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Precise analytical description of the Earth matter effect on oscillations of low energy neutrinos
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We present a formalism for the matter effects in the Earth on low energy neutrino fluxes which is both
accurate and has all the advantages of a full analytic treatment. The oscillation probabilities are calculated
up to the second order term in ��x� � 2V�x�E=�m2, where V�x� is the neutrino potential at position x. We
show the absence of large undamped phases which makes the expansion in � well behaved. An improved
expansion is presented in terms of the variation of V�x� around a suitable mean value which allows one to
treat energies up to those relevant for supernova neutrinos. We discuss also the case of three-neutrino
mixing.
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I. INTRODUCTION

The propagation of low energy neutrinos in the Earth [1–
4] is an important aspect of physics of solar [1–14] and
supernova (SN) neutrinos [15–22]. It will be useful in
determining the oscillation parameters and, in future, to
search for effects of 1-3 mixing [23] and for a ‘‘tomogra-
phy’’ of the Earth (see, e.g., [20,21]). It might even be
possible to look for small structures of the density profile
[20].

In the existing calculations of Earth matter effects (see,
e.g., [1–20,23]), the density profile is often approximated
by one, two, or several layers (mainly mantle and core)
with constant densities or a direct numerical integration of
the evolution equation is performed. However, the emer-
gence of the large mixing angle (LMA) Mikheyev-
Smirnov-Wolfenstein (MSW) solution to the solar neutrino
problem opens a more efficient approach to the oscillation
effects in the Earth. Indeed, for the LMA parameters, the
oscillations of the solar and (lower energy) supernova
neutrinos inside the Earth occur in a ‘‘weak’’ regime,
where the matter potential V is much smaller than the
‘‘kinetic energy’’ of the neutrino system, i.e.,

V�x� �
�m2

2E
: (1)

Here V�x� �
���
2

p
GFNe�x�, GF is the Fermi constant, Ne�x�

is the number density of the electrons, �m2 � m2
2 �m2

1 is
the mass squared difference, and E is the neutrino energy.

In this case, one can introduce a small parameter

��x� �
2EV�x�

�m2

’ 0:02
�

E
10 MeV

��
Ne�x�
NA

��
8� 10�5 eV2

�m2

�
; (2)

where NA is the Avogadro number, and consider an expan-
sion of the oscillation probabilities in ��x�.
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In Ref. [24], the � perturbation theory was formulated in
the basis of neutrino mass states �mass � ��1; �2�T . The
oscillation probabilities and the regeneration factor were
calculated to first order in �. The expressions obtained are
valid for arbitrary density profiles with sufficiently low
density (1). They simplify the numerical calculations sub-
stantially and allow one to understand in detail all features
of the oscillation effects. The method reproduced immedi-
ately the analytic result obtained in Ref. [25] for an ap-
proximate but realistic density profile. Similar integral
expression for the regeneration factor has been obtained
in Ref. [26].

Since ��x� increases with energy, the lowest approxima-
tion in ��x� may not be enough for larger energies. For
instance, if E ’ 50 MeV (possible for SN neutrinos), we
find ��x� ’ 0:6 at the center of the Earth.

The purpose of this paper is to improve on this method
and obtain accurate formulas which are valid for higher
energies. In Sec. II the oscillation probabilities are calcu-
lated in second order in ��x� and the convergence of the �
expansion is commented on. In Sec. III we suggest an
improved perturbation theory which allows one to extend
the expansion to higher energies. The generalization to
three neutrinos is given in Sec. IV and a brief conclusion
in Sec. V.

II. SECOND ORDER CORRECTIONS TO THE
OSCILLATION PROBABILITIES

In this and the following section, we consider the mixing
of two (active) neutrinos �f 	 U����mass, where �f �
��e; �a�T and �mass � ��1; �2�T are the flavor and mass
states, respectively, and �a is a linear combination of ��
and ��.U��� and � are the mixing matrix and mixing angle
in vacuum, respectively. We define the matrix U��� as

U��� �
cos� sin�
� sin� cos�

� �
: (3)
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In Ref. [24] the following expression for the S matrix in
the mass eigenstates basis was derived [27]:

S	
1 0

0 e�i�
m
x0!xf

 !
� i

Z xf

x0
dx

1 0

0 e�i�
m
x!xf

 !
��x�

�
1 0

0 e�i�
m
x0!x

 !
�
Z xf

x0
dx
Z x

x0
dy

1 0

0 e�i�
m
x!xf

 !
��x�

�
1 0

0 e�i�
m
y!x

 !
��y�

1 0

0 e�i�
m
x0!y

 !
��� � ; (4)

where

�m
x1!x2 �

Z x2

x1
dx�m�x� (5)

is the adiabatic phase difference acquired by the neutrino
eigenstates in matter on their trajectory between two points
x1 and x2. �m�x� is defined as

�m�x� �
�m2

2E

��������������������������������������������������
1� 2��x� cos2�� ��x�2

q
; (6)

in vacuum we obviously have

�m ! � �
�m2

2E
: (7)

The Smatrix in (4) is written as a perturbative expansion in
��x� where

��x� 	
sin2�
2

V�x�
0 1
1 0

� �
�

1

2
�m�x�sin2�0

1 0
0 �1

� �
:

(8)

�0 is the mixing angle of the mass eigenstates in matter,

sin2�0 	
� sin2������������������������������������������������

�cos2�� ��2 � sin22�
p 	 � sin2�m; (9)

and �m 	 �� �0 is the corresponding mixing angle of the
flavor states.

The S matrix in Eq. (4) refers to a straight path through
the Earth from the entry point x0 to an exit point xf and the
coordinate x is measured along the path. For notational
convenience, we do not put labels x0, xf, etc., on S.

Using Eq. (8), we obtain the S matrix in terms of the
potential V:
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S 	
1 0

0 e�i�
m
x0!xf

 !
� i

sin2�
2

Z xf

x0
dxV�x�

�
0 e�i�

m
x0!x

e�i�
m
x!xf 0

 !

� i
sin22�
4�

1 0

0 �e�i�
m
x0!xf

 !Z xf

x0
dxV�x�2

�
sin22�

4

Z xf

x0
dx
Z x

x0
dyV�x�V�y�

�
e�i�

m
y!x 0

0 e�i�
m
x0!xf

�i�m
y!x

 !
: (10)

The two last terms (proportional to �2) come from the first
order in � [term proportional to sin2�0 in Eq. (8)] and the
second order in � [see Eq. (4)], correspondingly.

Using the evolution matrix in the mass state basis (10),
we can calculate the amplitudes and probabilities of vari-
ous transitions. The evolution matrix from the mass states
to the flavor states relevant for the solar and SN neutrinos
equals US, where U is the vacuum mixing matrix (3).
Consequently, the amplitude of the mass-to-flavor transi-
tion is given by

A�i!�� 	 U�j���Sji: (11)

The probability of the �2 ! �e transition P�2!�e 	
jA�2!�e j

2 	 jUej���Sj2j
2 is then found to be

P�2!�e 	 sin2��
1

2
sin22�

Z xf

x0
dxV�x� sin�m

x!xf

�
1

4
sin22� cos2�

Z xf

x0
dx
Z xf

x0
dyV�x�V�y�

� cos�m
y!x; (12)

where the last term is the �2 correction. The integrations
over x and y can be disentangled. Indeed, writing �m

y!x 	

�m
y!z ��m

z!x, where z is an arbitrary point of the trajec-
tory, we findZ xf

x0
dx
Z xf

x0
dyV�x�V�y� cos�m

y!x

	

"Z xf

x0
dxV�x� cos�m

z!x

#
2

�

"Z xf

x0
dxV�x� sin�m

z!x

#
2

: (13)

This shows that the second order correction is positive for
all V which do not vanish.

Furthermore, for a symmetric density profile (with re-
spect to the middle point of the trajectory) the second term
in (13) vanishes. This can be seen immediately by choosing
z 	 �x � �xf � x0�=2 in the center of the trajectory. So,
finally we obtain for a symmetric profile
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FIG. 1. The relative errors " of the first approximation (dashed
curve) and second approximation (solid curve) in � as functions
of the neutrino energy. The lines correspond to the neutrino
trajectory which crosses the center of the Earth and to the
oscillation parameters �m2 	 8� 10�5 eV2 and tan2� 	 0:4.
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P�2!�e 	 sin2��
1

2
sin22�

Z xf

x0
dxV�x� sin�m

x!xf

�
1

4
sin22� cos2�

"Z xf

x0
dxV�x� cos�m

�x!x

#
2

(14)

or (again using the symmetry of V)

P�2!�e 	 sin2��
1

2
sin22� sin�m

�x!xf

Z xf

x0
dxV�x� cos�m

�x!x

�
1

4
sin22� cos2�

"Z xf

x0
dxV�x� cos�m

�x!x

#
2

:

(15)

The phase �m
�x!xf should be calculated according to (5).

The two last terms in (15) determine the regeneration
parameter defined as freg � P�2!�e � sin2� (see, e.g.,
[11]). The probability of the �1 ! �e oscillations can be
obtained immediately from the unitarity condition
P�1!�e 	 1� P�2!�e .

We see from Eq. (15) that the effective expansion pa-
rameter of the series is

I �
Z xf

�x
dxV�x� cos�m

�x!x; (16)

so that

P�2!�e 	 sin2�� sin22��sin�m
�x!xf I � cos2�I2 � . . .�:

(17)

Notice that here the adiabatic phase should be calculated
from the center of trajectory to a given point x, which
corresponds to the explicit analytic expression obtained
in Ref. [25].

Equation (17) tells us that the first order correction is
absent for trajectories with�m

�x!xf 	  k, (k 	 integer) and
the second order correction would be zero for maximal
vacuum mixing.

Taking �m � �, we obtain the useful bound

I �
2E

�m2

Z y�xf�

y� �x�
dyV�y� cosy �

2EVmax

�m2 	 �max: (18)

Vmax is the maximum value of the potential on the trajec-
tory and y�x� 	 ��m2=2E�x.

In Eq. (10) we note the presence of a possibly large
phase�m

x0!xf and an undamped integral in the term �V�x�2

(see the 1-1 element of the matrix). It originates from the
�2 term in �. (The undamped terms are absent in the linear
term in � [28].) This could be a problem, because the
potential (squared) is integrated over a large distance with-
out an oscillatory damping, and this might give rise to a
large second order term in the expansion. However, by a
simple partial integration of the last, �V�x�V�y�, term in
(10) one can see that the undamped integral cancels. We
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have verified that this also happens in order V3 for constant
potentials. Therefore, the � expansion appears to be well
behaved (see also [26]).

In order to estimate the accuracy of (17), we compare the
exact values P�exact�

2e of the probabilities, found numerically,
with the values P�appr�

2e , calculated using Eqs. (16) and (17).
In Fig. 1 are shown the differences

" �
1
�f
�f�appr� � f�exact�� 	

1
�f
�P�appr�

2e � P�exact�
2e � (19)

as functions of neutrino energy. Here

�f 	
1

2
�fsin

22� (20)

is the averaged regeneration factor in the layer with the
surface density (or in the adiabatic case). Essentially, " is
the relative errors of the approximate formulas.

For illustration we use the simplified Earth density
profile which consists of five spherical shells with constant
densities. The external radiuses of the shells (in units of the
solar radius R�) and the electron number densities in units
of the Avogadro number �Ri=R�; ni=NA� equal, corre-
spondingly, �0:192; 6:05�, �0:546; 5:24�, �0:895; 2:47�,
�0:937; 1:92�, and �1; 1:67�.

In Fig. 1 we show the differences (19) for P2e calculated
in the first order, "�1� [the term �I in (17) only], and in the
second order "�2� (17). The lines correspond to the trajec-
tory which crosses the center of the Earth. Apparently, the
second order gives much better approximation. Notice that
" is the oscillatory function of energy. Its period increases
with energy as �El�=D / E2, where D is the diameter of
the Earth and l� is the vacuum oscillation length.

The accuracy worsens with energy. In the first approxi-
mation, as expected, j"�1�j / � / E, since jP2e � P�1�

2e j 	

O��2�. The second order "�2� is very small at small ener-
gies; however, it increases with energy faster: jP2e �

P�2�
2e j � �3, so that
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j �"�2�j �
2�2

sin22�12
: (21)

As an example, for E 	 40 MeV we find j �"�2�j � 0:04 and
maxima of the peaks j �"�2�j � 0:08. In the first order ap-
proximation the corresponding numbers equal j �"�1�j � 0:3
and 0.6.

These features can be explicitly seen in Fig. 2 in which
we show the reduced values of errors "�1�=E and "�2�=E2 as
functions of 1=E. In average the reduced deviations do not
depend on energy and the frequency of the peaks changes
weakly in 1=E scale.

IOANNISIAN, KAZARIAN, SMIRNOV, AND WYLER
III. IMPROVED PERTURBATION THEORY

As mentioned before, the accuracy of our expressions
decreases for higher densities and energies. However, the
expansion parameter can be reduced and therefore the
expansion can be improved. This can be achieved by
considering a perturbation around some average potential
V0 rather than around the vacuum value V0 	 0 [29]. In
this case, we expect the expansion parameter to be

� 	
2E�V

�m2 	
2E�V � V0�

�m2 : (22)

The corresponding results can be immediately obtained
from the original perturbation theory. Indeed, the transition
to an average potential V0 is equivalent to considering the
problem in the basis �0m 	 ��01; �

0
2�, where �0i are the

eigenstates of the Hamiltonian in matter with a constant
potential V0. These states are analogous to mass eigen-
states in the V0 	 0 theory. Therefore, the S matrix S0 for
��01; �

0
2� follows from the Smatrix for mass eigenstates (10)

by the substitution
FIG. 2. The reduced errors "�1�=E (left) and "�2�=E2 (right) as funct
crosses the center of the Earth and to the oscillation parameters �m

033006
V ! �V � V � V0; �! �m0 ; (23)

where �m0 is the flavor mixing angle in matter with the
potential V0:

sin2�m0 	
sin2������������������������������������������

1� 2�0 cos2�� �20
q (24)

and

�0 �
2EV0

�m2 : (25)

The adiabatic phase differences generated for the eigen-
states traveling in matter with true V are invariant under a
shift of the average potential, so that the phases �m

xi!xj are
unchanged. Therefore,

S0 	 S��V; �m0 �: (26)

We introduce the mixing matrix

U0
0 � U��00�; (27)

which relates the eigenstates of neutrinos in the potential
V0 to the mass eigenstates in vacuum: �mass 	 U0

0�
0
m. The

angle �00 is given by

sin2�00 	 �0 sin2�m0 (28)

and it is easy to check that � 	 �m0 � �00.
Now the amplitude of the mass-to-flavor transition,

�i ! ��, equals

A�i!�� 	 U�j��
m
0 ��S

0�jkU
y
ki��

0
0�: (29)

A straightforward calculation leads to the �2 ! �e os-
cillation probability P�2!�e 	 jA�2!�e j

2,
ions of 1=E. The lines correspond to the neutrino trajectory which
2 	 8� 10�5 eV2 and tan2� 	 0:4.
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P�2!�e 	 sin2�� �0sin22�m0 sin
2
�m
x0!xf

2
�

1

2
sin22�m0 cos2�00

Z xf

x0
dx�V�x� sin�m

x!xf

�
�0
2
sin22�m0 cos2�m0

Z xf

x0
dx�V�x� sin�m

x0!x �
�0
8
sin42�m0

Z xf

x0
dx
Z xf

x0
dy�V�x��V�y� cos��m

x0!x ��m
y!xf �

�
1

8
sin22�m0 �cos2�

m
0 � cos2�00 � 2sin2�� �0sin22�m0 �

Z xf

x0
dx
Z xf

x0
dy�V�x��V�y� cos�m

y!x: (30)

We note that there are two first order (in �V) terms, one containing �m
x0!x, the other �m

x!xf , in contrast to the original
theory which contains the phase �m

x!xf only.
For V0 	 0, Eq. (30) coincides with the previous result (12).
For a symmetric density profile we obtain

P�2!�e 	 sin2�� �0sin
22�m0 sin

2�m
�x!xf �

1

2
sin22�m0 �cos2�

0
0 � �0 cos2�

m
0 � sin�

m
�x!xf

Z xf

x0
dx�V�x� cos�m

�x!x

�
1

8
sin22�m0 �cos2�

m
0 � cos2�00 � 2sin2�� 2�0sin

22�m0 �

"Z xf

x0
dx�V�x� cos�m

�x!x

#
2

: (31)
In the limit V ! 0 the second, the third, and the fourth
terms in (31) cancel each other (up to �30), and the proba-
bility reduces to sin2�.

Defining

I� �
Z xf

�x
dx�V�x� cos�m

�x!x; (32)

we can rewrite the probability (31) as

P2e 	 sin2�� �0sin22�m0 sin
2�m

�x!xf � B1��0� sin�m
�x!xf I�

� B2��0�I2�; (33)

where the prefactors in front of powers of I� equal

B1 � sin22�m0 �cos2�
0
0 � �0 cos2�m0 �; (34)

B2 �
sin22�m0

2
�cos2�00 � 2sin2�� cos2�m0 � 2sin22�m0 �:

(35)

The prefactors as functions of �0 are shown in Fig. 3.
FIG. 3. The dependence of the prefactors in the improved
perturbation formula for P2e on the shift parameter �0. We use
tan2� 	 0:4.
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Notice that jBij< 1. For �0 ! 0 (V0 ! 0) we have, as
expected, B1 ! sin22� and B2 ! sin22� cos2�. With in-
crease of �0 the prefactor B1 first slightly increases, reaches
maximum at �0 	 0:28, and then decreases. In contrast, B2

decreases and crosses zero at �0 	 0:28. For energies E<
�50–60� MeV, relevant for the solar and SN neutrinos, we
have �0 < 0:2.

Figure 4 illustrates an accuracy of the improved pertur-
bation theory. Shown are the reduced errors, "=E2, calcu-
lated to second order of perturbation theory for different
values of the average potential, parametrized as V0 	���
2

p
GFNe

0 . As follows from the figure, the best approxima-
tion is achieved (for not too high energies) when V0 � Vf,
where Vf is the potential at the surface of the Earth. With
further increase of V0, the error increases. In particular, for
an average potential V0 � 2Vf along the neutrino trajec-
tory, the errors are large.
FIG. 4. The reduced errors "=E2 of the improved perturbation
expansion (to second order) as functions of the inverse neutrino
energy for different values of the shift Ne

0 . The surface density is
1:67NA. The second order of perturbation is taken. Other char-
acteristics are as in Fig. 2.
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This can be understood as follows. A shift of the poten-
tial affects both the prefactors and the integral I�. Since the
prefactors do not change by much, we consider only the
integral I�. Integrating by parts, it is easy to show that the
integral I� can be presented as

I� �
2E�Vf � V0�

�m2 sin� �x!xf

�
2E

�m2

Z xf

�x
dx
dV
dx

sin� �x!xf ; (36)

where Vf 	 V�xf� and we take in the first approximation
�m � �. Apparently, the integral in (36) does not depend
on the shift of the potential and the dependence appears in
the first term which is due to the boundary condition. This
explains the dependence of the errors on the shift in Fig. 4.
Selecting V0 	 Vf, one can eliminate the first term com-
pletely. For V0 >Vf this term changes the sign and, there-
fore, can in some energy ranges partially compensate the
contribution of the integral. However, substantial deviation
of V0 from Vf makes the first term and, therefore, the
expansion parameter larger than in the original theory. As
033006
follows from Fig. 4, the improved expansion allows one to
reduce the relative errors by a factor of 2 (in average),
though in some particular energy range the reduction can
be stronger.

Apart from specific values of energy, the improved
theory gives a better description for E< �15–30� MeV.
Even better approximation for low energies can be ob-
tained for V0 <Vf. This is also related to the attenuation
effect: contribution from deep structures is suppressed and
the oscillation effect is determined by the outer layers
where the subtraction by a suitable potential V0 � Vf can
be rather precise. For high energies the effect of the core
becomes ‘‘visible.’’ It seems that for the average probabil-
ity over all relevant energies the best approximation cor-
responds to the surface potential.

IV. CORRECTIONS DUE TO
THREE-NEUTRINO MIXING

In the standard parametrization, the lepton mixing ma-
trix is
U 	 O23diag�1; 1; ei"cp�O13diag�1; 1; e�i"cp�O12 	
c13c12 c13s23 s13e�i"cp

�s12c23 � c12s23s13e
i"cp c12c23 � s12s23s13e

i"cp c13s23
s12s23 � c12c23s13ei"cp �c12s23 � s12c23s13ei"cp c13c23

0B@
1CA:
By a redefinition of the mixing matrix

U ! Udiag�1; 1; ei"cp�; (37)

the Hamiltonian becomes real, i.e.,

H 	

0 0 0

0 �s 0

0 0 �a

0
BB@

1
CCA�Uy

V 0 0

0 0 0

0 0 0

0
BB@

1
CCAU (38)

	

Vc213c
2
12 Vc213s12c12 Vc12c13s13

Vc213s12c12 �s � Vc213s
2
12 Vs12c13s13

Vc12c13s13 Vs12c13s13 �a � Vs213

0
BB@

1
CCA;

(39)

where �s � �m2
�=2E and �a � �m2

atm=2E� �s.
Thus, we see that both the CP phase "cp and �23 do not

influence the propagation in matter (determined by the
Hamiltonian). Also, since in (37) the first line does not
contain "cp and �23, these parameters disappear in the
oscillations from �e to �e or from �e to mass eigenstates
and vice versa. They manifest themselves only when one
considers the flavor states �� or ��.

These arguments are general and are valid in arbitrary
matter density.

We now write the Hamiltonian in the form

H 	 H 0
�3�� ���3��; (40)
where

H 0
�3�� 	

0 0 0
0 �m

s 0
0 0 �m

a

0@ 1A (41)

and

��3�� 	 H �H 0
3� � diag�0;�s;�a�

�
V � �s � �a � �m

s ��m
a

3
I

	 Vc213

0 sin2�12=2 c12s13=c13
sin2�12=2 0 s12s13=c13
c12s13=c13 s12s13=c13 0

0BB@
1CCA

�O�V2�: (42)

�m
s and �m

a are the eigenvalues of the Hamiltonian in
matter [30]. In Eq. (42) we have subtracted a term propor-
tional to the unit matrix in order to make it traceless and
thus convenient for a power expansion.

A straightforward calculation leads to the transition
probabilities of the mass eigenstates to �e:

P�1!�e 	 c213c
2
12 �

sin22�12
2

c413
Z xf

x0
dxV sin�x!xf

� 2c212c
2
13s

2
13

Z xf

x0
dxV sin x!xf ; (43)
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P�2!�e 	 c213s
2
12 �

sin22�12
2

c413
Z xf

x0
dxV sin�x!xf

� 2s212c
2
13s

2
13

Z xf

x0
dxV sin� x!xf ��x!xf �;

(44)

P�3!�e 	 s213 � 2c212c
2
13s

2
13

Z xf

x0
dxV sin x!xf

� 2s212c
2
13s

2
13

Z xf

x0
dxV sin� x!xf ��x!xf �;

(45)

where

�a!b 	
Z b

a
�m
s �x�dx;  a!b 	

Z b

a
�m
a �x�dx: (46)

The function sin x!xf oscillates �m
a =�

m
s ’ �m2

atm=�m
2
�

times faster than sin�x!xf . Thus, the corresponding inte-
gral is roughly �m2

atm=�m
2
� times smaller than the one

which contains the phase �; furthermore, it has a prefactor
s213. Therefore, we get to a good approximation

P�1!�e 	 c213c
2
12 �

sin22�12
2

c413
Z xf

x0
dxV sin�x!xf ; (47)

P�2!�e 	 c213s
2
12 �

sin22�12
2

c413
Z xf

x0
dxV sin�x!xf ; (48)

P�3!�e ’ s
2
13: (49)
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These results may be also obtained from Eq. (39) [26]
(see [23] for some earlier discussion). If �a � �s � V
and s13 � 1, the third neutrino decouples and one arrives
at the two-neutrino propagation problem in matter with
potential V ! Vc213 and mixing angle �12. Following the
procedure of Sec. II and using the full mixing matrix
Udiag�1; 1; ei"cp�, we easily recover Eqs. (47)–(49).

V. CONCLUSION

Motivated by the large mixing MSW solution to the
solar neutrino, we have developed a simple formulation
of the Earth matter effects on low energy neutrino beams.
Following [24], we derive an expansion for the neutrino
transitions in terms of the parameter ��x� to second order.
By choosing a certain constant average value for the neu-
trino potential as a starting point, the precision can be
further improved and it is possible to reach an accuracy
of a few percent even for energies near 50–70 MeV. The
effective expansion parameter is a simple integral in
Eq. (16) [or Eq. (32)] together with Eq. (5) which can be
done numerically. The expansion allows for a convenient
quantitative discussion of various physical effects such as
the attenuation effect to the remote structures of the density
profile or the effect of energy resolution of detectors. We
also consider the case of three-neutrino mixing.
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