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String theories with deformed energy-momentum relations,
and a possible nontachyonic bosonic string
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We consider a prescription for introducing deformed dispersion relations in the bosonic string action.
We find that in a subset of such theories it remains true that the embedding coordinates propagate linearly
on the world sheet. While both the string modes and the center of mass propagate with deformed
dispersion relations, the speed of light remains energy independent. We consider the canonical quantiza-
tion of these strings and find that it is possible to choose theories so that ghost modes still decouple, as
usual. We also find that there are examples where the tachyon is eliminated from the spectrum of the free
bosonic string.
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I. INTRODUCTION

Several experimental and theoretical developments
point to the possibility that the usual relation between
energy and momentum valid within the special theory of
relativity,

E2 � p2 �m2; (1)

may be modified at Planck scales. For instance, the high-
energy cosmic ray anomalies [1,2] may be solved if there
are Planck scale departures from these relations [3–7]. It
has also been shown that one may establish an observer
independent border between the classical and quantum
pictures of space-time [8–10], by means of specially de-
signed deformed dispersion relations.

The usual argument linking these deformations to quan-
tum gravity is simple [10]. The combination of gravity (G),
the quantum ( �h), and relativity (c) gives rise to the Planck
length,

LP �

�������
�hG

c3

s
; (2)

or its inverse, the Planck energy

EP �

��������
�hc5

G

s
: (3)

These scales mark thresholds beyond which the old de-
scription of space-time breaks down and qualitatively new
phenomena are expected to appear. However, the new
theory has to agree with special relativity for experiments
probing the nature of space-time at energy scales much
smaller than EP. The question, then, arises: in whose
reference frame are LP and EP the thresholds for new
phenomena? It is clear that the Lorentz-Fitzgerald contrac-
tion cannot apply all the way down to the Planck scale, if
05=71(2)=026010(6)$23.00 026010
we are to avoid introducing preferred frame in quantum
gravity. A possible way out is the introduction of nonlinear
realizations of the Lorentz group, associated with de-
formed dispersion relations. This possibility, sometimes
called ‘‘doubly special relativity,’’ has been explored in a
number of recent papers [7–10].

The most important reason to investigate this possibility
is that it is an hypothesis that will be testable in experi-
ments to be carried out over the next decade. What if a
combination of low energy and astrophysical experiments
found evidence of this kind of theory, such as energy
dependent speed of light and/or modifications in relativis-
tic energy-momentum conservation laws? What would be
the implications for various candidate quantum theories of
gravity? Given that the relevant experiments are planned, it
is important if the different approaches to quantum gravity
make predictions for their outcomes.

It has recently been shown that this possibility is realized
in the case of quantum gravity coupled to point particles in
2� 1 dimensions [11]. This shows that there are physically
sensible interacting quantum theories of gravity that are
described in terms of deformed dispersion relations. As far
as 3� 1 dimensions are concerned, there are as yet no
definitive results, but there are preliminary indications
[12,13] that such deformations may emerge naturally in
loop quantum gravity [14].

In this paper, we thus take up the question of whether
phenomena associated with deformed dispersion relations
may be realized in a consistent string theory [15–17]. We
consider realizations of deformed dispersion relations in
which Lorentz symmetry is deformed rather than broken.
For simplicity, we study here only the bosonic string.

In Sec. II we present the formalism for introducing
deformed dispersion relations into the action of the bosonic
string. We find that in most cases the vibrational modes do
not linearize; however, there is a large class of examples in
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which they do. We study these in Sec. III and we are able
then to first quantize the theory. Next, we examine the
constraints imposed at the quantum level. In Sec. IV we
study the Virasoro algebra and spectrum of the deformed
strings.

In the following section (Sec. V) we look at three simple
examples. The first employs a simple deformation of the
energy-momentum relations, studied for particles in
Ref. [10], in which there is a maximum invariant mass
(or rest energy, to be more precise). We show that this
remains the case in string theory, so that the rest energies of
the string excitations are bounded from above.

In the next two examples, the deformed energy-
momentum relations are chosen so that the tachyonic
mode of the free bosonic string is eliminated. We find
this an intriguing result, as the possibility of a consistent,
tachyon free bosonic string would obviously be of great
importance for string theory.

II. THE ACTION AND EQUATIONS OF MOTION

It is possible to write the bosonic string action in the
form

S �
Z
d�d�� _xapa � NH �MD�; (4)

where N and M are Lagrange multipliers, H is the
Hamiltonian constraint, and D is the constraint associated
with spatial diffeomorphism invariance on the string.
Together they generate diffeomorphisms on the world
sheet. However, we now write the Hamiltonian constraint
as

H �
f
2T

�abpapb �
Tg
2
�abx

a0xb
0
; (5)

where T is the string tension and the prime represents a
derivative with respect to �. It can be checked that this
action is reparametrization invariant. Here f and g are
functions of the total energy

P 0 �
Z
d�p0 (6)

and are expected to encode all deviations from linear
special relativity. Furthermore,

D �
������
fg

p
pax0a: (7)

With these modifications we can still write the algebra of
constraints as

Ln �
Z
d�ein�2�H �D�

�
Z
d�ein�

 ����
f
T

s
pa �

������
Tg

p
x0a

!
2

: (8)

Notice that the theory we have just proposed is not a
mere redefinition of the string tension. First, f and g multi-
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ply T differently in the various terms of the constraints.
Second, even if one considers each of these terms on its
own, it looks as if the tension is being renormalized by a
factor dependent on the total string energy. The latter is the
zero component of a vector. Thus, such a ‘‘renormalized’’
tension would no longer be a scalar, invariant for all ob-
servers. One may expect a variety of new phenomena/
pathologies to appear, an expectation we shall soon
confirm.

The equations of motion can be found, e.g., from
Hamilton’s equation, and we note that the space and time
coordinates in target space are now to be treated differ-
ently. For the spacial coordinates, we find

_x i �
@H
@pi

�
f
T
pi; (9)

_p i � �
@H
@xi

� Tg@2�xi; (10)

from which we may infer

�x i � fg@2�x
i � 0: (11)

Hence, we find our first result: the xi coordinates satisfy the
wave equation, but the speed of light on the string depends
upon the total energy P0 stored in the string:

cs �
������
fg

p
: (12)

We denote this speed as cs because it is really a speed of
sound, i.e., a speed of propagation of vibrations along the
string. It can be easily proved that P0 remains a constant of
motion for general f and g.

A similar set of equations may be found for the time
target space coordinate,

_x 0 �
@H
@pi

�
f
T
p0 �

f0

2T
p2 �

Tg0

2
x02; (13)

_p 0 � �
@H

@x0
� Tg@2�x0: (14)

As a result, we find that the x0 coordinate in general
satisfies a rather complicated nonlinear equation, coupled
to the xi coordinates. The only exception occurs if f � g.
Then the new terms are proportional to H and so vanish as
a result of the Hamiltonian constraint. Hence, we learn that
the deformations with f � g play a special role in string
theory, as they preserve the equation

�x a � fg@2�xa � 0 (15)

for a � 0; i.
It is very difficult to find solutions in the coupled case.

The bosonic string has become nonlinear and the quanta
travelling along the string interact with each other. This
unpleasant property already plagues standard p-branes
with p > 1.
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In order to build further intuition about the meaning of
the case f � g, in the appendix we consider the analogue
construction for point particles.

III. SOLUTIONS AND CANONICAL
QUANTIZATION

The particular case where the string remains linear is,
therefore, the only one where we shall be able to perform a
full study. In this case, we may introduce light-cone vari-
ables:

�� �
������
fg

p
�� �: (16)

It is important that in this definition the speed of sound
multiplies the coordinate �, rather than divides the coor-
dinate �. In terms of ��, the wave Eq. (15) becomes

@�@�xa � 0: (17)

Its most general solution is

xa � xa �
PaCM
�T

�� v���� � w����; (18)

where xa and PCM
a are center of mass integration constants.

If we consider an open string with � 2 	0; �
, we can
therefore write

xa � xa �
PaCM
�T

��
i�������
�T

p
X
n�0

"a
n

n
e�in

����
fg

p
� cos�n��: (19)

Note that we must have "a
�n � "ay

n , for xa to be real. The
associated string momentum is

pa �
T
f

_xa �
PaCM
�f

�

�������
gT
�f

s X
n�0

"a
ne

�in
����
fg

p
� cos�n��: (20)

We now proceed to canonically quantize this string,
starting from the equal-time commutation relations:

	xa��; ��; pb��
0; ��
 � i#��� �0�#ab: (21)

Using

#��� �0� �
1

�

"
1� 2

X1
n�1

cos�n�� cos�n�0�

#
; (22)

we thus arrive at

	xa;PCM
b 
 � if#ab; (23)

	"a
n; "b

�n
 �

���
f
g

s
n�ab: (24)

The first relation suggests an energy dependent Planck’s
constant, a phenomenon we have found before in nonlinear
realizations of Lorentz invariance [7]. Given that we have
assumed f � g, the second relation leads to trivial defini-
tions of creation and annihilation operators:

"a
n �

���
n

p
aan; (25)
026010
"s
�n �

���
n

p
aayn ; (26)

with

	aan; a
by
m 
 � #mn�ab: (27)

Should f � g, the whole quantization procedure should be
different. One may argue that the extra nonlinear terms
may be seen as an interaction and the system described by
means of an S matrix. If this is true, one should bear in
mind that f=g will still appear in the definition of creation
and annihilation operators and thus in the asymptotic
states.

IV. THE QUANTUM CONSTRAINTS
AND THE SPECTRUM

We now examine the constraints and their enforcement
at quantum level, starting with the Hamiltonian constraint.
Using Eqs. (19) and (20), the Hamiltonian (5) may be
written in terms of the amplitudes "a

n. The quantum
Hamiltonian, however, should contain only normal ordered
"a
n, and so an ordering constant a has to be added at

quantum level. The result is

H �
Z
d�H �

P2
CM

2�fT
�
g
2

 X
n�0

j"a
nj

2 � a

!
: (28)

By setting H � 0, we thus arrive at the string center of
mass dispersion relations:

�abPaCMP
b
CM

fg
� �M2 � 2�T

 
a�

X
n�0

j"a
nj

2

!
: (29)

Given (24), it is convenient to define

%a
n �



g
f

�
1=4
"a
n (30)

so that their algebra is energy independent. It is also
convenient to define

%a
0 �

1

f3=4g1=4
PaCM: (31)

Their algebra is

	xa; %b
0
 � i



f
g

�
1=4
#ab; (32)

	%a
n; %b

m
 � n�ab#n�m: (33)

We then define, as usual,

~M 2 �
X
m>0

%�m%m: (34)

In terms of these, the modified generators of the Virasoro
algebra are

L0 �
1

2�Tf
	P2

CM �
������
fg

p
~M2
; (35)
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Ll �
������
fg

p X
m>0

%l�m%m �
������
fg

p
~Ll; (36)

where ~Ll are, for l � 0, the conventional Viraroso gener-
ators. The algebra is

	Lm; Ln
 �
������
fg

p
�m� n�Lm�n � fg

Dm�m2 � 1�

12
#m�n:

(37)

We see that the anomaly appears to be energy dependent,

c � fg
Dm�m2 �m�

12
: (38)

Of course, as long as fg > 0 for all P0 we can use the
rescaled generators ~Ln � �fg��1=2Ln, which have the con-
ventional Virasoro algebra, with an energy independent
anomaly. However, as we will see shortly, there are inter-
esting cases in which fg vanishes for finite P0. In these
cases, we should be careful about which version of the
Virasoro algebra is defined on the whole space of physical
states.

Now we study the spectrum of the theory. It is most
convenient to define k as

P a
CMj0; ki � kaj0; ki; (39)

as PaCM is in fact by (19) and (20) the quantity that defines
the velocity of the center of mass of the string.

The ground state is defined as usual by Lnj0; ki � 0. The
ground state energy is given by

P 2
CM � k2 � 2�Taf

������
fg

p
; (40)

where a is the usual energy independent constant resulting
from the normal ordering of ~M.

We see from these relations that the spectrum of the
deformed string will be the same as the spectrum for the
ordinary bosonic string, so long as we express momentum
in terms of the nonlinear variable

~p a � f�3=4g�1=4PaCM: (41)

If f
������
fg

p
> 0 and is nonvanishing and nonsingular, all the

standard results on the string spectrum will go through
regarding the elimination of ghosts, the existence of a
tachyon, a � 1, etc. For example, we see directly from
(40) that so long as f

������
fg

p
> 0 the ground state remains

tachyonic. However, if we choose to violate this condition,
we can eliminate the tachyonic ground state, as we will
describe below. With a suitable choice of functions, this
can be done without reintroducing ghosts into the theory.

V. EXAMPLES

A. A simple example

Let us finally look at several examples that illustrate how
much freedom is allowed by string theory, with regard to
deforming the energy-momentum relations. We have found
026010
that, to keep the embedding degrees of freedom linear, we
must take f � g. We have also found that the character of
the spectrum is unchanged if f2 is positive, nonvanishing,
and nonsingular.

One consequence is that a varying speed of light is ruled
out [18–21]. By computing c � dE=dp, for M � 0, one
finds that massless modes always move at the speed of
light. On the other hand, it is easy to accommodate the
dispersion relation discussed in Ref. [10], by choosing

f � g � 1� LPPCM
0 : (42)

Such a dispersion relation leads to a modified mass-energy
relation [10]. Setting l2 � 1=�2�T� (the string ‘‘length’’),
the usual string spectrum mass spectrum [inferred from the
right-hand side of (29)] is

l2M2
n � N � 1; (43)

where N �
P

n�0j"
a
nj

2. However, the rest energy spectrum
is now

En �
Mn

1�MnLP
: (44)

If l � LP, the lowest string states are uncorrected, but as
the string energy approaches the Planck energy, states
accumulate just below EP � L�1

P and can never exceed
this energy. This is precisely the property sought in
Ref. [10], ensuring an invariant border between classical
and quantum gravity.

B. Eliminating the tachyon

It is also possible to choose deformations for which the
ground state with negative M2 is NOT a tachyon, a phe-
nomenon already discussed in the context of neutrino
flavor states [22]. As we are about to see, this can be
done by choosing deformations such that f2 is not positive
over its entire range. Note that there is nothing wrong with
a negative f2, because, even though f is then imaginary, it
always leads to real Lorentz transformations (see [10] for
how to construct them).

We can, for example, choose

f2�PCM
0 � � 1� �LPPCM

0 �2: (45)

This fails to be positive only for high energies P0
CM > L�1

P .
We get the rest mass-energy relation:

�P0
CM�

2 �
M2

1� �LPM�2
: (46)

Using (43) leads to the energy spectrum. In this case, if we
choose the string scale l < LP the tachyon state (N � 0) is
no longer a tachyon. From (40), we have that at rest,

�P0
CM�

2 �
2�T
L2
P

l2 � 1
: (47)

Thus, whenever LP > l we have �P0
CM�

2 > 0. Indeed, the
-4
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N � 0 state is the only state with P0
CM >L�1

P ; states with
N � 1 accumulate just under L�1

P . The lowest energy state
is the first ‘‘excited’’ state N � 1 for which M2 � 0. As a
result, the rest of the spectrum is as in the ordinary bosonic
string, expressed in terms of ~p2 � f�2P2

CM.
Another example is given by

f2�PCM
0 � �

�*PCM
0 �2

2

24�
�����������������������������
1�



2

*PCM
0

�
2

s
� 1

35; (48)

where * is a length scale. The negative branch is chosen
whenever �PCM

0 �2 < 0. With this choice, we can use
E2=f2 � M2 to find the rest mass-energy relation:

E2
n �

M2
n

1� 1
�*Mn�

2

: (49)

If l > * (a condition satisfied if * � LP � l), then the
N � 0 state has M2 � �1=l2, but its rest energy squared is
positive. The ground state is again the massless stateN � 1
(for which bothM and the rest E are zero). The N � 0 state
has negative M2 but behaves like a normal massive
particle.

VI. CONCLUSIONS

In this paper, we introduced deformed dispersion rela-
tions into string theory, considering the bosonic string and
using perturbative canonical quantization methods. The
results found here are only a first step, and more work is
required to see if a consistent theory can be constructed
along these lines.

The basic results we found may be summarized as
follows.
(i) T
he deformations of the string action affect both
the vibrational and center of mass modes. In most
cases, we find that the vibrational modes no longer
decouple and that only a very specific class of
deformations preserve mode decoupling, those
with f � g. This condition implies that the speed
of light remains energy independent. Thus, it ap-
pears that the observation of an energy dependent
speed of light would be difficult to fit into a con-
sistent string theory.
(ii) S
o long as fg > 0 on the whole space of states, we
can define conventional Virasoro generators, and
the spectrum is as usual but with a transformed
center of mass energy and momentum. But there
are interesting cases in which fg vanishes at finite
P0, in which case care must be used to define the
Virasoro generators for all states. The result can be
an energy dependent central charge. It may still be
possible to choose the ghost action so as to cancel
the energy dependence of the central charge; this
remains an interesting question for future work.
(iii) F
or a large class of theories, those for which f � g
and f2 > 0 and nonsingular for its whole range, the
026010-5
usual conclusions concerning the elimination of
ghosts and the presence of a tachyon hold.
(iv) B
y choosing f2 < 0 for energies near the string
scale, the tachyonic mode of the bosonic string
can be eliminated.
(v) T
he choice

f2 � 1� �LPPCM
0 �2 (50)

with lP < l is promising. It appears to produce a
bosonic string without a tachyon, and it also ap-
pears to be ghost free.
Two final remarks are in order.
We stress that the prescription proposed here for intro-

ducing modified dispersion relations into string theories is
by no means unique. It could be that other methods exist
which bypass some of the potential problems and predic-
tions of our approach.

Finally, string theory might shed new light into the
multiparticle sector of doubly special relativity (and the
so-called ‘‘soccer ball problem’’; see, e.g., [7]). Within
string theory, solutions to this problem must take as ele-
mentary objects strings, not point particles. Given that in
this paper we do not consider multistring configurations
(e.g., no string collisions are considered), we do not need to
address the issue of how to add energies for the center of
mass of different strings. Note that adding energies for the
string internal degrees of freedom is a distinct matter. By
construction, our treatment of the internal degrees of free-
dom does not break the world-sheet diffeomorphism
invariance.
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APPENDIX: PARTICLE ANALOGUE

In order to understand the significance of the f � g case,
we now consider a simple model of a relativistic massive
particle in D-dimensional Minkowski space-time moving
in a static potential. The action is given by

S �
Z
dtpa _xa � NH ; (A1)

where the Hamiltonian constraint is

H �
f�E�
2

�abpapb � g�E�	m2 � V�xi�
; (A2)

where f and g are, as before, functions of E � p0 and the
potential is a function only of the spatial coordinates xi, so
that E is still a conserved quantity. We find that the equa-
tions of motion are
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�x i � �
fgN
m

@V
@xi

; (A3)

�x 0 � �
N2

m
pi
@V
@xi

	fg0 � f0g
: (A4)

So we see that there is an anomalous acceleration of x0

unless we eliminate the last factor by choosing f � g. In
this case, we note that if we do not make such a choice we

JOAO MAGUEIJO AND LEE SMOLIN
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will not be able to fix the gauge in which x0 � Ct, which
appears to contradict reparametrization invariance. The
resolution of this apparent paradox is that, when there is
a potential and these modified energy-momentum rela-
tions, we cannot assume that a relativistic particle does
not reverse direction in time, because there will be trajec-
tories that pass through _x0 � 0. So the failure of the x0

equations of motion to linearize appears necessary if these
trajectories are to be included as part of the theory.
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