC  1��,
soft-gluon effects are presumed to take care of whatever
quantum numbers have to be arranged. Within our frame-
work, this model is effectively represented by the statement
that

F �b �b�!��Q
2� 

�
C� if 4m2

b � Q2 � 4M2
B

0 otherwise:
(4)

The nonperturbative constant C� sets the overall normal-
ization of the cross section. Its value cannot be predicted. It
changes with the specific state of the � meson. In the CEM
model, the parton-level � cross section in Eq. (3) can be
written as

d�̂CEM
ab!�X

dp2
Tdy

� C�

Z 4M2
B

4m2
b

dQ2

�d�̂ab!b �b�Q�

dQ2dp2
Tdy

�
; (5)

where the b �b final state includes a sum over all possible
quantum states �b �b� of the b �b pair.

In the color-singlet model for quarkonium production
[17], a projection operator is used to place the b �b system in
the spin state of the �, and explicit gluon radiation guar-
antees charge conjugation (C) and color conservation at the
level of the hard-scattering amplitude. The distribution
F �b �b�!��Q

2� is proportional to the square of the
momentum-space wave function of the �, j ~��q�j2, with
the relative momentum of the b �b pair q2  Q2 � 4m2

b.
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Because the � wave function falls steeply, one can ap-
proximate Q2 � 4m2

b in the b �b partonic cross section. The
integration

R
dQ2F �b �b�!��Q

2� in Eq. (3) leads to the
square of the � wave function at the origin j��0�j2.

The nonrelativistic QCD model (NRQCD) [1,22] takes
into consideration that the velocity of the heavy quark b ( �b)
in the rest frame of the b �b pair is much less than the speed
of light. The velocity expansion translates into statements
that the distribution F �Q2� is a steeply falling function of
the relative heavy quark momentum, q2 � Q2 � 4m2

b, and
that its moments satisfy the inequalities

h�q2�Ni �
Z
dQ2�q2�NF �b �b�!��Q

2� � �4m2
b�
N; (6)

for moments N � 1. Correspondingly, one can expand the
partonic hard-part in Eq. (3) at Q2  �2mb�

2 and obtain

d�̂NRQCD
ab!�X

dp2
Tdy

�
X
�b �b�

�d�̂ab!�b �b��Q�

dQ2dp2
Tdy

�Q2  M2
��

�

�
Z
dQ2F �b �b�!��Q

2� �O

�
hq2i

M2
�

	
; (7)

with mb  M�=2. The integral
R
dQ2F �b �b�!��Q

2� �

hÔ�b �b��0�i corresponds to a local matrix element of the
b �b pair in the NRQCD model. In the NRQCD approach
to heavy quarkonium production, the b �b pair need not have
the quantum numbers of the �. It is assumed that non-
perturbative soft gluons take care of the spin and color of
the �. The sum in Eq. (7) runs over all spin and color states
of the b �b system.

For the purpose of calculating the inclusive pT distribu-
tions of S-wave bound states at large enough pT , both the
CEM in Eq. (5) and the leading order NRQCD approach in
Eq. (7) are expected to yield distributions similar in shape
because of the relatively weak Q2 dependence of the
partonic hard-part in the limited range of Q2. For example,
pT distributions of J= and  0 production at Tevatron
energies are consistent with both CEM [2] and NRQCD
[3] calculations for pT � 5 GeV. For production of ��nS�
states, we choose a F �Q2� that covers both the CEM and
main properties of the leading order NRQCD treatment of
heavy quarkonium production [23]
F �b �b�!��nS��Q
2� 

�
C��nS��1� z����nS� if M2

��nS� � Q2 � 4M2
B

0 otherwise
(8)
with z  �Q2 �M2
��nS��=�4M

2
B �M2

��nS��. In Eq. (8),
C��nS� and ���nS� are parameters determined from data
as discussed in Sec. V. With the choice of F �Q2�
in Eq. (8), we reproduce the CEM by setting ���nS�  0

and replacing the lower limit M2
��nS� by 4m2

b. Other than
the color degree of freedom, we could mimic the features
of NRQCD by choosing a very large value for ���nS�.
With our choice of F �Q2�, the transverse momentum
distribution of � production becomes

d�AB!��nS�X

dp2
Tdy

 C��nS�

Z 4M2
B

M2
��nS�

dQ2

�d�AB!b �b�Q�X

dQ2dp2
Tdy

�

�

�
1�

Q2 �M2
��nS�

4M2
B �M2

��nS�

	
���nS�

: (9)
-3
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FIG. 2. Diagram that illustrates multiple gluon radiation from
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The b �b cross section is factored in terms of parton densities
and the partonic cross section as

d�AB!b �b�Q�X
dQ2dp2

Tdy


X
a;b

Z
dxa�a=A�xa�dxb�b=B�xb�

�
d�̂ab!b �b�Q�X
dQ2dp2

Tdy
: (10)

The sum
P
a;b runs over gluon and light quark flavors up to

and including charm. The partonic cross sections,
d�̂ab!b �b�Q�X=dQ

2dp2
Tdy, are computed at O��3

s� from all
2-parton to 3-parton Feynman diagrams for the subpro-
cesses q �q! b �bg, qg! b �bq, and gg! b �bg, with the
squared amplitudes summed over the spins and colors of
the b �b pair [24].
an initial-state parton.
IV. THE REGION OF SMALL TRANSVERSE
MOMENTUM

When pT (or QT of the b �b pair) becomes small, the
perturbatively calculated hard-part
d�̂ab!�b �b��Q�X0=dQ2dp2

Tdy in Eq. (3) becomes singular

d�̂ab!�b �b��Q�X0

dQ2dp2
Tdy

/
1

p2
T

: (11)

The 1=p2
T singularity arises from the collinear region of

initial-state parton splitting. Gluon radiation from the final-
state heavy quark lines does not contribute a 1=p2

T collinear
singularity because the heavy quark mass regulates this
singularity. However, this gluon radiation does lead to a
1=p2

T infrared divergence which should be absorbed into
the nonlocal transition probability distribution F �Q2� [19].
When p2

T � q2  Q2 � 4m2
b, soft-gluon interactions be-

tween the spectator partons in the beam jets and the partons
in F �Q2� most likely break the factorization expressed in
Eqs. (2) and (3). In this paper, our principal interest is to
investigate how the large logarithmic terms from the
initial-state gluon shower modify the 1=p2

T distribution
when p2

T � M2
�.

A. Resummation of Sudakov logarithms in b-space

Additional gluon radiation from the initial-state partons,
recoiling against the b �b pair as shown in Fig. 2, leads to
(Sudakov) logarithmic contributions of the form
�slog2�Q2=p2

T� for each gluon radiation [25]. The effects
of the large Sudakov logarithmic contributions, very im-
portant in the region of small pT , can be resummed to all
orders in �s when pT � Q [26]. The resummation proce-
dure tames the divergence seen in Eq. (11). Adopting the
Collins, Soper, and Sterman (CSS) impact-parameter
b-space (Fourier conjugate to pT) approach [6], we write
the resummed transverse momentum distribution for b �b
production as
034007
d�resum
AB!�b �b��Q�X0

dQ2dp2
Tdy


1

�2&�2

�
Z
d2bei ~pT � ~bW AB!�b �b��Q��b;Q;xA;xB�


Z db
2&
J0�pTb�bW AB!�b �b��Q��b;Q;xA;xB�:

(12)

The function W AB!�b �b��Q��b;Q; xA; xB� resums to all or-
ders in QCD perturbation theory the singular terms from
initial-state gluon showers that otherwise behave as )2�pT�
and �1=p2

T�log
m�Q2=p2

T� for all m � 0. In Eq. (12), the
fractional partonic momenta are xA  Q��

S
p ey and xB 

Q��
S

p e�y, with
���
S

p
the overall center-of-mass collision en-

ergy, and y the rapidity of the b �b pair; xA and xB are
independent of the transverse momentum pT of the pair.
The entire dependence on pT appears in the argument of
the Bessel function J0.

The expressions for the lowest-order subprocesses gg!
b �b and q �q! b �b are independent of pT . Therefore, the
finite lowest-order partonic cross sections can be used as
prefactors in the overall b-space distribution functions
[25]. We write

W AB!�b �b��Q��b;Q; xA; xB� �
X
q

Wq �q�b;Q; xA; xB�

�
d�̂�LO�

q �q!�b �b��Q�

dQ2

�Wgg�b;Q; xA; xB�

�
d�̂�LO�

gg!�b �b��Q�

dQ2 : (13)

The sum
P
q runs over all flavors of light quarks in the

initial state. The lowest-order partonic cross sections in
-4



TRANSVERSE MOMENTUM DISTRIBUTION OF � . . . PHYSICAL REVIEW D 71, 034007 (2005)
Eq. (13), d�̂�LO�
ij!�b �b�

�Q�=dQ2 with ij  q �q; gg, depend on

the choice of the production model. For our choice of
F b �b!��Q

2�, they are

d�̂�LO�
ij!b �b

�Q�

dQ2


X
�b �b�

d�̂�LO�
ij!�b �b�

�Q�

dQ2 
xaxb
Q2 �̂

�LO�
ij �Q2� (14)

with [21]

�̂�LO�
q �q �Q2� 

2

9

4&�2
s

3Q2

�
1�

1

2
+
� �������������

1� +
p

;

�̂�LO�
gg �Q2� 

&�2
s

3Q2

��
1� +�

1

16
+2

	
ln
�
1�

�������������
1� +

p

1�
�������������
1� +

p

	

�

�
7

4
�

31

16
+
	 �������������

1� +
p �

; (15)

and +  4m2
b=Q

2.
When the impact parameter b lies in the region much

less than 1 GeV�1 where perturbation theory applies, the
distributions Wq �q�b;Q; xA; xB� and Wgg�b;Q; xA; xB� in
Eq. (13) can be expressed as [6]

Wpert
ij �b;Q; xA; xB�  e�Sij�b;Q�fi=A

�
xA;-;

c
b

	

� fj=B

�
xB;-;

c
b

	
Hij; (16)

where ij  q �q and gg, - is the factorization scale, and
c  2e�+E  O�1�, with Euler’s constant +E � 0:577. All
large Sudakov logarithmic terms from log�c2=b2� to
log�Q2� are resummed to all orders in �s in the exponential
factors with

Sij�b;Q� 
Z Q2

c2=b2

d �-2

�-2

�
ln
�
Q2

�-2

	
Aij��s� �-��

�Bij��s� �-��
�
: (17)

The functions Aij and Bij may be expanded in perturba-

tive power series in �s; Aij 
P
n1A

�n�
ij ��s=&�

n, and

Bij
P
n1B

�n�
ij ��s=&�

n. The first two coefficients in the
power series for Aij and the first term in the series for Bij

are process-independent. For ij  q �q they are the same as
those that appear in resummation of the transverse mo-
mentum distribution for massive-lepton-pair production
(Drell-Yan production) [6–8]. For ij  gg, they are the
same as the coefficients that are appropriate for resumma-
tion of the pT distribution of Higgs boson production [11–
14].

The modified parton distribution functions in Eq. (16)
are expressed as [6]

fi=A

�
xA;-;

c
b

	


X
a

Z 1

xA

d1
1
�a=A�1;-�Ca!i

�
xA
1
;-;

c
b

	
:

(18)

In Eq. (18), �a=A are the usual parton distribution func-
034007
tions. The functions Ca!i 
P
n0C

�n�
a!i��s=&�

n are
b-space coefficient functions with the lowest-order terms
normalized to C�0�

a!i�z;-; c=b�  )ai)�1� z�. All higher-
order coefficient functions are computed perturbatively
from the Fourier transform of the singular terms in
pT-space from initial-state gluon showers with Q2 
c2=b2.

In the CSS formalism, Hij1 in Eq. (16). All coeffi-

cient functions, C�n�
a!i with n � 1, are process-dependent

representing the nonlogarithmic short-distance partonic
contributions to �resum. Alternatively, one may be able to
reorganize Eq. (16) such that all process-dependent short-
distance contributions are moved into the process-
dependent hard-part Hij, leaving the coefficient functions
Ca!i and the modified parton distributions process-
independent [12]. Expressions for Hn

ij with n � 1 depend
on the ‘‘resummation scheme,’’ the choices made when the
process-dependent finite pieces are moved from the higher-
order terms in the A’s, B’s, and C’s to the Hij functions
[12].

For production of a colorless object, such as the W, Z,
and Higgs bosons or a virtual photon in the Drell-Yan
process, all resummed �1=p2

T�log
m�Q2=p2

T� singular terms
arise from initial-state gluon showers. For the �, which is
not produced directly in the hard collision, additional
singular 1=p2

T terms can originate from soft-gluon radia-
tion from the b �b pair. These additional 1=p2

T terms should
not be included in the resummation of Sudakov logarithms
from initial-state gluon showers. The calculation of the
n � 1 corrections to the coefficient functions C�n�

a!i and
hard-part H�n�

ij (or C�n�
a!i in the CSS formalism) should

involve a systematic removal of these additional 1=p2
T

singular terms.
The long-distance nature of soft-gluon radiation means

that the additional singular terms from final-state radiation
should be included in the nonperturbative transformation
of the b �b pair to the �. Therefore, the removal of the
additional 1=p2

T terms depends on the models of � pro-
duction. In terms of the two-step factorization procedure
discussed in Sec. II, the 1=p2

T terms should be absorbed
into the transition probability distributions F �b �b�!�X de-
fined in terms of matrix elements of nonlocal operators. In
the NRQCD model of heavy quarkonium production, these
1=p2

T singularities are a consequence of the kinematic end
point of the quarkonium transverse momentum spectrum.
Although the kinematic effect of soft-gluon emission from
the heavy quark pair is usually a higher-order effect in the
nonrelativistic expansion, the high order nonperturbative
contributions are enhanced in the region of the kinematic
end point as pT ! 0, leading to a breakdown of the
NRQCD expansion and the introduction of ‘‘shape func-
tions’’ [27,28].

Faced with the model dependence of the �s corrections
and the complication of separating singular terms of differ-
-5
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ent origins, we resum only process-independent logarith-
mic terms from initial-state gluon showers in this paper.
That is, we keep only A�1�

q;g, A�2�
q;g, and B�1�

q;g in the Sudakov
exponential functions Sq;g�b;Q� in Eq. (17), the lowest-

order coefficient function C�0�
a!i, and the lowest-order short-

distance hard-parts H�0�
ij  1 in Eq. (16). We choose the

factorization scale -  c=b for the resummed b-space
distribution in Eq. (16).1 We defer to a future study the
calculation of process- and model-dependent higher-order
corrections C�1�

a!i and H�1�
ij as well as A�3� and B�2�. As a

result of these restrictions, we anticipate that our calcula-
tion will somewhat underestimate the magnitude of the
differential cross section in the region of small pT , and
we return to this point in next section.

B. Predictive power

The predictive power of the Fourier transformed formal-
ism in Eq. (12) depends critically on the shape of the
b-space distribution function bW �b;Q; xA; xB� [8].
Indeed, the resummed calculation of the transverse mo-
1Since there is only one momentum scale, 1=b, involved in the
functions Wij�b; c=b; xA; xB�, it is natural to choose -  c=b in
the modified parton densities f�x;-; c=b� in order to remove the
logarithmic terms in the coefficient functions, C. However, this
choice is not required. For more discussion, see Ref. [13].
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mentum distribution at low pT can be reliable only if the
Fourier transformation in Eq. (12) is dominated by the
region of small b, where perturbation theory applies, and
is not sensitive to the extrapolation to the region of large b.
This condition is achieved if the distribution
bW �b;Q; xA; xB� has a prominent saddle point for bsp �
1 GeV�1.

The location of the saddle point in the b-space distribu-
tion depends not only on the value ofQ but also strongly on
the collision energy

���
S

p
(or, equivalently, on the values of

the parton momentum fractions xa and xb that control the
cross section) [8]. At

���
S

p
 1:8 TeV, the saddle point can

be within the perturbative region (bsp < 0:5 GeV�1) for Q
as low as 6 GeV [8].

An extrapolation into the region of large b is needed
in order for us to perform the Fourier transformation to
the pT distribution in Eq. (12). We choose the Qiu-
Zhang prescription which has the desirable property
that it separates cleanly the perturbative prediction at
small b from nonperturbative contributions in the large b
region.
Wij�b;Q;xA;xB�

(
Wpert
ij �b;Q;xA;xB� b�bmax

Wpert
ij �bmax;Q;xA;xB�F

NP
ij �b;Q;bmax� b>bmax

(19)
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for ij  q �q and gg. The perturbative distribution
Wpert
ij �b;Q; xA; xB� is given in Eq. (16). The nonperturba-

tive function in the large b region is

FNPij  exp
�
� ln

�
Q2b2max

c2

	
fg1��b2�� � �b2max�

��

� g2�b2 � b2max�g � �g2�b2 � b2max�


: (20)

The �b2�� term with �< 1=2 represents a direct extrapo-
lation of the resummed function Wpert

ij �b;Q; xA; xB�. The
parameters, g1 and � are fixed fromWpert

ij if we require that
the first and second derivatives of Wij�b;Q; xA; xB� be
continuous at b  bmax. The xA and xB dependences of
the nonperturbative function FNPij are included in the pa-
rameters g1 and �.

The two terms proportional to b2 correspond to power
corrections in the evolution equation. The g2 term repre-
sents a power correction from soft-gluon showers. The �g2
term is associated with the finite intrinsic transverse mo-
mentum of the incident partons. Since g1 and � are fixed
by the continuity of the Wij�b;Q; xA; xB� at b  bmax, the
(in)sensitivity of the calculated pT distribution to the nu-
merical values of bmax, g2, and �g2 is a good quantitative
measure of the predictive power of the resummmation
formalism [8].
In Fig. 3, we show the b-space distributions that result
from Eq. (19) at rapidity y  0. The functions are inte-
grated over the mass range 2mb < Q< 2MB. In evaluating
the perturbative distribution, we keep only the process-
independent terms in the Sudakov exponential functions
Sq;g�b;Q� in Eq. (17) and use the CTEQ6M parton den-
sities [29]. For the extrapolation to the large b region, we
choose bmax  0:5 GeV�1 and g2  �g2  0. The magni-
tude of bWgg�b;Q; xA; xB� is scaled by a factor of 20, as is
indicated in the figure. The gg contribution far exceeds the
q �q contribution to � production at Tevatron energies. For
both channels, the saddle points are clearly defined and
have numerical values well within the perturbative region.
FIG. 3. The b-space distributions for � production: (a) gg
channel, and (b) the sum of all q �q channels. Note that the
magnitude of the gg distribution has been scaled by a factor
of 20. The functions are evaluated at rapidity y  0 and are
integrated over the mass range 2mb < Q< 2MB.
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For the dominant gg channel, the location of the saddle
point is bsp 
 0:25 GeV�1. For perspective, we remark
that this value is smaller than that for the saddle point of
W and Z boson production at Tevatron energies [8]. This
feature arises because the gluon anomalous dimension at
small x is much larger than that of the quarks, compensat-
ing for the fact that the mass Q here is much less than the
mass of W and Z bosons. This analysis leads us to expect
that the QCD resummed pT distribution of � production in
Eq. (12) can be predicted reliably in the region of small and
intermediate pT because it is dominated by perturbative
contributions in the region of small b.
V. NUMERICAL RESULTS

In this section we present the results of our numerical
computation, including a comparison with data. We com-
pute the � transverse momentum distribution from Eq. (9).
For the region of large transverse momentum, pT 

O�M��, the b �b cross section is given in Eq. (10). For the
region of small pT , we use the all-orders resummed b �b
cross section in Eq. (12) with the b-space distribution
W AB!b �b specified in Eqs. (13) and (19). We set mb 
4:5 GeV, and we use a two-loop expression for �s, in
keeping with our use of the CTEQ6M parton densities [29].

To distinguish the production of ��nS� states with dif-
ferent n, we choose different powers ���nS� and normal-
ization constants C��nS�, in addition to the differences in
mass threshold on the limits of the dQ2 integration in
Eq. (9). The values of ���nS� and C��nS� are correlated. A
larger value of ���nS� leads to a larger value of C��nS�.

A. Matching of results at small and large pT

In a complete calculation, one would expect a seamless
joining of the results applicable at small and at large pT . In
the CSS resummation formalism for production of a color-
singlet heavy boson, this matching is accomplished
through the introduction of an ‘‘asymptotic’’ term, �asym,
and

d�  d�resum � �d�pert � d�asym�: (21)

The term �asym is constructed to cancel the singular be-
havior of �pert as pT ! 0 and to cancel �resum when pT 

Q. It is obtained from the fixed-order terms in the expan-
sion of �resum in a power series in �s.

The procedure just described is not immediately appli-
cable in our case. Because the b �b system is not necessarily
in a color-neutral state, �pert includes radiation from the
heavy quark system as well as from the incoming partons.
This final-state radiation is not included in either �resum or
�asym. Soft-gluon radiation from the heavy quark system
leads to an infrared divergent 1=p2

T singularity [10] which
should be absorbed into F �Q2� [19]. To avoid extrapola-
tion of �pert into region of low pT , we adopt the following
matching procedure:
034007
d�AB!��nS�X

dp2
Tdy



8>><>>:
d�resum

AB!��nS�X

dp2
Tdy

pT < pTM
d�pert

AB!��nS�X

dp2
Tdy

pT � pTM:
(22)

Matching is done at a value pTM chosen as the location of
intersection of the resummed and perturbative components
of the pT distribution. From other work on resummed pT
spectra [7–13], we expect pTM 
M�=2.

To ensure a smooth parameter-free matching of�resum to
the perturbative pT distribution �pert computed at O��3

s�,
we would need to calculate the process-dependent O��s�
corrections C�1�

a!i and H�1�
ij (or C�1�

a!i in the CSS formalism)
for �resum. If these O��s� corrections were included, �resum

would also be of order O��3
s� at the matching point where

the logarithms are not important. Based on prior experi-
ence [13], we expect that these effects will increase the
predicted normalization of d�resum=dp2

Tdy, and change the
shape of the pT distribution somewhat, increasing (de-
creasing) the spectrum at small (large) pT . For the reasons
stated in last section, we do not calculate the order �s
corrections to �resum in this paper. To account for the size
of the order �s corrections, we introduce a resummation
enhancement factor Kr such that�
C�0�
a!i�C�1�

a!i
�s
&

�
�

�
C�0�
b!j�C�1�

b!j

�s
&

�
�

�
H�0�
ij �H�1�

ij
�s
&

�
�KrC

�0�
a!i�C�0�

a!i�H
�0�
ij : (23)

We assume that Kr is a constant. The factor Kr should not
be confused with a ‘‘K-factor’’ for the overall pT distribu-
tion. It is invoked because we do not calculate the order �s
corrections to �resum, and our �resum 
O��2

s� when pT 

O�M��.

Displayed in Fig. 4 are curves that show the differential
cross section for production of the ��1S� as a function of
pT . The curves in the region of large pT illustrate the
dependence of the fixed-order O��3

s� perturbative cross
section on the common renormalization/factorization scale

-. We vary- over the range 0:5<-=-0 < 2 where-0 �������������������
Q2 � p2

T

q
. This variation demonstrates the inevitable

theoretical uncertainty of a fixed-order calculation. It could
be reduced if a formidable O��4

s� calculation is done in

perturbation theory. We fix -  0:5
�������������������
Q2 � p2

T

q
for the

remainder of our discussion. The 1=p2
T divergence men-

tioned in Eq. (11) is evident in the fixed-order curves.
Shown for purposes of perspective is a dot-dashed line
that represents the resummed prediction, applicable at
small pT , obtained with bmax  0:5 GeV�1 and g2 
�g2  0. The set of curves illustrates the range of possibil-
ities for the value of the matching point pTM . To obtain
these results, we set C�  0:044, ��  0, and Kr  1:22,
for reasons that are explained in the next subsection.
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B. Comparison with data

In order to make contact with data we must determine
values for Kr in Eq. (23) and pTM in Eq. (22), and for the
two nonperturbative parameters C� and �� in the transi-
tion probability distribution F �Q2�. The structure of
Eq. (22) indicates that the data at high pT determine C�

and ��, and the data at low pT fix the enhancement factor
Kr. Dependence on the parameter �� turns out to be very
weak, as might be expected from the limited range in Q2

over which F �Q2� is probed. This weak dependence con-
firms that the production models we consider predict very
similar inclusive pT distributions. We choose to set �� 
0 for all three � states. Second, common values of Kr and
pTM work adequately for all three � states, as might be
expected since the differences are small among the three
Upsilon masses.

In our approach to the data, C� represents not just the
normalization in the transition probability distribution
F �Q2�, but the product of this normalization times the
unknown K-factor from order O��4

s� perturbative contri-
butions at large pT . It should not be surprising that non-
perturbative free parameters enter the comparison with
data at large pT . The reliance on nonperturbative parame-
ters to set the normalization is true of all models other than
the color-singlet model [3].

We compare our calculation with data published by
the Collider Detector at Fermilab (CDF) collaboration
034007
[4,16] obtained in run I of the Tevatron collider at
���
S

p


1:8 TeV. In the second of the two publications, it is noted
that the measured rates are lower than those reported in
the first paper. To account for the difference in our fits to
the data, we include an overall multiplicative normaliza-
tion factor Cn, whose value we determine from our 52

fitting routine. This factor is used only for the 1995 data
[4].

Following our initial qualitative exploration of the data,
we are left with the three parameters C�, the common
values of Kr and pTM , and the data adjustment factor Cn.
We use a 52 minimization procedure to determine these
quantities. We find best fit values Kr  1:22� 0:02, and
pTM 
 4:27 GeV. The value of Kr is comparable to typical
K-factors found in next-to-leading order calculations, but,
as remarked above, the origin here is different. The match-
ing point is fixed essentially by the location where the
resummed and perturbative cross section intersect. Its
value, pTM 
M�=2, is similar to results found in other
work on resummed pT spectra [7–13]. We find that the
values of C�: 0:044� 0:001, 0:040� 0:006, and 0:041�
0:003 for ��1S�, ��2S�, and ��3S�, respectively, are ap-
proximately independent of M�, meaning that the differ-
ences in rates for the three S-wave � states are accounted
for by the different threshold values of the integrals in
Eq. (9).

In our determination of C�, Kr and pTM , we keep only
process-independent terms in the Sudakov exponential
functions Sij�b;Q� in Eq. (17), and the parameters of the
nonperturbative function FNP are fixed at bmax 
0:5 GeV�1, and g2  �g2  0. Because of the dominance
of the perturbative small-b region under the curves of bWij

in Fig. 3, any reasonable values of g2 and �g2 lead to
transverse momentum distributions that do not differ
more than 1% from those calculated with g2  �g2  0
[8,13]. Without adjusting the normalization, we find a
few percent change in the resummed distributions over
the entire low pT region when we vary bmax from 0.3 to
0:7 GeV�1.

The principal predictive power of our calculation is the
shape of the pT-distribution for the full pT region. In Fig. 5,
we present our calculation of the transverse momentum
distribution for hadronic production of ��nS�, n  1� 3,
as obtained from our Eq. (22), and multiplied by the
leptonic branching fractions B. We use the values of B
from Ref. [30]. The solid lines are for bmax  0:5 GeV�1

while the dashed and dotted lines are for bmax  0:3 and
0:7 GeV�1, respectively. Also shown in Fig. 5 are data
from the CDF collaboration [4,16]. We determine a data
normalization adjustment of Cn  0:88� 0:05 and use
this value to multiply only the 1995 cross sections shown
in the figure. The shapes of the pT distributions are con-
sistent with experimental results.

The essential similarity of the production differential
cross sections for the three ��nS� states is illustrated in
-8



0 5 10 15 20
0

50

100

150

2002
1995

Υ(1S)

d
2 σ/

d
yd

p
T 

× 
B

 (
p

b
/G

eV
)

p
T
(GeV)

0 5 10 15 20
0

20

40

2002
1995

Υ(2S)

d
2 σ/

d
yd

p
T 

×  
B

 (
p

b
/ G

eV
)

0 5 10 15 20
0

10

20

2002
1995

Υ(3S)

d
2 σ/

d
yd

p
T 

× 
B

 (
p

b
/G

eV
)

p
T
(GeV) p

T
(GeV)

(a) (b) (c)

FIG. 5. Calculated differential cross sections times leptonic branching fractions B, evaluated at y  0, as functions of transverse
momentum for hadronic production of (a) ��1S�, (b) ��2S�, and (c) ��3S�, along with CDF data [4,16] at

���
S

p
 1:8 TeV. The dashed,

solid, and dotted lines show the result of our full calculation for bmax  0:3, 0.5, and 0:7 GeV�1, respectively. The 1995 CDF cross
sections are multiplied by Cn  0:88.

TRANSVERSE MOMENTUM DISTRIBUTION OF � . . . PHYSICAL REVIEW D 71, 034007 (2005)
Fig. 6. Shown are the differential cross sections divided by
their respective integrals over the range 0<pT < 20 GeV.
The integrated values are computed from the theoretical
cross sections and used to scale the experimental as well as
the theoretical results. The three theory curves are practi-
cally indistinguishable. The transverse momentum distri-
bution is described well over the full range of pT . Since the
curves in Fig. 6 are normalized by the integrated cross
sections, dependence on the normalization parameters C�

cancels in the ratio. The shape for pT <M�=2 is predicted
quantitatively. It reflects the resummation of the gluon
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FIG. 6. Normalized transverse momentum distributions for �
production: ��1S� (solid), ��2S� (dashed), and ��3S� (dotted),
along with the 2002 CDF data [16].
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shower and is independent of parameter choices. The
good agreement with data over the full range in pT is based
on the choice of only two adjustable constants, the resum-
mation enhancement factorKr and the matching point pTM .

VI. SUMMARY AND CONCLUSIONS

In this paper we calculate the transverse momentum pT
distribution for production of the � states in hadronic
reactions, applicable over the full range of values of pT .
Our starting assumption is that the pT distribution of �
production may be derived from the pT distribution for the
production of a pair b �b of bottom quarks. We express the
differential cross section in terms of a two-step factoriza-
tion procedure. We justify the validity of an all-orders soft-
gluon resummation approach to compute the pT distribu-
tion in the region of small and intermediate pT where pT <
M�. Resummation is necessary to deal with the perturba-
tive 1=p2

T singularity and the large logarithmic enhance-
ments that arise from initial-state gluon showers. We
demonstrate that the pT distribution at low pT is dominated
by the region of small impact-parameter b and that it may
be computed reliably in perturbation theory. We express
the cross section at large pT by the O��3

s� lowest-order
nonvanishing perturbative contribution. Our results are in
good agreement with data from p �p interactions at the
Fermilab Tevatron collider at center-of-mass energy

���
S

p


1:8 TeV, and they confirm that the resummable part of the
initial-state gluon showers provides the correct shape of the
pT distribution in the region of small pT .

An improvement of our calculation in the region pT <
M� would require inclusion of the order �s process-
dependent corrections associated with the coefficient func-
tions C�1� in the CSS formalism [or equivalently, C�1� and
H�1�
ij in Eq. (16)]. Based on prior experience [13], we

expect that these effects will increase the predicted nor-
malization of d�resum=dp2

Tdy, and change the shape of
-9
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the pT distribution somewhat, increasing (decreasing)
the spectrum at small (large) pT . A complete calculation
of the order �s corrections C�1�

a!i and H�1�
ij in Eq. (16)

would provide a better test of QCD predictions. In the
region of large pT , an improved prediction of the
normalization and shape of the differential cross section
would require a formidable O��4

s� calculation of b �b
production.

Inclusive production of the � states in the central region
of rapidity at Tevatron energies and above is controlled by
partonic subprocesses initiated by gluons. The typical
034007
value of the fractional momentum x carried by the gluons
is determined by the ratioM�=

���
S

p
. The growth of the gluon

density as x decreases leads to two expected changes in our
predictions for larger

���
S

p
. First, and perhaps obvious, the

magnitude of the cross section near the peak in, e.g., Fig. 5
will increase. Second, and more subtle, is the prediction
that the peak location should shift to a greater value of pT
as

���
S

p
grows. We use the same parameters as those at

���
S

p


1:8 TeV, Fig. 5, to compute ��1S� production at the
Tevatron in run-II at

���
S

p
 1:96 TeV; our results are shown

in Fig. 7. The change of
���
S

p
from 1.8 to 1.96 TeV does not

produce a marked difference in the spectrum, but we ex-
pect the shift of the peak in pT to be about 1 GeV at the
LHC energy of

���
S

p
 14 TeV.

Our focus on � production may motivate questions
about the analogous production of the J= states. The
mass of the J= is relatively small, meaning that inverse
power contributions of the form 1=Q are potentially as
significant as the logarithmic terms log�Q� that we resum.
In addition, the saddle point in the b-space distribution
moves into, or close to, the region in which perturbation
theory can no longer be claimed to dominate the pT
distribution.
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