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Analytical evolution of nucleon structure functions with power corrections at twist-4 and
predictions for ultrahigh energy neutrino-nucleon cross section
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In this paper we present an analytic result for the evolution in Q2 of the structure functions for the
neutrino-nucleon interaction, valid at twist-2 in the region of small values of the Bjorken x variable and for
soft nonperturbative input. In the special case of flat initial conditions, we include in the calculation also
the contribution of the twist-4 gluon recombination corrections, whose effect in the evolution is explicitly
determined. Finally, we estimate the resulting charged-current neutrino-nucleon total cross section and
discuss its behavior at ultrahigh energies.
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I. INTRODUCTION

Saturation effects in the parton distributions for a nu-
cleon, that could finally lead to unitarization of the cross
sections, have been thoroughly discussed in the past. In the
small Bjorken x region these effects can be accounted for
by the introduction of nonlinear terms in the evolution
equation for the gluon density [1]. The study of nonlinear
evolution equations began 20 years ago and gave rise, in
the following years, to different approaches to the small-x
region [2,3]. More recently, generalizations of nonlinear
evolution equations have been proposed with different
physical motivations [4–6] and screening effects have
been incorporated in the theoretical framework in different
ways [7–9].

The approaches quoted above find interesting applica-
tions in the interaction of ultrahigh energy neutrinos with
nucleons and nuclei [10–13]. While there is no general
consensus on the importance of screening effects, one
expects, at any rate, that the linear QCD evolution of parton
distribution functions will be tamed in the very small-x
region. Predictions for the cross section of the neutrino-
nucleon interaction based on DGLAP [14,15] or BFKL
[16] equations show a power increase with energy [17–19]
that will finally violate the Froissart bound. We notice that
the problem these papers address is rather intricate, since it
requires a complete knowledge of nucleon structure func-
tions in both variables x and Q2. At ultrahigh energies the
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integrals, giving the cross section in terms of structure
functions, cover the whole permissible range of values
for these variables and explore extreme regions of the
�Q2; x� phase space, where nonaccelerator data exist.
Moreover, the mathematical complexity inherent in the
solution of nonlinear evolution equations may conceal
the physical essence of the problem.

Simplifications are well possible if we limit ourselves to
the small-x region only, with a warning about the conse-
quences on the value of the integrals giving the total cross
section. For example, a powerlike behavior in x of the
parton distributions is a simple solution of the DGLAP
dynamics at next-to-leading order on the region x < 0:1
and for large Q2 values, where the hard initial condition
x�� � constant can be applied for parton distribution
functions [17]. Because of the asymptotic behavior of the
DGLAP evolution [14], small-x data can also be inter-
preted in terms of the ‘‘double asymptotic scaling’’ [20–
22] that provides an explicit solution to the problem. The
straightforward application of these approximation
schemes to the nonlinear evolution is however question-
able. Moreover, it would be rather difficult to estimate the
error induced on the cross section.

In a series of papers [23,24] a new set of evolution
equations was suggested that includes parton recombina-
tion. These new equations are derived in the leading loga-
rithmic �Q2� approximation and differ from the traditional
ones [1,2], that rely on the double logarithmic approxima-
tion (DLLA). DLLA means that only those terms in the
splitting functions that generate large logarithms in x are
important. In other words, in the DLLA a diagram consists
of gluon ladders and any transition from gluon to quark is
suppressed in this approximation. It becomes difficult
however to reconcile small-x approximations with the
-1  2005 The American Physical Society
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twist-4 gluon recombination corrections of Ref. [24]. As
emphasized in Ref. [25], the twist-4 coefficient function,
driven by a two-particle gluon distribution, cannot be
simplified by using DLLA or other small-x
approximations.

There is, however, the possibility to replace, at small x,
the convolution of two functions by a simple product. The
method, introduced in Refs. [26–29], allows a correct
treatment of the nonsingular part of parton distributions
and has found numerous applications [29–31]. This ap-
proach, to be described at length in the following, has been
applied also to the evaluation of the contributions from
higher-twist operators of the Wilson operator product ex-
pansion [31]. The accuracy of this method, when applied to
the modified DGLAP equations of Ref. [24], can be veri-
fied a posteriori with a suitable computer code.

In this paper we study the contributions of the twist-4
gluon recombination corrections to a previous twist-2 cal-
culation [30]. In Ref. [30] we estimated the ultrahigh
energy neutrino-nucleon cross section in the approach of
Ref. [29]. The corrections introduced by the presence of
nonlinear terms in the evolution equation, as given in
Ref. [24], will change sensibly our previous estimate.

In the next section we will discuss the nonperturbative
input and present an analytical form for the Q2 evolution.
Some restrictions on the value of the parameters of the
input distributions, present in Ref. [30], are relaxed in this
new formulation. However, gluon recombination correc-
tions will be estimated in the particular case of starting flat
initial conditions. In Sec. III results are presented for the
structure function F	N

2 �x;Q2� and for the charged-current
neutrino-nucleon total cross section. The asymptotic be-
havior of this cross section will be also discussed. In the
Appendices the proof of the relevant analytical results is
presented.
II. Q2 EVOLUTION

As in our previous paper [30], we choose a soft non-
perturbative input based on analyses of the nucleon struc-
ture functions [32–37]. If we denote by fq�x;Q

2� the sea
quark distribution xS�x;Q2� and by fg�x;Q

2� the gluon
distribution xG�x;Q2�, that is if we put

fq�x;Q
2� � xS�x;Q2�; fg�x;Q

2� � xG�x;Q2�; (1)

our soft nonperturbative input can be written in the form

fa�x;Q20� 	

�
Aa 
 Ba ln

�
1

x

��
�1� x�	�Q20� �a 	 q; g�;

(2)

where Aa, Ba and 	�Q20� are unknown parameters to be
determined from data. Throughout this calculation at small
x we will ignore the nonsinglet quark component and limit
ourselves to the leading order (LO) of perturbation theory.
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The factor �1� x�	�Q20� has been treated in detail in
Ref. [30] and we neglect it in the following. At the end
we will take it into account by multiplying the resulting
structure function, F	N

2 �x;Q2� 	 fq�x;Q
2� in the case of

neutrino-nucleon DIS, by an effective large-x behavior
�1� x�	, with constant 	. Furthermore, as in Ref. [30],
we define

t 	 ln
�
�s�Q20�

�s�Q
2�

�
	 ln

�
ln�Q2=�2LO�

ln�Q20=�
2
LO�

�
;

and the Ball-Forte scaling variables

� 	 2
�����������������������������
�d̂ggt ln�1=x�

q
; � 	

���������������
�d̂ggt

ln�1=x�

vuut
	

�
2 ln�1=x�

;

(3)

where d̂gg 	 �12=�0 and �0 	 11� 2f=3, with f the
number of flavors, is the LO coefficient of the QCD
�-function (in units of �16�2). For brevity, we introduce
the notation d
�1� 	 1
 20f=�27�0�, d��1� 	
16f=�27�0�. At the LO, �s�Q2� 	 4�=��0 ln�Q2=�2LO��.

A. DGLAP evolution

In Ref. [30] the results of Ref. [29] were used in order to
obtain an approximate evolution, in LO perturbation the-
ory, under the conditions Aa � Ba (here and in the follow-
ing the index a stands for q or g), so that no interference
appears in the Q2 evolution of the coefficients multiplying
the different powers of the logarithm. Since here we relax
these conditions, it is interesting to present the new ex-
pressions for fq and fg.

The method of solution adopted in Ref. [29] can be
summarized as follows. Starting from the exact solution
in the moment space, the anomalous dimensions and the
coefficient functions are expanded in the neighborhood of
n 	 1. The singular part, when n ! 1, leads to Bessel
functions but, in order to achieve the accuracy O���, also
the regular part must be properly taken into account in the
inverse Mellin transform.

By analogy with Ref. [29], it is possible to obtain the
small-x asymptotic results for parton distribution functions
(PDFs) and the F2 structure function at LO of perturbation
theory by setting

fa�x;Q2� 	 f

a �x;Q2� 
 f�

a �x;Q2�; (4)

where

f�
a �x;Q2� 	

�
A�
a 
 B�

a ln
�
1

x

��
� e�d��1�t 
 O�x�; (5)

f

q �x;Q2� 	 �A


q �I1��� 
 B

q I0���� � e�d
�1�t

� �1
 O����; (6)
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f

g �x;Q2�	

�
A

g I0���
B


g
1

�
I1���

�
�e�d
�1�t � �1
O����:

(7)

Here, In�z� are modified Bessel functions and the coeffi-
cients A�

a and B�
a are defined as

B�
q 	Bq; B�

g 	�
4

9
Bq; A�

q 	Aq�
f
9

�
Bg


4

9
Bq

�
;

A�
g 	�

4

9
Aq�

2

27

��
1�

7f
27

�
Bq�

2f
3
Bg

�
;

B

g 	Bg


4

9
Bq; B


q 	
f
9

�
Bg


4

9
Bq

�
;

A

g 	Ag


4

9
Aq


2

27

��
1�

7f
27

�
Bq�

2f
3
Bg

�
;

A

q 	

f
9

�
Ag


4

9
Aq�

1

6

�
1


7f
27

�
Bg�

4f
243

Bq

�
:

(8)
B. Shadowing and antishadowing corrections

According to Ref. [24], sea quark and gluon distribu-
tions are modified by the introduction of gluon recombi-
nation as stated by the following modified DGLAP
equations:

dffulla �x;Q2�

d lnQ2
	

X
b	q;g

PAP
ab �x� � ffullb �x;Q2� 


�2s
Q2

�

�
K1

Z x

x=2

dy
y
Fag

�
x
y

�
�ffullg �y;Q2��2

� K2
Z 1=2

x

dy
y
Fag

�
x
y

�
�ffullg �y;Q2��2

�
:

(9)

Here PAP
ab �x� are the Altarelli-Parisi kernels, � stands for

the Mellin convolution, defined as

A�x� � B�x� 	
Z 1

x

dy
y
A
�
x
y

�
B�y�;

and

Fgg�x� 	 27
64�2� x��99� 136x 
 132x2 � 64x3 
 16x4�;

(10)

Fqg�x� 	
x
48

�2� x��36� 60x 
 49x2 � 14x3�: (11)

In Ref. [24] it was set K1 	 K2 	 K and from a fit of the
HERA data the resulting value for K in the evolution
equations of Ref. [24] turned out to be very small, K 	
0:0014. We will come back to this point in Sec. III A.
The introduction of two parameters, K1 and K2, allows a
clearer check of the importance of the antishadowing,
with respect to the shadowing contribution. Moreover,
they give the possibility to relate models introduced in
Refs. [1,2,23,24] (see Sec. III A).
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Since K1 and K2 are expected to be small numbers, the
solution of Eq. (9) can be written as

ffulla �x;Q2� 	 fa�x;Q
2� 
 Ta�x;Q

2�; (12)

where

dfa�x;Q2�

d lnQ2
	

X
b	q;g

PAP
ab �x� � fb�x;Q2� (13)

and

dTa�x;Q2�

d lnQ2
	

X
b	q;g

PAP
ab �x� � Tb�x;Q2� 
 �sRa�x;Q2�;

(14)

with

Ra�x;Q2� 	
�s

Q2

�
K1

Z x

x=2

dy
y
Fag

�
x
y

�
�fg�y;Q2��2

� K2
Z 1=2

x

dy
y
Fag

�
x
y

�
�fg�y;Q2��2

�
: (15)

Finally, the sea quark distribution is

xS�x;Q2� 	 ffullq �x;Q2�:

We note that in the integrands at the right-hand side of
Eq. (15) fg appears instead of ffullg . This amounts to
neglect terms which are of order K2 or higher or, equiv-
alently, terms of twist-6 or higher. This is consistent with
our approach, where only twist-4 recombination effects
were considered. Moreover, we anticipate here that we
checked numerically a posteriori that the neglected terms
in the right-hand side of Eq. (15) are indeed unimportant in
our analysis.

C. Small-x solution of the complete equations

The solution of Eq. (13) with the boundary condition (2)
has been found already and is expressed in Eqs. (4)–(7).
This result has been obtained directly from the correspond-
ing solution in the moment space (see Ref. [29]). In order
to simplify the solution of the complete equations, we set in
the following Bq 	 Bg 	 0. Then our solution (5)–(7)
assumes the simple form

f�
a �x;Q2� 	 A�

a � e�d��1�t 
O�x�; (16)

f

q �x;Q2� 	 A


q �I1��� � e�d
�1�t � �1
O����; (17)

f

g �x;Q2� 	 A


g I0��� � e�d
�1�t � �1
 O����: (18)

Equation (14) can be rewritten in the moment space, using
the Mellin transform defined as

M�n� 	
Z 1

0
dxxn�2M�x�:

In the leading logarithmic approximation we obtain
-3
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dTa�n;Q2�
dt

	 �
X

b	q;g

dabTb�n;Q2� 
 ra�n;Q2�; (19)

where dab�n� 	 *�0�
ab�n�=�2�0� is the ratio between the

anomalous dimension *�0�
ab and twice �0 and ra�n;Q

2� 	
4�Ra�n;Q

2�=�0, with Ra�n;Q
2� the Mellin moment of

Ra�x;Q
2�. The solution of Eq. (19) can be written in the

form

Ta�n;Q2� 	 T

a �n;Q2� 
 T�

a �n;Q2�;

T�
a �n;Q2� 	 �

Z 1

t
dwed��w�t�

X
b	q;g

,�
abrb�n;M

2�;

(20)

where

w 	 ln
�
ln�M2=�2LO�

ln�Q20=�
2
LO�

�
;

d��n� are the eigenvalues of the dab matrix and ,�
ab�n� are

related to the components of the eigenvectors of the same
matrix. Explicitly, we have

T�
q �n;Q2�	�

Z 1

t
dwed��w�t��-rq�n;M2�
 ~-rg�n;M2��;

T

q �n;Q2�	�

Z 1

t
dwed
�w�t���1�-�rq�n;M

2�

� ~-rg�n;M
2��;

T�
g �n;Q2�	�

Z 1

t
dwed��w�t���1�-�rg�n;M

2�


,rq�n;M2��;

T

g �n;Q2�	�

Z 1

t
dwed
�w�t��-rg�n;M2��,rq�n;M2��;

(21)

where ,�
ab have been expressed in terms of -; ~- and ,,

which take the following values for n ! 1:

- 	 1�
4f
81

�n � 1�; ~- 	 �
f
9

�n � 1�;

, 	 �
4

9
:

(22)

The evaluation of the Mellin moments of Ra�x;Q2�
requires particular care, since the integrals appearing in
Eq. (15) are not exact Mellin convolutions. If we make the
position

M�nj1=2� 	
Z 1=2

0
dxxn�2M�x�;

we have, in addition to the usual Mellin convolution

Z 1

0
xn�2dx

Z 1

x

dy
y
M1

�
x
y

�
M2�y� 	 M1�n�M2�n�; (23)

also the following one:
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Z 1

0
xn�2dx

Z 1=2

x=2

dy
y
~M1

�
x
2y

�
M2�y�

	 2n�1 ~M1�n�M2�nj1=2�; (24)

where the definition ~M1�x� � M1�2x� is used hereafter.
Now, in order to calculate the Mellin moments of
Ra�x;Q

2� in Eq. (15), we should find a relation between
the ‘‘Mellin transforms’’ f2�n� and f2�nj1=2�, defined as

f2�n� 	
Z 1

0
dxxn�2f2g�x�; (25)

f2�nj1=2� 	
Z 1=2

0
dxxn�2f2g�x�: (26)

This relation is

f2�nj1=2� 	 f2�n� 
 O��n� 1�2�; (27)

the proof being given in Appendix A.
Then, the contributions to the Mellin transform of

Ra�x;Q2� which are regular for n ! 1 assume the form
(the upper index �r�, here and in the following, stands for
‘‘regular contribution’’)

� ~F�r�
ag�n� � F�r�

ag�n��f2�n�; (28)

for the coefficient of K1 and

F�r�
ag�n�f2�n�; (29)

for the coefficient of K2, where [see also Eqs. (23) and
(24)]

F�r�
ag�n� 	

Z 1

0
dxxn�2F�r�

ag�x�;

~F�r�
ag�n� 	

Z 1

0
dxxn�2 ~F�r�

ag�x� 	
Z 1

0
dxxn�2F�r�

ag�2x�;
(30)

since by definition F�r�
ag�x� � ~F�r�

ag�x=2�.
Note that F�r�

qg�x� 	 Fqg�x�, because the Mellin moments
of Fqg�x� have no singular part, and

F�r�
gg�x� 	 27

64��99x� 4x�2� x��34� 33x 
 16x2 � 4x3��:

(31)

By performing the Mellin integrals in Eqs. (30), we find

F�r�
qg�n 	 1� 	 1813

2880;
~F�r�
qg�n 	 1� 	 131

180;

F�r�
gg�n 	 1� 	 �31977

320 ;
~F�r�
gg�n 	 1� 	 �23877

160 :
(32)

In this way we obtain from Eqs. (15), (28), and (29)

Rq�n!1;M2�	

�
283

2880
K1�

1813

2880
K2

�

�
�s�M2�

M2 f2�n!1;M2�; (33)
-4
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Rg�n ! 1;M2� 	 9
��
297

32
ln2�

1753

320

�
K1

�

�
297

32

1

n � 1
�
3553

320

�
K2

�

�
�s�M2�

M2 f2�n ! 1;M2� (34)

and, from Eqs. (21),

T�
a �n ! 1; Q2� 	 �

Z 1

Q2

dM2

�M2�2
C�
ag�n ! 1�f2�n ! 1;M2�

�
��s�Q2��d��n!1�

��s�M
2��d��n!1��2

: (35)

Here C�
ag�n ! 1� are the ‘‘coefficient functions’’ of the

twist-4 corrections, because

Ra�n ! 1; Q2� 	
�s�Q

2�

Q2
Cag�n ! 1�f2�n ! 1; Q2�;

Cag�n ! 1� 	 C

ag�n ! 1� 
 C�

ag�n ! 1�;
(36)

i.e., they are the coefficients in front of the Mellin moments
of the function f2g�x�. They can be written as

C�
ag�n ! 1� 	 C1;�ag K1 � C2;�ag K2 (37)

and the definitions Ci;�
ag �n ! 1� � Ci;�

ag �i 	 1; 2� have
been introduced for the sake of simplicity. The coefficients
Ci;�
ag are given in Appendix B.
The solution (35) in the moment space can be trans-

formed to the x-space. Note that the product of moments in
Eq. (35) leads to the convolution

M1�n� � M2�n� !
M�1 Z 1

x

dy
y
M1

�
x
y

�
M2�y� � M1�x� � M2�x�

(38)

in the x-space. As in the case of the moment space,
Ta�x;Q

2� can be represented as the combination of the
‘‘
’’ and ‘‘�’’ components:

Ta�x;Q2� 	 T

a �x;Q2� 
 T�

a �x;Q2�; (39)

which can be obtained from the corresponding components
in Eq. (35) by an inverse Mellin transformation.

As for the ‘‘�’’ component, we note that the value d��n�
does not contain any singularity for n ! 1, hence (here-
after v 	 w � t)

ed��n�v � ed��1�v !
M�1

ed��1�v1�1� x� (40)

[here 1�1� x� is the Dirac 1-function], so that

C�
aged��1��w�t�f2�n ! 1;M2� !

M�1

C�
aged��1��w�t�f2g�x;M2�:

(41)

As for the ‘‘
’’ component, we have d
�n� 	 d̂
=�n �

1� 
 d
�n�, with d̂
 < 0, hence
033002
1

n � 1
ed̂
v=�n�1� 	

X1
k	0

1

k!
�d̂
v�k

�n � 1�k
1

!
M�1 X1

k	0

1

�k!�2
�d̂
v�k

�
ln
1

x

�
k

	 J0�~��; (42)

ed̂
v=�n�1� 	
X1
k	0

1

k!
�d̂
v�k

�n�1�k

!
M�1

1�1�x��
X1
k	0

1

k!�k�1�!
�d̂
v�k

�
ln
1

x

�
k�1

	1�1�x�� ~�J1�~��; (43)

where

�̂ 	
�̂

2 ln�1=x�
; �̂ 	 � with t ! w; (44)

~� 	
~�

2 ln�1=x�
; ~� 	 � with t ! �w� t� (45)

and w 	 t when Q2 ! M2, i.e.,

w 	 ln

 
�s�Q20�

�s�M2�

!
	 ln

 
ln�M2=�2LO�

ln�Q20=�
2
LO�

!
; (46)

w� t 	 ln

 
�s�Q

2�

�s�M
2�

!
	 ln

 
ln�M2=�2LO�

ln�Q2=�2LO�

!
: (47)

As a consequence

C

qg�n 	 1�ed̂
�w�t�=�n�1�ed
�1��w�t�f2�n ! 1;M2�

!
M�1

C

qg�n 	 1�ed
�1��w�t� ~F1; (48)

�
Ĉ

gg

1

n�1

C


gg�n	1�
�
ed̂
�w�t�=�n�1�ed
�1��w�t�

�f2�n!1;M2�

!
M�1

�Ĉ

gg
~F2
C


gg�n	1� ~F1�e
d
�1��w�t�; (49)

where

~F1 	
Z 1

x

�
dy
y
1�1� y� � ~��y�J1�~��y��

�
f2g�x=y;M2�

� �1�1� x� � ~�J1�~��� � f2g�x;M
2�; (50)

~F 2 	
Z 1

x

dy
y
J0�~��y��f2g�x=y;M2� � J0�~�� � f2g�x;M2�:

(51)

Thus,
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T�
a �x;Q2� 	 �

Z 1

Q2

dM2

�M2�2
�K1 � C1;�ag � K2 � C2;�ag �

� �fg�x;M2��2
��s�Q

2��d��1�

��s�M2��d��1��2
; (52)

T

q �x;Q2� 	 �

Z 1

Q2

dM2

�M2�2
�K1 � C1;
qg � K2 � C2;
qg �

� ~F1
��s�Q

2��d
�1�

��s�M
2��d
�1��2

; (53)

T

g �x;Q2� 	 �

Z 1

Q2

dM2

�M2�2
�K1 � C1;
gg ~F1 � K2

� �Ĉ2;
gg ~F2 
 C2;
gg ~F1��
��s�Q2��d
�1�

��s�M2��d
�1��2
: (54)

The above formulas complete our calculation of the gluon
recombination terms.

D. Evaluation of ~F1 and ~F2 at O���

The functions ~F1 and ~F2 can be evaluated approxi-
mately. Note that we can write

~F1 	 ~F��
1 
 2 ~F
�

1 
 ~F


1 ;

~F2 	 ~F��
2 
 2 ~F
�

2 
 ~F


2 ;

(55)

according to the decomposition [see Eq. (4)]

f2g�x;M
2� 	 �f�

g �x;M2��2 
 2f

g �x;M2�f�

g �x;M2�


 �f

g �x;M2��2:

The details of the complete calculation, at order O��� and
with Bq 	 Bg 	 0, will be given in Appendix C. Here we
present only the results.

For the ‘‘��’’ component we find

~F ��
1 	 �A�

g �2J0�~�� � e�2d��1�w�1
 O����; (56)

~F ��
2 	 �A�

g �2
1

~�
J1�~�� � e�2d��1�w�1
 O����; (57)

while the result for the ‘‘
�’’ component is

~F
�
1 � �~�J1�~�� � �f


g �x;M2�f�
g �x;M2��

	 A�
g A


g I0��� � e��d��1�
d
�1��w�1
 O����; (58)

~F
�
2 � J0�~�� � �f


g �x;M2�f�
g �x;M2��

	 A�
g A


g
1

�
I1��� � e��d��1�
d
�1��w�1
 O��2��: (59)

The term corresponding to the component ‘‘

’’ requires
a more involved treatment. As shown in Appendix C, one
obtains
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~F


1 ��1�1�x�� ~�J1�~�����f


g �x;M2��2

	�A

g �2I0�zy1=2�I0� �zy1=2� �e�2d
�1�w � �1
O���� (60)

and

~F


2 � J0�~�� � �f


g �x;M2��2

	 �A

g �2

1

2
��������
��

p y1=2�zI0� �zy1=2�I1�zy1=2�

� �zI0�zy
1=2�I1� �zy

1=2�� � e�2d
�1�w � �1
 O��2��;

(61)

where y 	 � log�x�, z 	 �1=2 
 ij�1=2j, with � 	

�d̂
�3w
 t� and � 	 �d̂
�t� w�, and �z is the complex
conjugate of z.

These approximations do not make the integrations in
Eqs. (53) and (54) avoidable, but greatly simplify the
analytic structure of the answer.
III. THE NEUTRINO-NUCLEON CROSS SECTION

A. The fitting procedure

We consider the parton distribution functions from the
ZEUS Collaboration [38] in the region 2:5 GeV2 � Q2 �
20 GeV2, for values of x in the range 10�4 � x � 5�
10�3, where the ZEUS NLO fit favorably compares with
existing HERA data. From the parton distributions it is
possible to reconstruct the isoscalar structure function
2xF1 for neutrino-nucleon scattering

2xF	N
1 �x� ’ 2xF �	N1 �x�

’ xu�x� 
 x �u�x� 
 xd�x� 
 x �d�x�


 2xs�x� 
 2xc�x� 
 . . . (62)

where . . . stands for b and t quarks and we have assumed
s 	 �s and c 	 �c. At the LO F2�x� 	 2xF1�x� and the
difference between the two structure functions decreases
when Q2 increases. Parton distribution functions are
needed at any rate; the knowledge of the experimental
F‘N
2 must in fact be supplemented by PDFs since

F	N
2 	 18

5F
‘N
2 
 6

5�xs� xc� 
 . . .

For the Q2 values under consideration, there are no
CCFR data [39] below x 	 0:0125 and the comparison
between our fit and F2 measurements in the process �	7 

�	7� 
 nucleon ! �7� 
 7
� 
 X is impossible. A single
high energy HERA data point [40] for the process e�p !
	eX, with p? > 25 GeV, gives � 	 55� 15 pb at

���
s

p
	

296 GeV. This means for the neutrino-nucleon cross sec-
tion a value of �2:0� 0:55� � 10�34 cm2 at

���
s

p
	

306:4 GeV.
The possibility to test other saturation models, such as

that of Ref. [1], relies on the presence of two different
coefficients K1 and K2 for shadowing and antishadowing
contributions. In the following, we set K1 	 K2 	 K, as in
-6
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FIG. 1. Comparison at Q2 	 50 GeV2 between F	N
2 �x;Q2� as

obtained from the ZEUS PDFs [38] and from our theoretical
calculation (the vertical bars represent the uncertainties coming
from the error in the fitted parameters). The values of the
parameters of Eqs. (63) entering our results were obtained by
a fit performed in the region 2:5 GeV2 � Q2 � 20 GeV2,
10�4 � x � 5� 10�3.
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Ref. [24], thus reducing the number of parameters in our
approach and the related errors. Then, the free parameters
become �LO; f; Q0; Aq; Ag; K. We choose to fix f 	 4, as
in Ref. [31], and�LO 	 0:19 GeV. The remaining parame-
ters should be determined by a fit. There is one more
parameter to be considered, namely, the ‘‘mean power’’
	 of the factor �1� x� present in F	N

2 �x;Q2�. The term
�1� x�	 will be considered, for the sake of simplicity, only
at the end of the calculation and will not evolve in our
model. This will surely affect the result, but, since we are
interested in the total cross section at very high energy, and
hence at hxi very small, the error should not influence too
much the result.

The values of the parameters Q0 and K can be estimated
from other sources. In the paper by W. Zhu et al. [24] a fit
to the HERA small-x data for Fep

2 has been performed
starting from GRV-like [41] input distributions at Q20 	

0:34 GeV2. MD-DGLAP evolution equations [24] deter-
mine new parameters for the sea quark distributions at Q20,
with respect to GRV98LO [41], and give for the nonlinear
coefficient K the value K 	 0:0014.

On the other hand, the fit of Ref. [31] imposes a con-
straint on the parameter Q0. This constraint originates from
the conditions of applicability of the ‘‘generalized double
asymptotic scaling,’’ that gives a satisfactory description of
the experimental data in a region Q2 >Q2cut, where Q2cut is
a cutoff larger than Q20. For small x and large Q2 values it is
reasonable to neglect the valence quarks and the disagree-
ment at small Q2 is a consequence of this approximation.
The value of Q20 in this approach, that we follow in our
paper, turns out to be rather small and, for the LO fit, it is
approximately Q20 � 0:3� 0:4 GeV2. This value of Q20 has
been obtained by fitting HERA data with higher-twist
contribution evaluated in the renormalon model [42].

At this point it can be useful to remember that the
purpose of this calculation is to reproduce the neutrino-
nucleon cross section at very high energy, where presum-
ably valence quarks do not contribute. Looking at
Ref. [19], in particular, at the Fig. 2 in this paper, one
sees that the valence quark contribution to the total 	N
charged-current cross section is larger than the u and d sea
quarks contribution up to the energy E	 � 105 GeV.
Hence we cannot rely on the H1 Collaboration data point
at E	 � 5� 104 GeV and we expect that our model can be
trusted only at higher energies.

B. Results

We have reconstructed the structure function F	N
2 �x;Q2�

from the ZEUS PDFs [38] and performed a fit to the
asymptotic formula for F	N

2 �x;Q2� 	 ffullq �x;Q2�, where
ffullq �x;Q2� has been defined in Eq. (12) and the ingredients
for calculating it have been given in Sec. II. Basing our-
selves on the arguments of Ref. [31], we impose an upper
bound on Q20, Q

2
0 � 0:45 GeV2, and consider separately
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two possible values for the mean power 	 of the factor �1�
x�: 	 	 4 or 	 	 5. The lowest <2=d:o:f: for this con-
strained fit has been obtained having chosen Q20 	
0:45 GeV2 and 	 	 4, with the result (<2=d:o:f: 	 0:553)

Aq 	 1:002�39� Ag 	 0:565�29�

K 	 0:0130�49�:
(63)

There are several reasons why the parameter K in (63) is
much larger than the corresponding result in Ref. [24].
First of all, the change from the leptonic structure function
of Ref. [24] to the neutrino one requires a factor near to
18=5 that affects also the coefficient K. In addition, our fit
shows that there is a strong correlation between the starting
value of Q2, i.e., Q20, and the value of K, which turns out to
increase with Q20. These reasons suffice to say that, within
errors, our result is compatible with that of Ref. [24].

In order to test our solution, we have calculated
F	N
2 �x;Q2� from the ZEUS PDFs [38] at Q2 	 50 GeV2

and compared with our theoretical result. The percentage
error at x 	 10�4 is nearly 2% and is of the same order of
magnitude in the whole range of x: 10�4 � x � 5� 10�3

(see Fig. 1).
Another test of this model regards the slope

dF	N
2 �x;Q2�=d lnQ2. As noticed in Ref. [25], higher-twist

effects are more easily revealed in the slope than in
F2�x;Q

2�. Since in Ref. [25] it was stated that one cannot
rely on the DLLA for the calculation of the twist-4 con-
tributions, a critical examination of our approximation
becomes important. It is easy to write in our approach
(see Secs. II B and II C)
-7
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dF	N
2 �x;Q2�

d lnQ2
	

dffullq �x;Q2�

d lnQ2
�
dfq�x;Q2�

d lnQ2



�2s
Q2

K
�
�
17

32
f2g�x;Q2�

�
: (64)

In Fig. 2 we show the behavior of the slope as a function of
x for Q2 	 10 GeV2 in the range 10�10 � x � 10�3 ac-
cording to our theoretical results, with the parameters
given in Eqs. (63). A similar behavior is observed for other
values of Q2 in the range 2:5 GeV2 � Q2 � 20 GeV2.
From this Figure it is possible to see the higher-twist
effects and to have the idea of the uncertainty resulting
from the errors on the fitted parameters.

Finally, we consider the total cross section. With the
usual notation, we can write for charged-current neutrino
interactions�
d�
dxdy

�
	
	
G2FME	

�

�
M2

W

Q2
M2
W

�
2
�
1
�1�y�2

2
F	N
2 �x;Q2�




�
1�

y
2

�
yxF	N

3 �x;Q2�
�
: (65)

For antineutrino charged-current processes one must
change the sign in front of F	N

3 �x;Q2�. In Eq. (65), GF is
the Fermi constant, M is the nucleon mass and the variable
y is related to the Bjorken x through the relation

y 	
Q2

x�s �M2�
’
Q2

xs
: (66)

The laboratory neutrino energy E	 	 �s �M2�=�2M� is
approximately s=�2M� in the energy region of interest.
The F2 contribution to the total cross section can be written
in the form
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FIG. 2. Slope dF	N
2 �x;Q2�=d lnQ2 at Q2 	 10 GeV2 accord-

ing to our results. The uncertainties on the data come from the
errors in the values of the fitted parameters of Eq. (63).
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��	N �
�	N 
 � �	N

2

	
G2F
2�

Z s

Q20

dQ2
�

M2
W

Q2 
 M2
W

�
2 Z 1

Q2=s

dx
x

�
1
 �1�Q2=�xs��2

2
F	N
2 �x;Q2� (67)

and the formulas obtained for the F	N
2 �x;Q2� allow the

evaluation of ��	N that, for large s, is a good approximation
for the total 	N charged-current cross section.

In Fig. 3 we show the behavior of ��	N as a function of s,
in the range 104 GeV2 � s � 1014 GeV2. The relative
error is 4.4% at s 	 104 GeV2 and 14.0% at s 	
1012 GeV2. For comparison we draw on the same plot
the results obtained in Ref. [18] and in Ref. [19] as well
as the HERA measurement at

���
s

p
	 306:42 GeV. At this

value of s our estimate of the cross section is much lower
than the H1 data point. However, this is not surprising in
view of the fact that we neglected valence quarks, which
still can play a residual role at these relatively small values
of s. For larger values of s, our results nicely compare with
those of Refs. [18,19], showing good agreement till s �
1013 GeV2. For even larger values of s the effect of higher-
twist starts to become visible.

These findings support the conclusion that our approach,
based on an asymptotic calculation, succeeded in singling
out the relevant part of the cross section.

In order to make the higher-twist effects more visible,
we determined also ��	N without considering the recombi-
nation terms in the evolution equations, i.e., with K 	 0
from the beginning. In this case the fitted parameters turn
-8
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to be Aq 	 1:040�36� and Ag 	 0:548�28� (<2=d:o:f:	
0:665). In Fig. 4 we compare our results for ��	N with
and without the inclusion of the recombination effect.
The higher-twist effects become visible for s	1013 GeV2.
IV. CONCLUSIONS

Twist-4 corrections to the structure function F2 have
been estimated at small x in leading order QCD following
the method developed in Ref. [29]. This estimate leads to
an analytical parametrization for the gluon recombination
effects and completes, in this respect, the program outlined
in our previous paper [30], where an approximate QCD
evolution at twist-2 was presented.

Our approach to the saturation phenomenon follows the
scheme proposed in Ref. [23]. The nonlinear evolution
equations we study are the MD-DGLAP equations [24],
where momentum conservation gives rise to an antisha-
dowing term that influences appreciably the screening
effects. A compact and analytical solution of these equa-
tions at small x is possible only if some conditions are
satisfied. The most relevant of these conditions regards the
input parton distributions that must be flat. The proof of
Eq. (27), which allows a simple treatment of the gluon
recombination terms, requires this assumption. Moreover,
the kernels in the MD-DGLAP equations are given in
leading order of perturbation theory and this approxima-
tion reflects on our approach. In spite of these assumptions
and approximations, the results are satisfactory. Examples
of the Q2 evolution and of the behavior of the slope
dF2=d lnQ

2, shown in Figs. 1 and 2, make us confident
on the accuracy of the method.

The most interesting application of our simplified for-
mulas is, in our opinion, the study of the interaction of
033002
ultrahigh energy cosmic neutrinos with nucleons. This
process can probe an energy region far beyond the largest
energy reached by existing accelerators. The simplified and
reasonable expressions for the structure function F	N

2 , dis-
posable in this paper, renders the evaluation of the
neutrino-nucleon cross section and the estimate of the
twist-4 contributions simpler and more transparent. Our
result for the cross section, shown in Fig. 3, is in perfect
agreement with the calculations of other models and, only
above s 	 1013 GeV2 (E	 ’ 5:3� 1012 GeV), the effect
of twist-4 gluon recombination becomes visible. The
Froissart limit will be eventually satisfied, but in a region
where the complete solution for the gluon distribution
becomes necessary.

It is quite possible, at such high energies, to simplify
further the integrals leading to the 	N cross section. Work
on this problem is in progress.

We stress, finally, that there is a lower limit on the energy
range where our formulas are valid, since we neglected the
contribution from valence quarks—see the discussion at
the end of Sec. III B. As shown in Fig. 2 of Ref. [19], the
contribution of valence quarks becomes 1=10 of the total
cross section for s ’ 106 GeV2. Therefore, our approach
cannot be valid for values of s much smaller than this
value. Our Fig. 3 indeed shows that our results for the total
cross section are in agreement with those of Refs. [18,19]
for values of s � 106 GeV2. For smaller values of s our
results turn out to be expectedly smaller (by a factor of
about 2.5 at s 	 104 GeV2).
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APPENDIX A: PROOF OF EQ. (27)

We consider separately the three terms coming from the
decomposition f2g 	 �f�

g �2 
 2f�
g f


g 
 �f

g �2, which will

be named in the following ‘‘
 
 ,’’ ‘‘
�’’ and ‘‘��’’
components, respectively. Moreover, we will use the nota-

tion !
M

to denote the Mellin transform and !
M�1

to denote the
inverse Mellin transform.
(a) F
-9
or the ‘‘��’’ component (hereafter A is arbitrary)
we get

Z 1=A

x

dy
y

�f�
g �y��2�

Z 1=A

x

dy
y

	 ln
1

x
� lnA�

�
ln
1

x
� lnA

�

��f�
g �x��2!

M
�
1

n�1
� lnA

�
f��
2 �n�; (A1)



R. FIORE ET AL. PHYSICAL REVIEW D 71, 033002 (2005)
where we have used the definition

fij2 �n�	
Z 1

0
dxxn�2fig�x�f

j
g�x� �i;j	��: (A2)

The same argument givesZ 1=A

x=2

dy
y

�f�
g �y��2 �

Z 1=A

x=2

dy
y

	 ln
2

x
� lnA�

�
ln
2

x
� lnA

�
�f�

g �x��2

!
M
�
1

n � 1

 ln2� lnA

�
f��
2 �n�: (A3)

Then, from Eqs. (A1) and (A3) we obtainZ x

x=2

dy
y

�f�
g �y��2	 ln2�f�

g �x��2!
M
ln2f��

2 �n�: (A4)
(b) F
or the ‘‘
�’’ component (hereafter z 	 ln�1=y�
and  	 jd̂ggjt) we getZ 1=A

x

dy
y
f

g �y�f�

g �y� �
Z 1=A

x

dy
y
I0���y��

	
Z ln�1=x�

lnA
dz

X1
k	0

 kzk

�k!�2

	
X1
k	0

 k

k!�k
 1�!

��
ln
1

x

�
k
1

� �lnA�k
1
�

	
1

�
I1��� �

1

�A
I1��A�

	
1

�
I1��� � �1
 O��2��

!
M
�
1

n� 1

 O�n � 1�

�
f
�
2 �n�; (A5)

where

�A 	 �jx!1=A; �A 	 �jx!1=A: (A6)

Similarly, we obtainZ 1=A

x=2

dy
y
f

g �y�f�

g �y��
1

�2
I1��2��

1

�A
I1��A�; (A7)

where
�2 	 �jx!x=2; �2 	 �jx!x=2; (A8)

Note that
1

�2
I1��2� 	

X1
k	0

 k

k!�k 
 1�!

�
ln
2

x

�
k
1

	
X1
k	0

 k

k!�k 
 1�!

��
ln
1

x

�
k
1


 �k 
 1� ln2
�
ln
1

x

�
k

 O

��
ln
1

x

�
k�1

��

	
1

�
I1��� 
 ln2I0��� � �1
O����: (A9)

Then we arrive at
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Z 1=A

x=2

dy
y
f

g �y�f�

g �y��
1

�
I1���
 ln2I0���

� �1
O����

!
M
�
1

n�1

 ln2
O�n�1�

�
�f
�

2 �n�: (A10)

Finally, from Eqs. (A5) and (A10), we obtainZ x

x=2

dy
y
f

g �y�f�

g �y� 	 ln2f

g �x�f�

g �x� � �1
O����

!
M

�ln2
 O�n� 1��f
�
2 �n�:

(A11)
(c) F
or the ‘‘

’’ component we getZ 1=A

x

dy
y

�f

g �y��2 �

Z 1=A

x

dy
y
I20���y��

	
Z ln�1=x�

lnA
dzI20���z��

	
1

�
I1���I0��� � �1
O��2��

�
Z ln�1=x�

lnA
dzI21���z��; (A12)

where we have used the integration by parts and the
results from the previous case (b).
Since, for � ! 1, I1��� 	 I0��� � �1
 O����, we
haveZ 1=A

x

dy
y

�f

g �y��2 �

1

2�
I1���I0���

� �1
 O��2��

!
M
�
1

n� 1

 O�n � 1�

�
f


2 �n�:

(A13)

In the same way, we obtainZ 1=A

x=2

dy
y

�f

g �y��2 �

1

2�2
I1��2�I0��2� � �1
 O��2��

	
1

2�
I1���I0��� 
 ln2I20��� � �1
 O����

!
M
�
1

n� 1

 ln2
 O�n � 1�

�
f


2 �n� (A14)

and, from Eqs. (A13) and (A14),Z x

x=2

dy
y

�f

g �y��2 	 ln2�f


g �2 � �1
O����

!
M

�ln2
 O�n � 1��f


2 �n�: (A15)

Finally we get
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Z 1=A

x

dy
y
f2g�y� 	

Z 1

x

dy
y
f2g�y� � �1
O��2��

� lnA�f�
g �x��2

	
Z 1

x

dy
y
f2g�y� � �1
O��2��

!
M
�
1

n � 1
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because [see Eqs. (16) and (18)]
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Thus, the result of (A16) does not depend on the
specific value of A. Analogously we findZ 1=A
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By comparing Eq. (A18) for A 	 2 and Eq. (24), we
get
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and conclude that
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This completes the proof of Eq. (27).
Equation (A20) is very important and helps us to
sum the regular parts of Fag�x�. We should remem-
ber, however, that this result holds only for
x-independent input distributions, that is for Bq 	
Bg 	 0 in Eq. (2).
Comparing Eqs. (A4), (A11), and (A15), we get
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APPENDIX B: THE COEFFICIENTS Ci;�
ag

Here we give the explicit values of the coefficients
Ci;�
ag �n 	 1� � Ci;�

ag appearing in Eqs. (35) and (37):
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For the coefficient C2;
gg one must consider separately the
singular and regular part,
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APPENDIX C: PROOF OF THE SIMPLIFIED FORM
FOR THE FUNCTIONS ~F1 AND ~F2

The validity of the simplified form for the functions ~F1
and ~F2, given in Eqs. (56)–(61), is based on the following
estimates. As in Appendix A, we consider separately the
three components of the functions ~F1 and ~F2 given in
Eq. (55).
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Then [see Eqs. (42) and (43)] we have
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Note that
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In the same way we obtain
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Thus, we get
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(c) F
inally, let us consider the ‘‘

’’ component. The
problem of finding the small-x behavior of J0�~�� �
I20��̂� can be solved as follows. From the tables of
the inverse Mellin transforms in Ref. [43], we obtainZ 1
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where y 	 � logx and Re	 > �1, Re* > 0.
Equation (C11) gives, for� 	 	 	 0,� 	 �4d̂ggw
and * 	 n� 1, the Mellin transform of I20��̂�:

I20��̂�!
M 1

n � 1
e�2d̂
w=�n�1�I0

�
�2d̂
w
n � 1

�
: (C12)

The same result can be obtained in an alternative
way by performing the Mellin transform of the
series
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From this first step we get
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and the inverse Mellin transform of the right hand
side of (C13) will be the final answer for ~F



2 [apart
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from the overall factor �A

g �2].

We consider now Eq. (C11) for 	 	 0. By taking the
sum of the derivative of Eq. (C11) with respect to �
with its derivative with respect to �, we obtain the
important formula
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where, as before, * � n � 1 and y 	 � logx. With
the substitutions
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Equation (C14) provides the final answer, since the
coefficient of x*�1 in the integral at the left hand
side gives the required inverse Mellin transform.
A similar procedure can be applied to determine
~�J1�~�� � I20��̂�, which is needed to calculate ~F



1 ,
starting from the formula (C11), with the same
values of the parameters � and � as in (C15) and
y 	 � logx. Notice that �< 0 and hence �1=2 is
pure imaginary.
After introducing, for the sake of simplicity, the
notation z 	 �1=2 
 ij�1=2j, we get
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while, with the same definition of the variables �, �
and y, we get

~F


2 � J0�~�� � �f


g �x;M2��2

	 �A

g �2

1

2
��������
��

p y1=2�zI0��zy1=2�I1�zy1=2�

� �zI0�zy
1=2�I1��zy

1=2�� � e�2d
�1�w

� �1
 O��2��: (C17)
This completes the calculation of the simplified form of
the functions ~F1 and ~F2.
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