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Naturally small Dirac neutrino masses in supergravity
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We show that Dirac neutrino masses of the right size can arise from the Kähler potential of supergravity.
They are proportional to the supersymmetry and the electroweak breaking scales. We find that they have
the experimentally observed value provided that the ultraviolet cutoff of the Minimal Supersymmetric
Standard Model is between the Grand Unification scale and the heterotic string scale. If lepton number is
not conserved, then relatively suppressed Majorana masses can also be present, resulting in pseudo-Dirac
neutrino masses.
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1We will throughout be assuming that the measured mass-
squared differences are indicative of the actual masses. We focus
on the atmospheric neutrino mass.
I. INTRODUCTION

We have recently learned a great deal about mixing in
the neutrino sector [1]. However, we have thus far learned
relatively little about why the neutrino masses are so small,
or their relation to the other much higher scales in particle
physics. The presence of such vastly different mass scales
remains a great puzzle. The current favored explanation for
small neutrino masses is the ‘‘seesaw’’ mechanism [2]. In
this picture a large Majorana mass for the right-handed
neutrino suppresses the mass of the light states, and the
active neutrinos we observe today are therefore almost
pure Majorana. However, in this framework there is no
room for Dirac or pseudo-Dirac neutrinos, and so it is
worth examining alternative ways to generate neutrino
masses.

There is one other instance in supersymmetry where it
was possible drastically to suppress a mass scale, the
solution of the �-problem by Giudice and Masiero [3].
The �HuHd term in the superpotential is a mass term for
the Higgs fields required for electroweak symmetry break-
ing. The parameter �, which has dimensions of mass,
therefore has to be of the order of 1 TeV. But in global
supersymmetry it is apparently independent of the super-
symmetry breaking terms which also have to be of order
1 TeV, appearing as it does in the superpotential. At first
glance there is no connection between supersymmetry
breaking and the parameter �. However, the problem is
resolved if the HuHd interaction appears in the Kähler
potential of supergravity rather than the superpotential.
Then an effective �-term is generated only upon super-
symmetry breaking and is of the order of the gravitino mass
m3=2 � 1 TeV. The crucial ingredient of this solution to the
�-problem is the absence of this term in the superpotential
of unbroken supergravity, and its subsequent generation
through an analogous coupling in the Kähler potential,
once supersymmetry is broken.

Could such a Kähler suppression be responsible for the
smallness of neutrino masses as well? The numbers cer-
tainly suggest that it could be as has been occasionally
noted in the literature in the context of global supersym-
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metry or globally supersymmetric approximations to su-
pergravity [4–8]. Consider, for example, a contribution to
the Kähler potential of the form

K �
LHu

�N
M

�
LH�

d
�N

M
� H:c:

where �N is the right-handed neutrino and M is the scale at
which higher dimensional operators first make their ap-
pearance in the Kähler potential. For the sake of argument
assume that M � MP � �8�GN�

�1=2 � 2:44 	 1018 GeV.
One would expect the effective neutrino mass to be sup-
pressed by a factor m3=2=M which (taking hHui � mtop)
gives a neutrino mass m� � 10�4 eV: This is rather small
but intriguingly quite close to the measured1 value of
�0:04–0:05� eV (within 1�). Even more intriguingly, the
measured value corresponds to taking M � 5 	 1015 GeV,
just below the Grand Unification (GUT) scale. We think
that this coincidence deserves more careful inspection in
the context of full supergravity [9].

The above operators are expected to be generated in
various ways (perhaps from some kind of GUT theory or
by the underlying string theory) and so M does not have to
be close to MP. Because of this the scale M (when it was
not set by some model building assumption or other) has
always been treated as a movable parameter. In this paper
we take a more phenomenological approach. If the opera-
tors above are indeed responsible for the neutrino masses,
what does the scale M of new physics have to be?
Exploiting supergravity as a possible breakdown scenario
of supersymmetry, we find that, within this scenario, the
scale M may differ by 2 orders of magnitude from the naive
expectation above. Indeed, for gravitino masses of
100 GeV<m3=2 < 10 TeV, the correct mass automati-
cally arises from the general couplings of supergravity if
the scale M is in the range
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M � �4 	 1016–5 	 1017� GeV:

This range, remarkably, is between the GUT scale and the
heterotic string scale of old. At tree level the relation for
the latter is Ms � gGUTMP � 1018 GeV if �GUT � 1=24.
Including threshold effects in the MS scheme gives [10]
Ms � 3:8 	 1017 GeV. To find this result, we need to
consider the contributions to fermion masses in full
supergravity.

II. FERMION MASSES IN SUPERGRAVITY

Consider a set of chiral superfields fSi; y�g. The fields Si
are those fields of the hidden sector that are responsible for
the spontaneous breaking of supergravity. They are as-
sumed to be singlets of the gauge group, and we make no
other assumptions about them or their superpotential, apart
from the fact that they eventually acquire a vacuum expec-
tation value (v.e.v.) of order Si ’ M. It is convenient to set
Si � M�i. The superfields y� are those of the observable
sector, namely y� � fQ; �U; �D;L; �E; �N;Hu;Hdg. The most
general superpotential, W, and Kähler potential, K, read
[11]

W��; y� � W�h���� �W�o���; y�; (1)
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2Here �� are the fermion superpartners of the scalar fields y�
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K��;��; y; yy� � K�h���;��� � K�o���;��; y; yy�; (2)
where the superscript (h) and (o) denote hidden or observ-
able superpotential and Kähler potentials, respectively. If
local supersymmetry is spontaneously broken then the
visible matter fermions have a Lagrangian of the form2

[12,13]

L � ig��� ��� ���@��� � �m���
��� � H:c:�; (3)
where g��� � @2K
@y�@y��

� @2K�o�

@y�@y��
[Eq. (2)] is the Kähler met-

ric. The fermion fields �� in Eq. (3) need not be in the
canonical basis. Nevertheless as is known from derivations
of higher order operators in the Kähler potential (in, for
example, string theory in Ref. [14]), the various symme-
tries of the theory dictate that their coefficients are of order
one in the canonical basis. For simplicity reasons, we
confine our numerical discussions to that case, namely
gij� � g��� � 1.

With a general Kähler metric, fermion masses in super-
gravity read
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In the above m3=2 is the gravitino mass given by

m3=2 �

�
W�h�

M2
P

exp�K�h�=2M2
P�

�
; (5)

and we have taken the flat limit, MP ! 1 and m3=2 !
const. We should remark here that we have made no other
approximations in deriving Eq. (4). Contributions to the
visible fermion masses in Eq. (4) arise from both the
hidden and the observable sectors. We have divided the
contributions to the fermion masses into two classes:
(i) t
erms which are not proportional to the gravitino
mass and survive in the global supersymmetry limit
m3=2 ! 0, m3=2MP ! const [the first two lines of
Eq. (4)]. Of these terms the first can be recognized
as the standard term present in global supersymme-
try. The second term arises purely from the observ-
able sector. It was used by the authors of Ref. [6] in
order to induce Majorana neutrino masses from
-2
dimension six Kähler operators. In our scenario, the
third term in the first line of Eq. (4) is precisely the
term that produces the dominant contribution to the
neutrino masses. Note that this term has not previ-
ously been considered in the context of neutrino
masses, and can significantly change any estimates
that one might make within the framework of
Supergravity. It vanishes in the limit of exact local
supersymmetry transformations as it should. Terms
in the second line of Eq. (4) can only be nonzero if
the v.e.v. of the Kähler metric mixes fields from the
visible sector with fields from the hidden sector. We
shall not consider this possibility here.
(ii) t
erms that are proportional to the gravitino mass [the
last two lines of Eq. (4)] and exist only in the
framework of supergravity. They depend only on
the structure of the Kähler potential. Of these terms
the second gives rise to a relatively suppressed Dirac
neutrino mass and was used (in a different context)
in Ref. [8]. Actually it is obvious that all terms in the
third line of Eq. (4) can contribute to Dirac neutrino
masses. The terms in the fourth line of Eq. (4)
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require mixed hidden and observable sector kinetic
terms and as with the terms in the second line of
Eq. (4) we assume they are absent. They are only
relevant when K�o� and/or W�o� contain a tadpole
gauge singlet.
III. (PSEUDO)DIRAC NEUTRINO MASSES

An obvious starting point for a theory of small Dirac
neutrino masses is to prevent them from appearing directly
in the superpotential. A natural solution to the �-problem
[3] would require in addition the nonexistence of the
operator HuHd in the superpotential. This can naturally
be done with a discrete R-symmetry or perhaps some other
symmetry. As a working example, let us consider an
R-symmetry with R-characters for the matter superfields
given by Table I. To these we have added a right-handed
gauge singlet superfield �N with R-character R� �N� � n. The
symmetry has to be chosen so that the operators LHu

�N �
HuHd are forbidden in the superpotential but are present in
the Kähler potential. In addition we will for definiteness
suppose that the singlet S has a nonzero R character as
well, so that its appearance in the superpotential will be
limited as we will see shortly. (Zero R-character for this
singlet is also possible but necessitates other hidden sector
fields.) The visible superpotential has R�W� � 2. The
Kähler potential is R-neutral R�K� � 0. We shall choose
n � �1. For the moment we shall also assume lepton
number conservation. The allowed terms are then

W�o���; y� � YELHd
�E� YDQHd

�D� YUQHu
�U�W�;

(6)

K�o���;��; y; yy� � c1��;���HuHd �
c2��;�

��

M
LHu

�N

�
c3��;���

M
LH�

d
�N � H:c:;

(7)

where M is our ultraviolet cutoff and W� is the � depen-
dent part of the superpotential which will be responsible
for supersymmetry breaking (to be discussed later). As an
example if R�s� � 2 then this could be a Polonyi-like term
�S where � is some constant. The c��;��� coefficients are
the result of all perturbative and nonperturbative contribu-
tions to the Kähler potential so we do not need to insist that
�< 1 although this is where we need to be to have
I. R-characters for the Minimal Supersymmetric
d Model (MSSM) fields under the requirement that the
rs HuHd � LHu

�N � LH�
d

�N appear only in the Kähler
al.

�U �D L �E �N Hu Hd

h d� 2h d h� n 2 � 2h� n n �h h
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perturbative control. We may quite reasonably assume
these coefficients and their derivatives to be of order one.
Of course W�o� and K�o� contain other nonrenormalizable
terms, irrelevant to neutrino masses, of order 1=M and
higher.3

We can now use the master formula of Eq. (4) together
with Eq. (7) to obtain the relevant terms for the Dirac
neutrino masses. Consider for simplicity one singlet, �,
and one generation of neutrinos with �� � �R, �� � �L;

mD
� � v

�
m3=2

M

�
sin��c2��;�

�� � c1��;�
��c3��;�

���

� v
�
FS

M2

�
sin��@��c2��;��� � cot�@��c3��;����;

(8)

where @� � @=@� and

FS � @SW
�h� �m3=2@SK

�h�: (9)

Notice that in Eq. (8) there exists a source for Dirac
neutrino masses which survives even in the global super-
symmetric limit. In this limit, only the term proportional to
@SW

�h� remains and for mD
� � �0:04–0:05� eV we find

FS

M2
’

mD
�

v sin��1 � cot��
� �1:6–2:8� 	 10�13; (10)

where we used v � 174:1 GeV and tan� � 1–60 and have
assumed that the v.e.v. of all the c’s and their derivatives
are unity (there is the possibility of cancellation). This is a
rather model independent result. In local supersymmetry,
for example, vanishing of the vacuum energy implies that
FS �

			
3

p
MPm3=2, and varying 100 GeV<m3=2 < 10 TeV

we obtain

4 	 1016 GeV<M< 5 	 1017 GeV: (11)

The terms in the second line of Eq. (8) are enhanced by a
factor MP=M relative to the terms in the first line, and thus
are the dominant ones for any scenario. This is important,
for example, in no-scale models where the gravitino can be
quite light. In addition, one should note that the new non-
holomorphic term proportional to @��c3 dominates in
Eq. (8) if c1 and c2 take on small values.

We should remark that the soft breaking masses of other
particles such as squarks are proportional to ~m� FS=M
making them generically somewhat larger than desirable,
which requires some degree of tuning. For example, if
there are terms ci��;���*?

i *i in the Kähler potential
then for M � MGUT we obtain ~mi � 3 TeV–6 TeV and
for M � Ms we obtain ~mi � 100 TeV. A suppression of
the � dependence in the operator *�

i *i in the Kähler
3If lepton number is violated, the R-character of the superfield
�N classifies the additional neutrino mass operators and, although

we do not present them here, models with other less phenom-
enologically appealing choices are possible.
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potential is therefore required. For example, it could be
forbidden by hidden sector symmetries. This is model
dependent and we will not present a detailed discussion
of this as we would like to preserve our phenomenological
approach.

We emphasize that the constraint of Eq. (10) survives in
the global supersymmetric limit. This is an important
condition for incorporating Dirac neutrinos in models
with low scale supersymmetry breaking as, for example,
in the case of gauge mediated supersymmetry breaking.

The values obtained for M in Eq. (11), naturally lie
between MGUT and the heterotic string scale Ms for a
very wide range of parameters, the result anticipated in
the introduction. Note that the neutrino mass in Eq. (8)
varies as the square of M so that the value is rather
accurately determined. This is the central point of this
paper, that in supergravity small neutrino masses of the
experimentally observed size can arise, and that neutrinos
are predominantly Dirac fermions. In contrast, the opera-
tion of a seesaw mechanism demands the introduction of
extra scale(s) in order to obtain the correct order of mag-
nitude. Of course, the input in our case was an R-symmetry
which forbade direct neutrino masses. However, this re-
quirement is more general than the neutrino mass problem
at hand, since it is also necessary to resolve the �-problem.

If we relax the assumption of lepton number conserva-
tion then the Dirac neutrinos obtained from the Kähler
potential can be ‘‘polluted’’ by the presence of active
Majorana neutrino masses derived from extra nonrenorma-
lizable terms in addition to those in Eqs. (6) and (7);

W�o���; y� �
g4���
M

�LHu��LHu�; (12)

K�o���;��; y; yy� �
c4��;�

��

M3 W�h� �N2 � H:c: (13)

Assume that only the first term is present. (The second term
is quite high order to get a zero R-charge, so one could
argue that such terms become suppressed.) Then from the
first term in Eq. (4) with �� � �cL, �� � �L we obtain

mL
� � g4���

v2

M
sin2�: (14)

For the range of M above we obtain mL
� � �3 	 10�5–7 	

10�4� eV. In summary, Dirac and Majorana neutrino
masses (we consider one generation of neutrinos) are
combined in the basis �� � �L � �cL;! � �R � �cR�

��!�
mL
� mD

�

mD
� 0

� �
�
!

� �
; (15)

with eigenvalues close to mD
� . The small mass splitting

between the two physical eigenstates is

"m2 ’ 2mD
�mL

� � �3 	 10�6–5 	 10�5� eV2; (16)

and the mixing angle tan2. � 2�mD
� =mL

�� very close to
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maximal, sin2. � 1. Thus, neutrinos are pseudo-Dirac
[15,16]; the Dirac neutrino splits into a pair of two maxi-
mally mixed Majorana neutrinos with almost equal masses.
Furthermore, the effective mass for the neutrinoless double
beta decay is given by [17]

hmeffi �
1

2

X
j

U2
ej

"m2
j

2mj
; (17)

where U is the neutrino mixing matrix determined by the
solar and atmospheric neutrino oscillations. Using the
numbers quoted above, we find that Eq. (17) gives hmeffi �
�10�5–3 	 10�4� eV. One cannot detect neutrinoless
double � decay of such small magnitudes, and these con-
tributions are therefore unobservable for the foreseeable
future. One may instead have to resort to astrophysical
techniques to distinguish pseudo-Dirac from Dirac neutri-
nos [17]. Furthermore, if the �N2 operator of Eq. (13) is
present and of equal size, the situation becomes highly
involved, with the three generations of neutrinos having a
general 6 	 6 mass matrix.
IV. QUESTIONS AND CONCLUSIONS

There are a number of questions that arise. The most
pressing concerns the source of the nonrenormalizable
terms in the Kähler potential of Eq. (7). The analysis
presented here leads us to suspect that the required opera-
tors may appear simply as effective operators in heterotic
string theories in much the same way as the �-term does
[14]. The scale M may also appear radiatively in the Kähler
potential, along the lines discussed in [18] or explicitly by
construction in a GUT model. One aspect of this picture
that we find appealing is that, in contrast with the seesaw
picture, the connection with string or GUT scale physics is
rather immediate. The neutrino masses and mixings are not
filtered through unknown Majorana terms but carry direct
information about the structure of the Kähler metric. This
fact certainly offers new opportunities for neutrino model
building.

In this paper we have been arguing that the scale of
neutrino masses may quite easily be associated with the
scale of supersymmetry breaking and hence the Weak/
Planck scale hierarchy, in the very same way that the
�-term can. Although this is a general observation, we
are obliged to present a simple model of supersymmetry
breaking where FS is generated with the correct size with
the charges we have been using. Consider, for example, an
R-charge for the singlet R�S� � 1. In this case the super-
symmetry breaking part of the potential can take the form

W� � �S2

where � is a dimensionful coupling of order MW . The fact
that this represents a fine-tuning is of course the usual
tuning problem associated with supersymmetry breaking.
S needs to get a v.e.v. and in order for this to happen we
-4
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may further suppose that the R-symmetry we are using is
gauged and anomalous. Such models were considered in
Ref. [19], and it is known that such a symmetry must be
broken at scales M � MP, and that there are no effects
from gauging the R-symmetry remaining at low energies.
Because of the R-charge of S it is now perfectly natural for
S to get a v.e.v. of order M from the Fayet-Iliopoulos
D-term of the R-symmetry, especially as it has no other
D terms to force it to zero v.e.v. This then gives

hW�i � �M2; FS � �M2 KS

M2
P

�WS � �M:

The value of FS may now be tuned to
			
3

p
MWMP to get zero

cosmological constant as usual. But the point is of course
that we now have to make no additional tuning to get the
Dirac neutrino masses of the right order and this is the
main finding of the paper.

Another important question is how to account for the
nontrivial (maximal) neutrino mixing matrix. The answer
to this question may be linked to the fact that the Kähler
potential parameters are not protected by the nonrenorm-
alization theorem, and vertex corrections may induce large
flavor mixing through Renormalization Group running.
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In summary, we have shown that minimal supergravity
naturally allows Dirac masses without the ad hoc addition
of any new mass scales. If there is lepton number conser-
vation, then the MSSM naturally contains pure Dirac neu-
trino masses that are comparable to the atmospheric
neutrino mass. The only other remnant would be a slowly
decaying right-handed s-neutrino with mass �1 TeV. We
have throughout been focusing on the atmospheric neu-
trino mass, but the remaining masses and mixings could be
generated by the Yukawa couplings in the Kähler potential
of Eq. (7) in much the same way as the quark masses and
mixings. If lepton number is violated, then we have seen
that it is possible to get either pseudo-Dirac neutrinos or a
general 6 	 6 Majorana mass matrix structure with natu-
rally small elements. Finally, we should remark that baryo-
genesis can be accommodated via leptogenesis with Dirac
neutrinos [20].
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