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AdS/CFT description of D-particle decay
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Unstable D-particles in type-IIB string theory correspond to sphaleron solutions in the dual gauge
theory. We construct an explicit time-dependent solution for the sphaleron decay on S3 � R, as well as the
coherent state corresponding to the decay product. We develop a method to count the number of bulk
particles in the AdS/CFT setup. When applied to our coherent state, the naive number operator ÔyJ ÔJ is
shown to be inappropriate, even in the large-N limit. The reason is that the final state consists of a large
number of particles. By computing all probabilities for finding multiparticle states in the coherent state,
we deduce the bulk particle content of the final state of the sphaleron decay. The qualitative features of this
spectrum are compared with the results expected from the gravity side, and agreement is found.

DOI: 10.1103/PhysRevD.71.026007 PACS numbers: 11.25.–w, 11.25.Tq
1This is to a certain extent similar to the attempts to match the
values of the entropy for AdS black holes, using a calculation of
the free energy in free Yang-Mills theory [6]. The main differ-
ence with respect to this case, however, is in the dependence on
the coupling constant. The leading value of the black hole
entropy and the free Yang-Mills energy are independent of the
string/YM coupling. As we will see, the number of particles
I. INTRODUCTION AND SUMMARY

The spectrum of type-IIB string theory contains, apart
from the stable BPS and non-BPS states, also a wide
variety of unstable D-branes. These unstable branes con-
tain a tachyon field on their world-volume, and the con-
densation of this field corresponds to the decay of the
brane. Recently, a lot of progress has been made in under-
standing the dynamical aspects of the decay of unstable
branes. Most of the analysis was performed directly using
boundary conformal field theory in flat-space, initiated by
Sen’s construction of the boundary states for decaying
D-branes [1], or by using the c � 1 matrix model for the
description of the decay of D-branes in 1� 1 dimensional
string theory [2]. In the present paper we would like to
study the problem of decaying branes in the setup of the
‘‘standard’’ AdS/CFT correspondence.

As was argued by Harvey et al. [3], the unstable
D-branes in string theory are equivalents of ‘‘sphalerons’’:
they are unstable solutions located at a saddle point of the
potential in configuration space, at the top of a noncon-
tractible loop [4]. In the context of the AdS/CFT conjec-
ture, this correspondence between unstable D-branes and
sphalerons is in fact even more direct. It has been argued by
Drukker et al. [5] that the existence of sphaleronic saddle
points in the potential of the theories on both sides is a
feature which is preserved when going from weak to strong
coupling, despite the fact that the precise form of the
potential receives quantum corrections. The unstable
D-particles of string theory are then in precise correspon-
dence with known sphaleron solutions of the dual gauge
theory. Kinematical aspects of this correspondence were
investigated in detail in [5].

In the present paper, we will analyze dynamical aspects
of this correspondence. Our analysis consists of three parts.
First, we will construct the classical solution of the decay-
ing sphaleron, and obtain a quantum mechanical descrip-
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tion of the final stage of this decay using a coherent state.
We then develop the formalism to count the number of bulk
particles into which this final state decomposes. In the last
part, we apply this formalism to a concrete case at finite N
and extract qualitative features of the decay process.
Although the whole process is highly nonsupersymmetric,
and thus expected to be subject to quantum corrections, we
will see that there are indeed qualitative features which
agree with known results derived on the string theory side.1

The dual gauge theory system is studied by considering
a time-dependent solution of the decaying sphaleron on the
three-sphere. We are able to find an analytic, classical
solution for the spherically symmetric decay channel of
the sphaleron. While the nonAbelian character of the gauge
theory (i.e., the nonvanishing coupling) is crucial for the
existence of the sphaleron solution near the top of the
potential, it turns out that our solution Abelianizes near
the bottom of the potential valley (i.e., it is a solution to the
free Yang-Mills equations of motion on the sphere). This
allows us to construct a coherent state corresponding to the
final product of the sphaleron decay.2 This coherent state
should be dual to the gas of closed string particles which is
the decay product of an unstable D-particle.

In order to make a link with calculations on the gravity
side, we then calculate the ‘‘number operators’’ in this
coherent state jci for various single trace operators ÔJ
which are dual to closed string particles. There are two
subtle points in this procedure. One is related to the fact
that in gravity calculations one uses the standard notion of
produced in the sphaleron decay does depend on the coupling.
2Similar descriptions of the Standard Model sphaleron decay

using a coherent state approach have been discussed by
Zadrozny [7] and Hellmund and Kripfganz [8].
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3To be precise, the D-particle dual to the sphaleron is localized
in the AdS part of space-time, while it is smeared on the S5.
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particles in the bulk as (angular) momentum eigenstates,
and calculates emission amplitudes for these particles.
Hence, in order to make a comparison with gravity pos-
sible, we cannot directly use the AdS/CFT correspondence
in position space. Instead, we first have to construct bound-
ary operators that are dual to bulk angular momentum
eigenstates. To construct these operators one projects the
composite operators onto eigen angular momentum opera-
tors by multiplying them with the appropriate tensorial
spherical harmonics and integrating over the sphere. This
construction is explained in Sec. II C and further illustrated
in an explicit example in Sec. 1 of the appendix.

The second subtlety in counting particles in the coherent
state is related to the fact that the operators ÔJ which create
elementary bulk particles are, from the point of view of the
gauge theory, composite rather than elementary operators.
The naive number operator ÔyJ ÔJ turns out to be inappro-
priate; we will see that this is because it only behaves as a
counting operator when both N ! 1 and the number of
particles p in the state satisfies p	 N. Therefore, in order
to count the number of particles corresponding to an op-
erator ÔJ, one needs to calculate the probabilities P p for
finding a p-particle state individually. Since ÔJ particles
can appear in combination with any arbitrary other (multi-
particle) operator ÔK, the expression for finding a
p-particle ÔJ state is

P p �
X
ÔK

jh�ÔJ�
pÔKjcij2

h�ÔJ�
pÔKj�ÔJ�

pÔKihcjci
: (1)

To see why computing (1) is hard, consider the simplest
terms in the sum, when ÔK is just the identity operator.
This term is

jh�ÔJ�
pjcij2

h�ÔJ�
pj�ÔJ�

pihcjci
�

j�OJ�
ph0jcij2

p!�1� b�p;J�
N2 � . . .�

; (2)

whereOJ without a hat denotes the (positive frequency part
of the) classical expectation value of the operator ÔJ.
When b	 N, the expression (1) can be summed, yielding
the result one would obtain using the naive number opera-
tor. However, as indicated, the coefficient b in the denomi-
nator depends on p and J, and for large p it becomes
comparable to N2. This invalidates the large-N approxi-
mation for the sum. Closer analysis of our coherent state
shows that, due to the nonperturbative character of the
initial gauge configuration, the classical expectation values
of the operator ÔJ in the coherent state are very large. The
maximal term in (1) is attained for large p, which grows so
fast with N that one cannot neglect 1=N2 and higher order
corrections in the denominator. Moreover, summing all
planar contributions does not yield a good approximation
either.

This makes the problem of calculating the energy dis-
tribution in the outgoing state very hard to do analytically.
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In Sec. III C we instead adopt a Monte Carlo method in
order to compute the state norms, and subsequently evalu-
ate the sum (1) for all operators in the U(4) case. We show
that, as expected from string calculations, particles in the
final state are suppressed as their mass increases. We also
show that, had one not taken the full norms in (1) into
account, one would incorrectly find that the energy distri-
bution increases for more and more massive particles. This
is essentially due to the fact that classical expectation
values for all operators grow with their dimension.

Our results agree in a qualitative sense with results from
previous calculations on the gravity side. The calculations
on the gravity side have already been performed in the
literature for decaying D-branes in flat-space [9]. To com-
pare these to the gauge theory calculations, we ‘‘embed’’
these results in the AdS space. A priori, there is no reason
to expect that the flat space results of the decay should be
valid for branes in an AdS background. However, since the
D-particles in question are fully localized in the bulk space,
one expects that the flat space results should carry over, at
least when the radius of the AdS is large.3 There are two
properties of the spectrum of the decaying brane that we
can compare with the dual gauge theory calculation. The
first property of the spectrum is constrained by the sym-
metries of the system, and concerns emission amplitudes
for the states on the leading Regge trajectory. By slightly
refining the calculation of [9] in Sec. III B we find that all
emission amplitudes for these states are zero. The same
result is then separately recovered on the gauge theory side
by evaluating the number operator for the corresponding
dual composite operators.

More important is a second property of the spectrum,
observed in [9], which reflects genuine dynamical features
of the decay. There is strong evidence [1,9] that the open
strings decay fully into closed string states, i.e., that there is
no open string remnant left after the decay. This conclusion
is also supported by the matrix model calculations of [2].
As shown in [9], the emission amplitudes are exponentially
suppressed with the level of the emitted string, at least for
high levels (however, due to the exponential growth of the
available states, most of the energy of the brane gets trans-
ferred into a high-density cloud of very massive closed
string states). By studying the dual gauge model we dis-
cover the same qualitative feature: a suppression of higher-
mass string states in the decay product.
II. DECAYING SPHALERONS IN ADS/CFT

A. Classical instability of the sphaleron on S3 � R

The first step in our analysis is to give a detailed
description of the decaying sphaleron on the gauge theory
side. Whereas the sphaleron solution on R4 found by
-2
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Klinkhamer and Manton [10] is very complicated and not
known analytically, the situation is much simpler on S3 �
R. Not only is the solution known in this case, but one can
also find an analytic description of the classical decay of
this metastable state.

Following Drukker et al. [5], one can get a sphaleron
solution on S3 � R by starting from the instanton solution
on R4. The latter is given by

A
 � f�r��@
U�Uy; U �
x
�

r

; r2 � x20 � x2i ;

(3)

where f � r2=�r2 � a2�. This function interpolates be-
tween two pure gauge configurations (i.e., the two vacua)
f�r � 0� � 0 and f�r � 1� � 1. When f�r� � 1=2, the
system is at the top of the potential barrier. By taking f �
1=2 everywhere one gets a singular solution to the equation
of motion on R4, which is the so-called ‘‘meron.’’ The f �
1=2 solution is, however, also a solution on S3 � R, since
this manifold can be conformally mapped to R4 and Yang-
Mills theory in four dimensions is conformally invariant.
The solution obtained in this way is the Euclidean version
of the ‘‘sphaleron,’’ and is nonsingular.4 The Lorentzian
version is the same, since the time component of the
potential of the sphaleron is zero; the solution is com-
pletely time-independent.

We want to study the decay of the sphaleron, and we
restrict to those modes which preserve the spatial homo-
geneity of the initial sphaleron configuration. This is be-
cause we want to look at the decay of the D-particle which
sits at the ‘‘origin’’ of the anti-de-Sitter space and is
projected in the same way to all points on the boundary.
In other words, we only allow for time dependence, so that
energy-momentum tensor should be of the form

T00 � g�t�; Tij � h�t�gij; (4)

where gij is the metric on S3. So the ansatz we make is

A � f�t�
i�i; (5)

where 
i are the three left-invariant one-forms. The
energy-momentum tensor,

T
� � Tr�F
�F��g��� 

1

4
g
�Tr�F2� (6)

reduces for our ansatz to the desired form (4) with the
functions g and h given by

g�t� � 

3

2
R2 _f2 
 6f2�1
 f�2;

h�t� � 

1

2
R2 _f2 
 2f2�1
 f�2 � 


g�t�
3
:

(7)
4The singularity of a meron originates from the region r! 0,
since the action behaves as S�

R
drr
1. After the conformal

transformation the action density reduces to a constant.
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To deduce what is the unknown function f�t�we plug the
ansatz into the action and derive the action for this func-
tion. The value of the action for our ansatz is

S � 

1

4g2YM

Z
dtd�F
�F


�

�
24 vol�S3�

4g2YM

Z dt
R

�
R2

2
_f2 
 2f2�1
 f�2

�
; (8)

where vol�S3� � 2�2 denotes the volume of the unit sphere
and R is the radius of S3 [also see (A18) and (A23)]. The
equation of motion for the function f is

R2 �f� 4f�1
 f��1
 2f� � 0: (9)

This equation can be integrated once, yielding a conserved
quantity, namely, the energy (i.e., the component T00 �
48vol�S3�E)

E � R2 _f2 � 4f2�1
 f�2: (10)

By introducing a new variable H�t�

f�t� �
1

2
�1�H�t��; (11)

the expression for energy becomes

4E � R2 _H2 � �1
H2�2; (12)

which can be further integrated analytically for E � 1
4 .

There are two solutions, corresponding to the fact that
the sphaleron can roll down on either side of the potential,
to the vacua with Chern-Simons number one and zero,
respectively. The final result reads (see Fig. 1)

f��t� �
1

2

�
�

���
2
p

cosh�
��
2
p

R �t
 t0��
� 1

�
: (13)

One can check that these solutions are indeed solutions to
the full equations of motion, not just to the equations
FIG. 1 (color online). The functions f��t� of the decaying
sphaleron on S3 as given in (13), together with the kinetic
and potential energy (with normalization as given in (12) and
R � 1).
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obtained from the reduced action. These solutions describe
a configuration that starts from the potential maximum at
t � 
1 (with zero velocity and acceleration), rolls down
one of the two sides of the hill and up the other side, where
it arrives at t � t0. The minimum of the potential energy
(12) is reached when H2 � 1 which corresponds to t

t0 � �R arccos�

���
2
p
�=

���
2
p
� �0:62R; the evolution is sym-

metric around t � t0.
5

The periodicity of the whole process is natural from the
AdS perspective. Since AdS effectively acts as a box, the
cloud of outgoing radiation is refocused to the origin of the
space, where it arrives as fine-tuned radiation and ‘‘re-
builds’’ the D-particle. In this sense the D-particle never
decays, since there is no real dissipation of the energy in
the system. However, in the limit of large AdS radius, our
flat-space intuition should (at least approximately) hold. A
natural point in time, which should be associated to the
decayed brane, is the point where the sphaleron has rolled
down to the bottom of the potential, i.e., when all potential
energy has been converted to kinetic energy.

The previous construction can easily be generalized to
describe the decay of a system of coincident D-particles.
The relevant sphaleron configurations have been given by
Drukker et al. [5]. They are obtained by replacing the Pauli
matrices in [3] with Clifford algebra generators according
to

�
 ! "
 �

�
 0 � � � 0
0 �
 � � � 0

..

. ..
. . .

.
0

0 0 � � � �


0
BBBB@

1
CCCCA: (14)

This will make the various sphalerons sit in mutually
commuting SU(2) factors within U�N�. In this case (9)
gets replaced by an independent equation for each of the
functions fi, and the solutions of those are given by (13)
which can differ only by the value of t0. In what follows we
will restrict ourselves to the situations in which all these
initial ‘‘phases’’ are the same, i.e., in which all D-particles
start to decay at the same time. Since the field strengths
will also be block-diagonal, traces of powers of them will
decompose as sums of traces of the individual blocks.

B. Coherent state description of the sphaleron decay

In order to perform an analysis of the spectrum of the
decay in the gauge theory, as a first step one needs to
construct a quantum state describing the decayed spha-
leron. For that purpose, it is useful to think about the
sphaleron decay in the following way. Near the top of the
potential, most of the energy of the (perturbed) sphaleron
configuration is stored in the potential energy, which arises
5After we had derived this solution, we learned that it has been
obtained before by Gibbons and Steif [11] and Volkov [12,13],
albeit in a different context.
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from the nonlinear terms in the Yang-Mills action.
Precisely these nonlinearities in the action ensure the ex-
istence of the sphaleron solution. However, as the spha-
leron decays, the potential energy of the sphaleron gets
transferred into kinetic energy, and near the bottom of the
potential valley all of the energy of the configuration is
stored in the kinetic energy. This can be seen most easily by
performing a finite gauge transformation (A24) on the
solution (5) with gauge parameter � � Uy.6 The solution
then reduces to

A
 � ~f�t�Uy�@
U�; ~f � f
 1: (15)

Near the bottom of the potential ~f � 0, which means that
the derivative part of the field strength, rather than the
nonlinear (commutator) part, is dominant. The solution
becomes a solution of the free Yang-Mills equations of
motion on S3 � R (written in the radiation gauge: A0 �
riAi � 0) �


@2t �
1

R2 �r
2
S3 
 2�

�
Alin:
i � 0: (16)

Indeed, one can easily see that as t! tbottom the solution
(15) with f given by (13) is very well approximated by the
following solution of the linearized equation of motion
(16):

Alin:
i � 


1

4
sin
�
2�t
 tbottom�

R

�
Uy�@iU�: (17)

Hence near the bottom of the valley, one can think about
the Yang-Mills configuration as dual to a coherent state of
noninteracting closed string states which are the product of
the D-particle decay. Our goal will then be to determine
numbers of various (gravity) ‘‘particles’’ in this final co-
herent state. What we precisely mean by this will be
explained in the next section. Let us first construct this
coherent state.

The fact that our solution abelianizes near the bottom of
the potential valley allows us to write down a coherent state
for this configuration (see Cahill [14] and Pottinger [15] for
related work). In order to do so, we need an expansion of
the free Yang-Mills gauge potential in spherical vector
harmonics. In the radiation gauge, an expansion is given
by (we refer the reader to Hamada and Horata [16] for
more on spherical harmonics)

Aabi �
X
J;y;M

�
âabJMy

e
�2J�1�&=R���������������������
2�2J� 1�

p YiJMy�(; );  �

� âyabJMy
e�2J�1�&=R���������������������
2�2J� 1�

p Y�iJMy�(; );  �
�
; (18)

whereM � �m;m0� labels the representations of the simple
6Alternatively, this can be seen from the Eq. (9) in which the
coupling g is restored; the g! 0 limit leads to the same equation
of motion as linearization of f around f � 1.
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7We should also remark that in addition to the configuration
(14) used in the construction of the coherent state jci, there exists
a whole family of inequivalent configurations related to (14) by
large gauge rotations. Since the parameters of this family do not
have a counterpart on the gravity side, one needs to integrate
over these configurations when calculating observables on both
sides. A similar situation occurs when one calculates correlation
functions in a SU(2) instanton background: while the size and
position of the instanton do have an AdS interpretation, the
parameters describing the embedding of the SU(2) instanton in
SU�N� do not, and thus have to be integrated over. For all the
observables we will be calculating from jci, these integrations
lead to additional overall group factors, which are irrelevant for
our purposes. Hence in what follows, we will ignore this tech-
nical subtlety.
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factors of SO�4� � SU�2� � SU�2� and y sums over the
physical polarization states of the gauge field. We have also
introduced matrix indices for the adjoint representation of
the U�N� Lie-algebra. The other indices run over the ranges

J �
1

2
; 
 J
 y � m � J� y;

y � �
1

2
; 
J� y � m0 � J
 y:

(19)

After quantization, the operators âylmn and âlmn satisfy the
canonical commutation relations

�âabJMy; â
ycd
J0M0y0 � � g2YM/JJ0/MM0/yy0/

ad/bc: (20)

A coherent state (see Klauder and Skagerstam [17] for
more on coherent states and references to the literature)
corresponding to the classical configuration given by (13)
is constructed by demanding that

â abJMyjci � AabJMyjci; (21)

where AJMy are the coefficients appearing in the Fourier
decomposition of the classical sphaleron configuration, as
in (18). In the Coulomb gauge Aab0 � 0 the coherent state
can be written as

jci � C exp

"
g
2YM

X
J;M;y

Tr�AJMyâ
y
JMy�

#
j0i; (22)

The normalization factor C is chosen such that jci is of unit
norm and is given by

C � exp

"


1

2
g
2YMTr

 X
JMy

jAJMyj
2

!#
: (23)

A similar construction for the Klinkhamer-Manton spha-
leron in Yang-Mills-Higgs theory on R�3;1� has been dis-
cussed by Zadrozny [7]. The state (22) is most natural from
the point of view of the gauge theory; we will discuss the
possibility of using alternative coherent states at the end of
Sec. II C.

It is important to note that, due to the properties of the
vector spherical harmonics in (18), the coherent state (22)
has been built from creation operators that excite only
physical excitations: the Gauss law constraint is automati-
cally implemented using these operators, since r � Âfree �
0 holds as an operator equation. Hence the coherent state
(22) is a legitimate state in the Hilbert space of the free
theory.

Nevertheless, the state (22) does not yet provide a good
description of the system, as it is constructed using the
oscillators of the free theory and does not allow for a
smooth deformation to the interacting theory. At finite
coupling, it does not satisfy the global color neutrality
constraint. This constraint arises because the commutator
term in the Gauss law acts as a source, and by integrating
the constraint over the S3 one finds that this total charge has
026007
to vanish. One therefore imposes that the commutator part
of the nonAbelian constraint vanishes also at zero coupling
[18]. This constraint restricts the coherent state to the color
singlet part,

jcsingleti � P singletjci: (24)

In practice, however, we will neither write this projector
nor construct the projected state explicitly. This is because
our calculations always involve projections of the coherent
state onto states which themselves are color singlets.
Therefore the singlet projection is imposed implicitly
throughout. The only thing which we have to keep in
mind is that when the state jci is unit normalized, the
norm of jcsingleti is much smaller than 1; we will return to
this issue in Sec. III C when we discuss the decomposition
of the coherent state in a specific example.7

C. Particles in the AdS/CFT correspondence

In the AdS/CFT correspondence, we have a relation
between string states in the bulk and operators in the
boundary. These operators are, via the operator-state map-
ping, interpreted to create particles in the bulk theory at a
particular point on the boundary. That is, one needs to solve
for the wave equation of the dual field in the bulk in the
presence of a delta source inserted at the boundary. This
means that the states created in the bulk are not eigen
momentum states, an attribute which one usually asso-
ciates to the notion of a particle in field theories.
However, since the AdS/CFT correspondence is formu-
lated in position space rather than momentum space, these
definitions are natural in this context. Our string calcula-
tion, on the other hand, will be a flat space calculation, and
for us it will be more natural to use the standard notion of
particles in the bulk as angular momentum eigenstates. For
that, however, we will first have to construct boundary
operators that are dual to the bulk angular momentum
eigenstates.

The operator-state correspondence is usually discussed
in the context of radial quantization of conformal field
theories (see, e.g., Fubini et al. [19] for a discussion in a
four-dimensional context). One first Wick rotates R� R3
-5



8A proper number operator for composite particles, which
produces the exact occupation number rather than an expression
which is only correct up to N
2 corrections, has been con-
structed by Brittin and Sakakura [20,21]. However, their operator
is very complicated and difficult to handle in practice. We prefer
to follow a different route here.

KASPER PEETERS AND MARIJA ZAMAKLAR PHYSICAL REVIEW D 71, 026007 (2005)
to the Euclidean regime and then performs a conformal
transformation such that the origin of R4 corresponds to
t � 
1 in the original frame. Operators inserted at the
origin are then in one-to-one correspondence with states in
the Hilbert space. The entire procedure can, however, be
formulated without doing the conformal rescaling, which
is more natural in our setup since, as we have discussed
before, the gauge field configuration on R� S3 is non-
singular while the one on R4 is singular.

The state corresponding to an operator with conformal
weight w is obtained by multiplying with the appropriate
exponential of Euclidean time and taking the limit &!

1 (keeping only the regular part):

jÔ�m�weight
wi � lim
&!
1

fe
w&Ô�m�weight
w�&�gj0i � Ô�m�weight
wj0i:

(25)

The last expression shows the shorthand notation that we
will use in order not to clutter expressions unnecessarily.
The Hermitian conjugate of an operator is given by

�Ô�&��y � Ôy�
&�: (26)

This procedure mimics the operator-state mapping on R4

but avoids technical problems related to solutions which
become singular after the conformal transformation.

The operators which we use in (25) are independent of
the angular coordinates on the sphere, i.e., they are ob-
tained from the position dependent operators as follows

Ô �m�
w �&� � K�m�w

Z
S3
d�Ô
1:::
s

w �&;(i�Y
�m�

1:::
s�(i�: (27)

Here Y�m� denote the lowest-lying tensor spherical harmon-
ics for a given spin s. The indexm labels the degeneracy of
such harmonics. The normalization constants K�m�w are
chosen such that the states constructed using (25) are of
unit norm. Note that the multiplication with the time-
dependent exponent in (25) selects out composite operators
of the required conformal dimension, but when one ex-
presses these operators in terms of elementary creation and
annihilation operators, one explicitly sees that different
operators Ô are not orthogonal. It is only after the integra-
tion (27) that one obtains a set of orthogonal states. See
Sec. 1 of the appendix for an explicit example on S2.

Multiparticle states are obtained by acting repeatedly
with the Ôw operators on the vacuum, in analogy with
normal creation operators for elementary particles. In con-
trast to elementary operators, however, there is no simple
number operator which can be used to count the number of
composite excitations in a given state. It is true that

�Ô; Ôy� � 1�O�N
2�; (28)

and one might expect that this leads to a well-defined
number operator ÔyÔ. However, the coefficients that mul-
tiply the 1=N2 corrections in (28) are operators, not c-
numbers. As a consequence, the strength of the 1=N2
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corrections depends on the state in which the number
operator is evaluated,

hnjÔyÔjni � n�
X
i

ci�n�

N2i : (29)

The numbers ci�n� can become arbitrarily large when n!
1. Since the coherent state contains such highly excited
states, the operator ÔyÔ cannot be used as a number
operator, not even in the N ! 1 limit.8 We will encounter
an explicit manifestation of this fact in Sec. III C, see, in
particular, Fig. 3.

We will therefore follow a different route. Instead of
trying to use a number counting operator applied to the
coherent state, we will simply project the coherent state on
each state in the Hilbert space of multiparticle states.
Subsequently, using these probabilities, we will calculate
the average energies and particle numbers. Details of this
procedure will be discussed in Sec. III C.

Let us end this section with a comment on alternatives to
the coherent state (22). From the point of view of the dual
string theory, it might seem more natural to construct a
coherent state using the composite operators ÔyJ in the
exponent, rather than the elementary ones ây. After all,
the ÔJ correspond to elementary string excitations.
However, a state of the form

j~ci � ~C exp

 X
i

Oclass:
i Ôyi

!
j0i (30)

is not a coherent state in the sense of (21). The expectation
value of an operator in this coherent state does not equal
the classical value of that operator,

h~cjÔij~ci � Oclass:
i ; (31)

not even up to 1=N corrections. The reason for this is
essentially given in Eq. (29), with jni now being given
by jni � �Ôyi �

nj0i. This is our prime motivation to use (22)
as the sphaleron coherent state.

III. THE DECAY SPECTRUM

A. Counting procedure and symmetry considerations

Having constructed a coherent state in the gauge theory
which is dual to the final state of the D-particle decay (see
Sec. II B), we now want to extract information from it
about particle numbers in the decay product. By particle
counting, we mean counting of the states constructed in the
previous section. The main subtlety for this calculation
lies, as we have discussed in the previous section, in the
fact that we want to count states created by composite
-6
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rather than elementary operators. In this section we will
outline the general procedure which we will use to calcu-
late these numbers, and then apply it to a special class of
operators whose behavior seems to be fully determined by
the symmetries of the problem.
9Even if one has two orthogonal states Oy1 j0i and Oy2 j0i
created using composite creation operators, it is generically
not true that h0j�O1�

n�Oy2 �
nj0i � 0. The notation used in (32)

is meant to indicate that proper subtraction terms are included,
such as to make all states appearing in the sum orthogonal. Using
these orthogonal states, the projection operator appearing in (24)
takes the form

P singlet � 1�
X

fp1 ;p2;...png

1=N p1;p2 ;���pn j�O1�
p1 �O2�

p2 . . . �On�
pn i

� h�O1�
p1 �O1�

p2 . . . �On�
pn j; (33)

where the N p1 ;p2;...pn are the norms of the states.
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The basic ingredient in our particle counting procedure
is the probability to find a particular multiparticle state of
composite particles in the coherent state. The probability
of finding a multiparticle state consisting of p1 particles of
type OJ1 , p2 particles of type OJ2 etc., is given by
P�p1;p2; . . . ;pM� :�
jh�ÔJ1�

p1 . . . �ÔJM �
pM jcij2

h�ÔJ1�
p1 . . . �ÔJM �

pM j�ÔJ1�
p1 . . . �ÔJM �

pM ihcjci
: (32)
For this to work it is of course crucial that the basis of
multiparticle states is constructed to be orthogonal.9 By
definition, the average number of particles of the type ÔJi
present in the coherent state is now given by

N�Ji�: �
X1
p1�0

� � �
X1
pM�0

piP �p1;p2; . . . ;pM�: (34)

The energy stored in these particles, as measured with
respect to the global time in the bulk, is given by the
conformal dimension of the corresponding operators.
Therefore, the total energy is given by the expression

E�Ji�: �
X1
p1�0

� � �
X1
pM�0

.JipiP �p1;p2; . . . ;pM�; (35)

where .Ji is the conformal dimension of the operator ÔJi .
This is actually why we interpret Ôy � � � Ôyj0i as a multi-
particle state: the supergravity energy is simply the sum of
the constituent energies, despite the fact that the norm does
not factorize as the product of individual particle norms.

Because of the general properties of the coherent state,
an evaluation of the numerators in (32) is straightforward.
It amounts to evaluating the classical expressions for the
(multi-)particle operators using the positive frequency part
A� of the rolling sphaleron solution, near the bottom of the
potential. When doing this calculation one also needs to
use formula (27), i.e., for each particles in the state sepa-
rately, one needs to remove the e& factors and then project
onto the corresponding lowest-lying harmonics. Hence,
even though we know the full time-dependent sphaleron
solution (5)–(13), we need only the part of the solution at
the end of the decay for the evaluation of (32).
Since we are looking at a very simple, spherically sym-
metric decay, the final phase of the decay is very much
constrained and is basically independent of the shape of the
potential: it is given by an S-wave on the three-sphere, with
an amplitude determined by the height of the potential. We
have given this solution in (17), and the Euclidean version
of its positive-frequency part is given by

A�i �
i
8
exp

�
2

R
�t
 tbottom�

�
Uy�@iU� � f��t�Uy�@iU�:

(36)

As we will see in the next section, the real problem in
calculating the numbers of different states is related to the
calculation of the denominators in (32). However, for the
class of operators which are absent from the decay spec-
trum, i.e., for which numerators in (32) vanish, one does
not need to worry about this issue. The first operator in this
class is the energy-momentum tensor. Its vanishing implies
that there is no gravitational radiation in the bulk, a feature
which is expected from the symmetry of the problem.
Namely, since the decay is spherically symmetric, there
are no quadrupole moments turned on, and hence no
gravitational radiation can be produced.10

The lowest-mass SO(6) singlet that arises from the S5

reduction of the NS-NS two-form is given by [22,23]

O 
� � Tr
�
1

2
F�3F

34F4
 �
1

8
F34F

34F
�

�
: (37)

The associated state also has a vanishing overlap with the
sphaleron coherent state. This is due to the fact that this
operator is cubic in the field strength, and our gauge
potentials are ‘‘abelianised’’ SU�N� fields, as explained
in Sec. II B.
10Note that the expression which vanishes is the energy-
momentum tensor evaluated on the positive frequency part of
the solution: jh0jT̂
�jcij2 � jT
��A�coherent�j

2 � 0. On the other
hand, the classical expression for the energy-momentum tensor
of the full configuration is nonzero: T
��A� � A
� � 0. Note
also that the T̂
� which is used here is the Abelian expression for
the energy-momentum tensor, since all our calculations are done
in the free theory. It would be interesting to extend the above
analysis to include interactions. In that case, however, there may
be nontrivial corrections to the coherent state, and both gauge
bosons and scalars will contribute to the numerators in (32).
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In the massive string sector, we also find that the radiation associated to all twist-two fields vanishes. Namely,

N�Ô
1���
s
� � 0; for all s; (38)

where the operators are given by

Ô 
1���
s
�

vol�S3�
1R2�s���������������������
2�g2YMN�

2
q : Tr�F��
1

r
2
. . .r
s
1

F
s�
�� : 
�traces�: (39)
Here the s � 2 operator corresponds to the graviton. We
will see in Sec. III B that all these results can be matched
with the string theory prediction.

We believe that the vanishing of the amplitudes of the
twist-two operators is related to the symmetries of the
system, rather than to genuine dynamical properties.
Hence, in order to gain insight in real dynamics of the
problem, we need to consider number operators for generic
states, which we will do in Sec. III C.

B. Expectations from the string side

The lack of knowledge about string quantization on the
AdS5 � S5 background makes a direct study of D-particle
decay in this background impossible. However, because
the D-particle is a fully localized object, one expects that
its static and dynamic properties are, at least for large radii,
11There is a subtlety concerning terms in the outgoing state
which grow exponentially in time. Their interpretation is at
present not entirely clear [24]. Moreover, there exists an alter-
native derivation in which such terms are not present [25]. We do
not want to go into a discussion of this issue here, and consider
only the terms which are finite at late times.
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similar to those of the D-particle in flat space [5]. We will
employ this argument to use a flat-space string calculation,
rather than one in AdS, when making a comparison to the
gauge theory results.

In order to analyze the decay products of an unstable D-
brane in string theory, one has to solve for the closed-string
field j0ci in the presence of a time-dependent brane
source,

�Q� 1Q�j0ci � jBi: (40)

Here jBi is the boundary state for the unstable D-brane
while Q and 1Q are the Becchi-Rouet-Stora operators. The
solution for j0i as well as the late-time behavior was
analyzed in [9,24]. For the final state of the decaying D-
particle it takes the simple form
j01
c i: � lim

t!1
j0ci /

Z
d25k?

X
L�0

exp
�X1
n�1



1

n
30

n 13

0

n � 3i
n3

i

n 
 ghosts

���������levelL
�f�L; k?�jk

0 � !k; k?; kk � 0i

� f��L; k?�jk0 � 
!k; k?; kk � 0i�: (41)
Here L denotes the oscillator level and f�L; k?� is a
function dependent on the level and the transverse momen-
tum.11 This final state can now be projected onto on shell
closed string states.

The twist-two states which we are interested in are
associated with vertex operators which, for a given level,
carry maximal spin. This is achieved by using the maximal
number of creation operators for fixed level, i.e., by build-
ing the state using only 3

1 operators. More precisely, the
particle numbers in the final state will be determined from
the following overlaps

S
1...
n�1...�n � hk
j3
1
1 . . .3
n

1 13�11 . . . 13�n1 j0
1
c i; (42)

where k
 is the momentum of the center of mass of the
closed string, related to the level n via the mass shell
condition k2 � 2�1
 n�. The twist-two states are associ-
ated with the part of these vertex operators which have
maximal spin, that is, they are built out from the vertex
operators by contracting them with polarization tensors
satisfying

:
1...
n�1����n � :�
1...
n�1����n�; ;
1�1:
1...
n�1����n � 0:

(43)

For these polarization tensors, it is easy to see that the
projections (42) vanish. Since only the n � 1 oscillators
appear in the twist-two states, the exponent of (41) effec-
tively reduces to ;
�3




1 13

�

1. All projections (42) then

become proportional to traces of the polarization tensors,
which vanish by (43). There is therefore no twist-two
radiation; in particular, there is no gravitational radiation
(which is expected because there is no quadrupole mo-
ment). The radiation into NS-NS two-form states also
vanishes, because the polarization tensor is in this case
antisymmetric.

All of these considerations change when one does not
select the highest spin state from the polarization tensor
[i.e. when one does not impose (43)]. In particular, the
dilaton radiation will not vanish. These observations match
-8
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the calculations on the Yang-Mills side performed in the
previous section.12

C. Decay products in U(4)-dynamical considerations

For a generic operator, the calculation of the numerators
in (32) is the same as in Sec. III A, and amounts to
evaluating the classical expression of the (Abelianized)
operator using the positive frequency part of the decayed
solution. The main technical problem arises when evaluat-
ing the denominators of (32). To illustrate this, let us
consider a ‘‘simplified’’ model, based on a nonAbelian
scalar field. This model exhibits all of the technical subtle-
ties associated with the determination of the decay prod-
ucts. The crucial ingredients of the vector coherent state,
namely, that it is constructed from the lowest-lying spheri-
cal harmonics and that it depends nonperturbatively on the
coupling constant, are preserved by this toy model.
However, it avoids the inessential technical complications
associated to the evaluation of tensor spherical harmonics
in the numerators of (32).

The coherent state for a given classical configuration in
this nonAbelian scalar theory is given by

jci � C exp
�

1

g2YM
Tr�aây�

�
j0i;

C � exp
�



1

g2YM
Tr�aya�

�
:

(44)

This mimics the construction (22). The unit normalized (at
12The conclusions also rely crucially on the fact that we are
restricting here to the D-particle case. The twist-two radiation is,
for other boundary states, generically no longer zero. The final
state (41) will be more complicated, and the n � 1 part of the
exponent will not reduce to ;
�3




1 13

�

1.
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leading order in 1=N expansion), single-trace operators
which create particles in the out vacuum are

Ô y
J �

1���������������������
J�g2YMN�

J
q Tr��ây�J�: (45)

These operators are coordinate independent operators, ob-
tained using a procedure similar to (27).

With the above normalization of the operator, the nu-
merators and hence probabilities in (32) depend on the
Yang-Mills coupling in a nonperturbative fashion,

jh0j�ÔJ�
pjcij2 � C2

�������� Tr��a��J����������������������
J�g2YMN�

J
q ��������2p

�
C2

Jp

�
;2
J

<J

�
p
; (46)

(where the last equality defines ;J; note that it is of the
order N for the configuration (14) and generically scales as
the number of D-particles). This reflects the fact that our
original sphaleron configuration is a nonperturbative solu-
tion of the equations of motion. Note also that the only way
in which the coupling < appears in (34) and (35) is through
the combination ;2

J=<
J.

The complicated part of the calculation of the average
particle numbers and energies is the computation of the
norms for the states with an arbitrary number of particles.
The norm of the state with p identical particles can be
written as (see also Fig. 2)
h�ÔJ�
p�ÔyJ �

pi � p!h�ÔJ��Ô
y
J �i

p �
p

2

 !
2

h�ÔJ�
2�ÔyJ �

2iconn:�p
 2�!h�ÔJ��Ô
y
J �i
�p
2�

�
p

3

 !
2

hÔ3
JÔ

y3
J iconn:�p
 3�!hÔJÔ

y
J i
�p
3� �

p

2

 !
2 p
 2

2

 !
2

h�ÔJ�
2�ÔyJ �

2i2conn:
�p
 4�!

2!
hÔJÔ

y
J i
�p
4�

� � � � (47)
The first term is at a leading order independent of 1=N, the
second is suppressed as 1=N2, the last two terms both scale
as 1=N4, and so on. A similar but more complicated
expansion can be written for states involving more than
one type of particle.

Naively, one might expect that in the large-N limit, all
but the leading term p! in this expansion can be omitted. In
formula (34), this would produce an exponential depen-
dence on the expectation values for the operators ÔJ. Since
the arguments of the exponent (46) increase with confor-
mal dimension J, one would conclude that the number of
particles produced during the decay increases with the
mass of the particle. However, this kind of truncation of
(47) does not make sense in the case of the nonperturbative
coherent state (44), as it would actually produce probabil-
ities (32) which are larger than 1. The point is that since the
numerator (46) is very large, the maximal probabilities are
attained for large values pmax of p. Moreover, pmax grows
with N, hence in the large-N limit the subleading terms in
(47) become more and more relevant, and are actually
comparable to the leading term.

In trying to estimate how fast the norms (47) have to
grow with p, one can see that even an exponential growth
of the norms, say as p!"p (" � const:), does not lead to
reasonable results. Namely, if we consider the expressionP
pP �J; p�, which has to be smaller than 1, and assume

exponential growth of norms, we would find that this sum
behaves as
-9
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FIG. 2 (color online). Generic graphical expansion of the planar part of the norms required in (47). For simplicity we have only
depicted the case in which there is only one type of operator; open dots represent Tr�âJ� for fixed J and black dots their Hermitian
conjugates. The lines represent planar multiple contractions of elementary oscillators. The graphs displayed here correspond to typical
‘‘large’’ terms in each of the expressions in the sum (47).
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X1
p�0

P �J; p� � C2
X1
p�0

1

p!

�
;2
J

<J"

�
p
� exp

�
;2
J

<J"

�
exp

�


N
<
Tr�aya�

�
: (48)

Hence we see that even when N ! 1 (while keeping < arbitrary but smaller than 1) the result will always be larger than 1
for some value of J. Since the calculation of the average number of particles requires a summation over all J, we conclude
that we cannot assume this behavior of the norms.13

The situation which we face here is similar in spirit to the double-scaling Berenstein-Maldacena-Nastase limit. As
observed by Kristjansen et al. [26] and Constable et al. [27], in the limit N � J2 ! 1 correlators in general receive
contributions from nonplanar graphs of all genera. In this case, a new expansion parameter J2=N appears. In our case,
N ! 1 as well, but now the additional parameter which becomes large is the value of the pi for which the sum (35) has its
maximum term. It would be interesting to understand whether our system also exhibits a double-scaling limit in which
some ratio of powers of p and N is kept fixed.

In order to determine the correct values of the norms of the states, it is useful to write the norms in terms of correlators of
a complex matrix model,

h0j��ÔJ1�
p1 . . . �ÔJn�

pn���ÔyJn�
pn . . . �ÔyJ1�

p1�j0i �
Z
dAd 1A��OJ1�

p1 . . . �OJn�
pn���OyJn� . . . �O

y
J1
�p1� exp�
 Tr�AyA��: (49)
The measure used here is simply a separate integral over
the real and imaginary parts of the complex matrix A,
normalized to give unit result when all pi in the expression
above are zero,
13Note that if we would have had a perturbative coherent state
instead of a nonperturbative one, the classical expectation values
a in (44) would be of the form a � gYM;, with ; a number
independent of the coupling constant. Hence formula (48) would
be replaced with

X1
p�0

P �J; p� � C2
X1
p�0

1

p!

�
;2
J

NJ"

�
p

� exp
�
;2
J

NJ"

�
exp�
 Tr�aya��:

We now see that a truncation to the first term in (47) (i.e., setting
" � 1) produces reasonable results for the probabilities (32).
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Z
dAd 1A � �
N

YN
a;b�1

d�ReAab�d�ImAab�: (50)
This approach has been used by Kristjansen et al. [26,28]
in order to compute several special cases of (49) analyti-
cally. It is still an open problem to extend those exact
results to the entire class of correlators, in particular, to
general situations for which pi > 2. Because we will need
these very general correlators, we have decided to use an
alternative approach, in which the integral is evaluated
using Monte Carlo methods. This provides us with a tech-
nically straightforward way to extract the norms for arbi-
trary operator insertions, even for very large pi. Our results
will, for this reason, of course be restricted to a fixed value
for N, and computer resources put a practical limit on the
-10



FIG. 3 (color online). Norms of states built from J � 2 opera-
tors (lower two curves) and J � 4 operators (upper two curves),
as a function of the total number of operator insertions, for U(4).
The dashed lines are the estimates based on the first two columns
of graphs in Fig. 2. The continuous lines are the complete norms
extracted from the Monte Carlo analysis.
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maximum value that can be handled. Nevertheless, we will
see that interesting results can be obtained this way.

Before we discuss the results, let us present numerical
evidence which illustrates the necessity of taking the full
norms in (32) into account, i.e., all planar and nonplanar
contributions. We compare the results obtained by sum-
ming up a large class of planar diagrams in (47) with the
numerical results obtained using the Monte Carlo integra-
tion. For the U(4) case, the Monte Carlo results are de-
picted in Fig. 3 and compared to the analytic answer
obtained by restricting to the first two columns of graphs
in Fig. 2; these columns contain graphs with an arbitrary
number of connected four-blob elements. Clearly, the full
norms deviate substantially from this estimate. Hence, in
the remainder we will only employ the norms obtained by
Monte Carlo integration of (49). Note also from Fig. 2 that
for large p, the deviation from the exact norm grows with
increasing J (and it also grows with increasing N), and
does not improve as one might naively expect.

With the correct norms of the multiparticle states at
hand, one now obtains sensible results for the sums (34)
and (35). An example in U(2) (which is rather trivial
because there is in this case only one independent single-
trace operator) is plotted in Fig. 4. Note once more that the
numbers plotted here are much smaller than 1. This is
because the norm C which multiplies all of these results
is the norm of the nonsinglet coherent state, and the num-
ber of singlets in it is much smaller than the total number of
states. Note, however, that since the norm of the coherent
state appears in all probabilities as an overall (identical)
factor, its absolute value is irrelevant when considering the
ratios of emitted energies or ratios of numbers of particles.
See Sec. 2 of the appendix for a more explicit explanation.

Having resolved the computation of the exact norms of
states, we can now finally compute the energy distribution
in the outgoing state of a more interesting example. For
practical reasons, we will restrict ourselves to the U(4)
case, for which there are only two operators which create
physical states (using only the creation operator for the
lowest-lying spherical harmonics). These operators are
Tr��ay�2� and Tr��ay�4�.14 The proper linear combinations
of these operators are

Ôy2 � Tr�ayay�;

Ôy4 � Tr�ayayayay� 

2N2 � 1

N�N2 � 2�
Tr�ayay�Tr�ayay�:

(51)
14The restriction to the zero-mode of the scalar field is moti-
vated by the full sphaleron solution of the earlier sections, which
only turns on the lowest spherical vector harmonics. Naturally, in
the full U(4) there are also operators of the form Tr�D
(D�(�.
However, in the oscillator picture these are turned on by the
oscillators that create the higher spherical tensorial harmonics.
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These lead to hÔ4jÔ2Ô2i � 0. Multiparticle states will
generically not be orthogonal (see also footnote 9), but in
our case this turns out to be far less important than the
1=N2 corrections to the norms. We will for simplicity use a
classical configuration for which

;4

N
�

�
;2

N

�
2
�
;
N
; (52)

where the ;J are defined in (46). Closer inspection of the
coherent state of the sphaleron given in (22) shows that the
expectation values of, e.g., the Tr�FmnFmn� and
Tr�FmnFmnFrsFrs� states are similarly related.

The energy radiated into O2 and O4 particles can be
computed using formula (35), summed over a suitably
large range of values for p2 and p4. In our particular
case, this formula reduces to
FIG. 4 (color online). Plot of the summed probability, in U(2),
to find a state with zero or more Ô2 operators in jci, as a function
of the maximum number of operator insertions pcutoff in (32).
Equivalently, this is the total probability to find a singlet state in
the coherent state. The two continuous lines correspond to two
different values of the coupling constant. The dashed lines are
the individual terms that make up the sum. Observe that these
curves never reach one, which shows that there are still many
states in the coherent state which are nonsinglets.
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E�J; pcutoff
2 ; pcutoff

4 � �
Xpcutoff
2

p2�0

Xpcutoff
4

p4�0

��������;
2
2

<2

��������p2
��������;

2
4

<4

��������p4 JpJ
2p24p4

C2

h0j�Ô2�
p2�Ô4�

p4�Ôy4 �
p4�Ôy2 �

p2 j0ihcjci
; (53)
and the maximum values of p2 and p4 which are included
in the sum should be taken sufficiently large as to include at
least the maximum term in the sum. This requirement is
indeed met in our numerical approach. We have computed
the ratio of energies in the J � 2 and J � 4 particles using
successive approximations of (53), for larger and larger
pcutoff
2 and pcutoff

4 ,

lim
pcutoff
2

!1

pcutoff
4

!1

E�4; pcutoff
2 ; pcutoff

4 �

E�2; pcutoff
2 ; pcutoff

4 �
� :R�;2=<2� (54)

for a range of couplings. A typical example is plotted in
Fig. 5. One clearly sees that the asymptotic value of the
ratio (54), given by the exponent of the asymptotic height
difference between the two surfaces, is smaller than 1. We
therefore conclude that our calculation predicts that higher-
energy states in the decay product are suppressed with
respect to the lower-energy ones. This is in qualitative
agreement with alternative calculations of this decay pro-
cess [9].

It would be very interesting to extend our analysis to
higher-rank gauge groups, perhaps by obtaining an analytic
expression for the norms of the states. For N > 4, there are
more than two gauge singlet states, and it becomes possible
to determine the suppression factor as a function of the
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FIG. 5 (color online). Successive approximations to the loga-
rithm of the total energy radiated in the J � 2 particles (light,
blue surface) and J � 4 particles (dark, red surface). The x and y
axes label the maximum value of p2 and p4 in the sum (53). The
values asymptote to the full result in the upper left corner of the
graph. The curves in the x
 z and y
 z plane are similar to the
continuous lines in Fig. 4. While the present plot shows energies,
qualitatively similar plots are obtained for the particle numbers.
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energy in more detail. We leave this for future
investigations.

IV. DISCUSSION AND OPEN ISSUES

We have presented the formalism to analyze the decay of
unstable D-branes in the AdS5 � S5 background by con-
sidering the dual gauge theory. Our results show qualitative
agreement with previous work on D-particle decay, and our
paper provides the basis for further study of nonperturba-
tive dynamical features of the correspondence. Let us
conclude by describing a number of open issues and pos-
sible extensions of our work.

One obvious way to improve on our results would be to
determine analytical expressions for the norms required in
Sec. III C (using the construction of states in terms of group
characters [26,29,30]). This would allow one to extend the
results obtained there to large values of N. We expect that
already for the U(6) model it should be possible to get
evidence that the observed suppression of the decay prod-
ucts with their mass is actually exponential. It would be
interesting to see whether this suppression is strong enough
to compete with the Hagedorn growth of the multiplicity of
states at high mass levels. Obtaining these results should
enable one-to check whether the total energy emitted in the
decay product is finite or not.

The flat space string calculation of [9] and the matrix
model calculation of [2] both obtained an infinite total
energy for the final decay product. One might think that
the reason for such behavior is that there is nontrivial back-
reaction of the radiated closed strings on the boundary
state, which has not been taken into account. However, it
was argued in [24,31,32] that the time-dependent boundary
state of [1] already contains the full information about the
closed string sector into which it is going to decay. Instead,
the reason for the divergences observed in [2,9] has been
attributed to the fact that the coherent state of the unstable
brane has an infinite spread in energy (in the fermionic
description it corresponds to a sharply localized fermion in
position space).

We believe that, whatever the reason for the observed
divergence, the emitted energy calculated from our coher-
ent state should be finite. In our setup there is no issue of
back-reaction, since there is no separation between the
source and the ‘‘remainder’’ in our system. For the con-
struction of the coherent state we have used a solution of
the full, nonlinear Yang-Mills equations of motion. Also,
as one can check, the coherent state thus constructed has
finite spread both in momentum and position space, hence
avoiding the aforementioned problem.

To make a link of our work to the comments of [24,32]
and as a comparison to the matrix model, let us note that
-12
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the classical tachyon evolution is governed by the reduced
Yang-Mills action (8) [or, to be more precise, to a similar
reduction based on more general gauge group embeddings
of the type (14)]. One might hope that this action is dual to
the open string field theory on decaying D-particles in the
bulk of AdS. However, this requires further analysis.

As we have explained, due to the nonperturbative nature
of the initial sphaleron configuration, the computation of
the decay product requires information from a regime in
which both N ! 1 as well as the number of particles p!
1. Understanding this double limit might circumvent the
need to calculate the state norms exactly when calculating
the energy distribution in the final state. Finally, it would be
interesting to understand how quantum corrections can be
incorporated into our formalism, in order to see how much
they influence the qualitative characteristics of the decay
product.
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APPENDIX

1. S2 Operator-State Correspondence

We will here consider the operator–state correspon-
dence in the context of a simple S2 � R example. Using
the procedure outlined in the main text, let us construct all
states corresponding to set of operators

Ô 1: � Tr�@�
@@��@� 

1

d
g
��@�@@

�@�;

Ô2 :� Tr�@�@@
�@�; Ô3: � Tr�@@
@�@�:

(A1)

Using the counting of states introduced by Sundborg [18]
and Polyakov [33] (see also Aharony et al. [34]) we see
that the total number of states created by these operators is

@
@@�@:
3 � 4

2
� 6 states;

@@
@�@:
3 � 4

2

 1 � 5 states;

(A2)

giving in total 11 states. This means that the operators (A1)
also create 11 states, since they are all possible operators
one can build out of building blocks (A2). Let us first count
the number of states created by the operator Ô2. The
operator has dimension . � 3, hence we can decompose
it onto the various states as follows
lim
&!
1

Z
S2
e
3&

X
l00;m00

Yl00m00@�

 X
l;m

e
1
2�2l�1�&Y�lma

y
lm

!
@�
 X
l0;m0

e
1
2�2l

0�1�&Y�l0m0a
y
l0m0

!
j0i: (A3)

Note that while the spherical harmonics which figure in the expansion of the field @ are on shell, the spherical harmonics
Yl00m00 onto which we project need not be on shell. Clearly the options for �l; l0� in (A3) are (2,0), [i.e., (0,2) and (1,1)]. The
explicit expressions before integration are (N i;j are normalization constants)

@
@@

@j�l;l0���0;2�j0i �

5

8
����
�
p

X
m0
Y�2m0a

y
00a

y
2m0 j0i;

@
@@

@j�l;l0���1;1�j0i �

5

4
����
�
p

�
�t��ay1;
1�

2N 2
1;
1

�
5

4
sin2)

�
e2i( � �ay1;1�

2N 2
1;1

�
5

4
sin2)

�
e
2i(

� �ay1;0�
2N 2

1;0

�
9

4
cos2)

�
� ay1;1a
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1;
1N 1;1N 1;
1

�
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�
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1;0N 1;
1N 1;0

�
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2
sin) cos)

�
ei( � ay1;1a

y
1;0N 1;1N 1;0�
4 sin) cos)�e


i(
�
j0i: (A4)
We see that projection onto the Yl00m00 modes with l00 � 2
would give five nonzero projections (the ay1;1a

y
1;
1 and

�ay0 �
2 come together), which is too many. The correct

procedure is to use the lowest harmonic l00 � 0, in which
case only one state [the second and third lines in (A4)] is
selected. If one repeats similar exercises with the operators
Ô1 and Ô3, one obtains states that are not orthogonal to
states obtained from Ô2 unless one uses the appropriate
lowest-lying tensor spherical harmonic. To see this we
need to use the tensor harmonics on S2. There are four
types of lowest-lying 2-tensor spherical harmonics:
;�lm�ab � Y�lm�gab; l � 0; (A5)

 �lm�ab � Y�lm�;ab �
1

2
l�l� 1�; l � 2; (A6)

@�lm�ab � Y�lm�:ab; l � 0; (A7)

(�lm�ab �
1

2
�(�lm�a;b �(�lm�b;a �; l � 2; (A8)
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where (�lm�a is a vector spherical harmonic, given by
(�lm�a � :baY

�lm�
;b . The ; mode is a pure trace so it does

not contribute when contracted with Ô1 or Ô3 and the
equations of motion for @ are used. Furthermore, the @
mode is antisymmetric, so it also leads to a zero. Thus we
find, by explicitly contracting  and ( with the two
operators, multiplying with e
3& and taking the &! 
1
limit, and finally integrating over S2, thatZ

S2
 �l�2;m�
2�ab Ôab

1 d�� �ay1;1�
2j0i;

Z
S2
(�l�2;m�
2�ab Ôab

1 d� � 0;

Z
S2
 �l�2;m�
2�ab Ôab

3 d�� ay2;2a
y
0;0j0i;Z

S2
 �l�2;m�
2�ab Ôab

3 d� � 0;

(A9)

and with similar expressions for the other four labels (2,1),
(2,0), �2;
1� and �2;
2�. Note however, that all these
expressions involve different bilinears of operators ay

and hence are automatically orthogonal.
In summary, we thus find that the operators Ô1 and Ô3

create five states each, while operator Ô2 corresponds to a
single state, altogether giving a total of 11 states as re-
quired by (A2).

2. Singlet Projections

We will here use a simple example to show how the
smallness of the expectation values plotted in, e.g., Fig. 4
can be understood. As mentioned in the main text, the
crucial reason is that the coherent state used to make these
plots was the state jci [rather than the state (24)], and this
state contains both singlet and nonsinglet states. We have
argued that the suppression in Fig. 4 is determined by the
number of singlets versus the number of nonsinglet states
in jci. To illustrate this, we will here use the J � 2 operator
in U(2), for a nonAbelian scalar. There are four elementary
operators ây; . . . d̂y,

Â y � ây b̂y

ĉy d̂y

� �
(A10)

and each of these satisfies a canonical commutation rela-
tion with its conjugate. For the classical field, let us take the
simple example of

Aclass: �
; 0
0 0

� �
(A11)

This implies that the coherent state is given by

jci � C exp
�
1

g2
Tr�Aclass:Â

y�

�
j0i � C exp

�
1

g2
;ây

�
j0i:

(A12)

The correct normalization constant is thus
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C 2 � exp
�


;2

g2

�
: (A13)

We always compute projections of the coherent state onto
gauge-singlet states. Let us consider the p � 1 case,

jh0jTr�Â2�jcij2

h0jTr�Â2�Tr��Ây�2�j0ihcjci
: (A14)

The norm in the denominator equals 2N2g4 � 8g4. This
gives, if one adds the trivial p � 0 term,

P �J � 2� � C2

�
1�

;4

8g4
� . . .

�
�

�1� ;4

8g4 � . . .�

�1� ;2

g2
� ;4

2g4
� . . .�

:

(A15)

Here we have expanded C2 in the second step. The fact that
P �J � 2� comes out smaller than 1 has two reasons.
Firstly, the odd powers of ;2=g2 are manifestly absent
from the numerator, since they correspond to the states
with odd powers of the operator â and are hence manifestly
nonsinglets. Secondly, the coefficient of ;4=g4 in the
numerator is only 1=8, as compared to the 1=2 in the
denominator. This is because out of all quadratic operators
that involve the operator â in some combination with the
operators â . . . d̂, only one is a trace operator. We are
focusing on the operators that necessarily involve â, since
all other operators are absent in the coherent state. In the
sector which contains â2, b̂ ĉ and d̂2, there are three of
those,

Ô 1 � â2 � 2b̂ ĉ�d̂2; Ô2 � â2 
 2b̂ ĉ�d̂2;

Ô3 � â2 
 d̂2:
(A16)

As given here, these are orthogonal. However, only Ô1 is a
single-trace operator.

If we also compute the projection of the coherent state
onto Ô2 and Ô3, and add these probabilities to the one
found for Ô1, we get

P �J � 2� � C2

�
1�

;4

g4

�
1

8
�

1

8
�

1

4

�
� . . .

�
: (A17)

Now the 1=2 precisely matches the 1=2 in C2.
Note that this issue becomes more and more serious as

we go up in the number of operator insertions. The very
small numbers as presented in Sec. III C thus arise because
these only count multiparticle singlet states, as opposed to
generic multiparticle states.

3. Geometrical expressions

In this section we collect some intermediate results of
the calculations and some useful formulae that were used
in the main text. The coordinates which we use on R� S3

are related to Cartesian coordinates via
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z1 � x0 � ix1

r cos
�
)
2

�
�

�
cos�

(�  
2
� � i sin

�
(�  

2

��
;

z2 � x3 � ix4

r cos
�
)
2

�
�

�
cos

�
(
  

2

�
� i sin

�
(�  

2

��
;

(A18)

after which we perform a conformal rescaling to obtain the
metric

d s2 � 
dt2 �
R2

4
�d)2 � d 2 � d(2 � 2 cos)d d(�:

(A19)

The coordinate ranges are given by ) 2 �0; �i, ( 2
�0; 2�i and  2 �0; 4�i. The volume of the S3 part is
thus computed to be vol�S3� � 2�2R3. The inverse metric
is

g)) �
4

R2 ; g(( � g  �
4

R2sin2�)�
;

g ( � 

4 cos)

R2sin2)

(A20)

and the connection

7)( �
1

2
sin); 7(() � 7  ) �

cos)
2 sin)

;

7( ) � 7 () � 

1

2 sin)
:

(A21)

The gauge potential (5) in coordinates �t; ); (;  � reads

At � 0;

A) �
i
2
f�t��cos(�2 
 sin(�3�;

A( �
i
2
f�t��1;

A( �
i
2
f�t��1;

A �
i
2
f�t��cos)�1 � sin) sin(�2 � sin) cos(�3�:

(A22)

The field strength is defined by
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F
� � @
A� 
 @�A
 
 �A
; A��; (A23)

and the corresponding gauge transformations are

A
 ! �A
�y 
�@
�y: (A24)

For the sphaleron configuration (5), the field strengths are
given by

F)( � B�sin(�2 � cos(�3�;

F) � B�
 sin)�1 � sin( cos)�2 � cos) cos(�3�;

F( � B�sin) cos(�2 
 sin) sin(�3�; F0) �
_f
f
A);

F0 �
_f
f
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f
A(; B �

if
2
�1
 f�:

(A25)

The lowest-order vector spherical harmonics are related to
the canonically normalized left-invariant one-forms as
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(A26)

Here the left-invariant one-forms are given by


1 � 
 cos d)� sin sin)d(;


2 � 
 sin d)� cos sin)d(;


3 � 
 cos)d(� d :

(A27)

For the explanation of indices, see formula (19).
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