PHYSICAL REVIEW D 71, 026005 (2005)
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The recent progress in embedding inflation in string theory has made it clear that the problem of
moduli stabilization cannot be ignored in this context. In many models a special role is played by the
volume modulus, which is modified in the presence of mobile branes. The challenge is to stabilize this
modified volume while keeping the inflaton mass small compared to the Hubble parameter. It is then
crucial to know not only how the volume modulus is modified, but also to have control over the
dependence of the potential on the inflaton field. We address these questions within a simple setting:
toroidal N" = 1 type IIB orientifolds. We calculate corrections to the superpotential and show how the
holomorphic dependence on the properly modified volume modulus arises. The potential then explicitly
involves the inflaton, leaving room for lowering the inflaton mass through moderate fine-tuning of flux

quantum numbers.

DOI: 10.1103/PhysRevD.71.026005

L. INTRODUCTION

Inflation has become one of the cornerstones of our
picture of the early universe and its evolution. The suc-
cesses of inflation include the explanation of the apparent
homogeneity and isotropy of the universe at large scales,
and the prediction of a spectrum of density fluctuations
in the cosmic microwave background that agrees with
observation. Recently there have been several interest-
ing attempts to embed inflation in string theory by com-
bining elements of string theory model building such as
background fluxes and D-branes. In this paper, we will
focus mainly on the model of Kachru, Kallosh, Linde,
Maldacena, McAllister, and Trivedi (KKLMMT) [1,2],
but our conclusions are equally relevant for, e.g., D3/D7-
brane inflation [3-5].

The central idea of inflation in D-brane models is to
realize inflaton fields by open string moduli that parame-
trize the positions of branes." The motion of the brane
then roughly corresponds to the rolling of the inflaton.
More precisely, these models typically use the standard
framework of single-field slow-roll inflation, where the
flatness of the effective potential for the inflaton is mea-
sured by the slow-roll parameters
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'Other more exotic candidates for the inflaton were proposed

in [6].
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canonically normalized inflaton field ¢. Early models of
brane inflation relied on the assumption that all other
scalars, in particular the geometrical moduli for the
background, can be ignored or frozen while the brane-
position scalars evolve. It may be considered one of the
main merits of [1,2] that this issue was addressed in a
model that in principle allows stabilization of all geomet-
rical moduli of the compactification space. However, the
situation is complicated by the mixing of the geometrical
background moduli and the open string moduli in the
effective action; it is not obvious that one can fix the
former while evolving the latter [1].

In particular, let us consider the volume modulus.
Under the assumption that a model with just a single
Kidhler modulus can be found, it was argued in [2]
that the volume of the internal space can be stabilized
in type IIB orientifold compactifications with 3-form
fluxes [7], if one includes nonperturbative effects: either
superpotential contributions from Euclidean D3-brane
instantons [8], or gaugino condensation on the world-
volume of wrapped D7-branes (we will concentrate on
the latter in the following). In either case, a superpotential
is generated that depends holomorphically on the volume
modulus and on the inflaton field, as dictated by
supersymmetry. Now, in the presence of mobile D3-
branes, the Kidhler modulus includes not only the volume
but also the D3-brane scalars, as alluded to in the previous
paragraph. It was argued in [1] that it is this combination,
as opposed to the actual “geometrical” volume, that is
stabilized along the lines described in [2]. This mixing
produces a mass term for the D3-brane scalars, a combi-
nation of which can naturally serve as a candidate for the
inflaton field. This mass gives a contribution of order one
to the slow-roll parameter n and thus seems to spoil
inflation in this class of models if no additional contribu-
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tion to the mass arises, e.g. through quantum corrections.”

Of course, the actual mass depends crucially on what
combination of the volume modulus and the D3-brane
scalars is stabilized, and how the inflaton enters the
superpotential. The key to understanding both issues is
the gauge kinetic function that appears in the effective
Lagrangian for the gauge fields on the D7-branes. This is
because the gauge kinetic function determines the non-
perturbative superpotential, and holomorphy of the
superpotential allows one to read off the correct Kéhler
modulus. The dependence of the superpotential on the
inflaton field, which we determine, leads to additional
contributions to its mass and confirms the expectation of
[1] that it can be fine-tuned to small values.

An important potential problem with the form of the
Kihler modulus p suggested in [1] is that at first sight it
seems to be in conflict with supersymmetry of the effec-
tive theory [4,11], because it appears to violate holomor-
phy of the gauge kinetic function.’> More concretely, one
might compute the Wilsonian coupling of the D7-brane
gauge group by reduction of the Dirac-Born-Infeld (DBI)
action of the D7-branes on the 4-cycle the branes are
wrapped around, as we review in Sec. II. The D7-brane
gauge coupling that results from this reduction does not
seem to be the real part of a holomorphic function of the
corrected Kéahler modulus p.4 To summarize, there are
three questions we would like to address:

(i) How does the modified modulus p depend on the
D3-brane scalars?

(i1)) How does the gauge kinetic function become a
holomorphic function of this modified modulus?
(We call these two issues collectively the “rho
problem’).

(iii) How does the nonperturbative superpotential de-
pend on the open string scalars, in particular, on
the inflaton candidate ¢?

It is the main purpose of this paper to shed some light
on the solution to these problems. We propose that the
dependence of the gauge kinetic function on the D3-brane
scalars due to open-string one-loop corrections leads
both to a solution of the rho problem and to additional

>This result was confirmed using a completely different
method in [9]. Also, in the following we will always use the
term “inflaton mass” instead of “n”, although the mass of the
inflaton is strictly speaking only defined at the minimum of the
potential. Finally, note that the parameter € is usually much
smaller than 7 in the KKLMMT model, at least if the inflaton
field is much smaller than the Planck mass [1,10]. We, therefore,
concentrate on the inflaton mass problem in the following.

3See [12] for a nice introduction to holomorphic couplings in
string theory.

“We would like to stress that this puzzle is not restricted to
the present class of cosmological models; it is a general prob-
lem of the effective supergravity action that follows from string
theory in the presence of D-branes. It seems to us that up to
now, the problem has simply been ignored.
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dependence of the superpotential on the open-string sca-
lars. These corrections arise from the Mobius and annulus
diagrams at Euler characteristic zero.” By comparison,
the tree-level action from dimensional reduction of the
bulk supergravity and the D-brane DBI action come with
powers e 2® and ¢~ ® of the string coupling. Thus, the
three questions above can be addressed simultaneously by
calculating the gauge kinetic function of the D7-branes at
the open-string one-loop level.

The actual KKLMMT setup is reviewed in the next
section, but for the computations later in the paper we
consider a simplified setting: toroidal N = 1 type IIB
orientifolds (in the following we will drop “toroidal”
and simply talk about type IIB orientifolds). In doing
so, we are certainly not able to capture the details of a
hypothetical analogous calculation in the KKLMMT
background, but it enables us to understand the basic
qualitative picture in a controlled way. Also, we actually
perform the calculation in a T-dual picture, where 6 T-
dualities are performed to turn the D3- and D7-branes
into D9- and D5-branes, respectively. Working in this T
dual picture makes it easier to compare our results to the
existing literature on open string loop corrections in
orientifolds, where the equivalent D9/D5-brane language
is usually preferred. In this language, the D3-brane sca-
lars are mapped to continuous Wilson line moduli. This
means that for our purpose of investigating the rho prob-
lem, we want to compute the dependence of the D5-brane
gauge coupling on the D9-brane Wilson lines. In particu-
lar, we want the dependence due to closed string
exchange between D-branes (and O-planes), or equiva-
lently, due to open string one-loop diagrams. Such cor-
rections are usually referred to as one-loop threshold
corrections to the gauge coupling constants (see e.g.
[14] for earlier work in this context, including the heter-
otic string).® In fact, without much additional effort, we
can ask the slightly more general question of how both the
D5-brane and D9-brane gauge couplings depend on both
the D5-brane and D9-brane Wilson line moduli. Hence,
our proposal for an answer to the three questions above
appears as a special case of a more general result.

Our conclusions are that the D3-brane scalars and thus
the inflaton field ¢ indeed appear in the modified p
modulus in a form that was qualitatively anticipated in
[1]. The one-loop correction to the gauge kinetic function
is found to be of exactly the right form to reinstate its

>The order of string perturbation theory, which is given in
terms of the Euler characteristic y and the dilaton ® as e X P
should not be confused with the open (loop) vs closed (tree)
channel interpretations; the annulus diagram always has y =
0, but it can be computed two different ways. See [13] for a
comprehensive introduction to open strings.

The role of threshold corrections for moduli stabilization
through nonperturbative superpotentials due to gaugino con-
densation has recently been discussed also in [15].
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holomorphy, when expressed in terms of the modified
modulus p. Hence the rho problem is solved in this
(simplified) setting, and the inflaton mass problem of
[1] is manifest. Happily, the inflaton mass problem may
be alleviated by certain additional corrections to the
gauge kinetic function, and thus to the nonperturbative
superpotential, which depend on the inflaton. This can
help lowering the inflaton mass. We expect there to be
quantitative modification of our orientifold results in the
KKLMMT and D3/D7-brane inflationary models, but
qualitatively, we expect our conclusions to remain the
same.

The paper is organized as follows: In the next section,
we review the two models of inflation where we want to
apply our results: the KKLMMT model and D3/D7-brane
inflation. We then proceed by describing our method of
calculation, the background field method in type IIB
orientifolds [16—18], in Sec. III A, and we compute the
one-loop corrections to the D9- and D5-brane gauge
couplings in the T? X T*/Z, orientifold [19-21], and
their dependence on the Wilson lines along the T2, in
Sec. IIC. This model actually has unbroken N = 2
supersymmetry in four dimensions, but the computation
can easily be generalized to N =1 orientifolds on
T®/Z, with even N (see e.g. [22,23]), or to T/(Z, X
Z,;) models [24,25]. We carry out this generalization in
Sec. III D, focusing on the examples of Z; and Z, X Z,.
Finally, in Sec. IV we interpret our results in the context
of string-theoretic models for inflation. Some of the rele-
vant formulas and more technical details are collected in
the appendices.

Reading Guide—For the reader who is interested in
results and not details, we propose reading the review
Sec. 11, and then jumping straight to Sec. IV, where the
implications for inflation in string theory are discussed. It
requires some of the notation introduced in Sec. III, but it
does not rely on understanding the calculations of Sec.III
in any detail. This reader might also want to have a look at
our two “‘side remarks” about the prepotential and the
special coordinates in the N" = 2 case, Sec. III C2.

IL. THE KKLMMT MODEL FOR D-BRANE
INFLATION

This section is a brief review of the basic ingredients
that go into the string-theoretic models of inflation that
our results can be applied to. The one we shall be con-
centrating on was introduced in [1] and is often referred
to as the KKLMMT model.” It is based on a type IIB
compactification on a Calabi-Yau manifold that has a
discrete symmetry, which is quotiented out together

"We would like to emphasize that our results are important
also for any other effective theory in which closed-string and
open-string moduli appear simultaneously. Another example,
D3/D7-brane inflation, will be mentioned later on.
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FIG. 1.

The KKLMMT model

with the world-sheet parity ), producing an orientifold
(an example with Z, symmetry is sketched in Fig. 1). This
is analogous to the T-dualized ()-projection applied in
[26] and allows turning on imaginary self-dual 3-form
fluxes despite the fact that the fluctuations of the
corresponding potentials are projected out of the
spectrum.

The Calabi-Yau manifold has deformed conifold sin-
gularities, with a deformation parameter that is fixed by
the values of the fluxes [7]. These fluxes stabilize not
only the deformation parameter, but also all the other
complex structure moduli and the complexified dilaton.”
However, the Kidhler moduli, such as the overall volume
modulus, remain unfixed by this flux stabilization, as is
manifest in the no-scale structure of the resulting effec-
tive potential. Although the no-scale structure is broken
by a’-corrections [34], the known «’-corrections are not
sufficient to argue for stabilization of the Kéhler moduli.
In order to fix also them, Kachru, Kallosh, Linde and
Trivedi (KKLT) [2] resorted to nonperturbative effects
like Euclidean D3-brane instantons [8] or gaugino con-
densation on wrapped D7-branes in order to generate
an additional contribution to the superpotential that ex-
plicitly depends on the Kidhler moduli. In this way all
closed string moduli are stabilized, albeit in an AdS
minimum.

Momentarily we will recall how to lift this AdS mini-
mum to a dS minimum, but let us first elaborate a bit more
on the nonperturbative superpotential, focusing on the
version using gaugino condensation. In this case it takes
the form

Wnonpcrt -~ e*af’ 2

where f is the D7-brane gauge kinetic function. To leading
order in string perturbation theory, and ignoring the open

8The effective action of these orientifold models has for
instance been discussed in [27-31]. Further generalizations
with non-Abelian gauge groups and chiral matter have also
been proposed in [32].

°See [33] for explicit examples of this stabilization of com-
plex structure moduli in Calabi-Yau compactifications with
fluxes.
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string moduli ¢’ for the moment, we have f = —ip and
hence

Wnonpert ~ Ce'?, (¢l = O)’ (3)
where the imaginary part of p is the volume of the 4-
cycle that the D7-branes are wrapped around, measured
in the Einstein-frame metric. The constants C and «
depend on e.g. the beta function of the D7-brane gauge
theory. To derive (3), let us assume that there is only one
Kéhler modulus p. Then the volume of the wrapped 4-
cycle is given by the 2/3 power of the overall six-
dimensional volume, and the reduction of the DBI action
leads to

1
.E DBI — — Z Vz/Btr FMVFMV, (4)

among other terms. From (4) one can read off the real
part of the gauge kinetic function:

Re f= V' == (o~ p) )

which can be taken as a defining equation for the imagi-
nary part of p.'” As f has to be holomorphic in the field
variables, it follows that f(p) = —ip, which leads to
3).

This nonperturbative superpotential stabilizes the vol-
ume, but in an AdS minimum. In order to lift the negative
cosmological constant to a positive value, several possi-
bilities have been proposed.'’ The original KKLT ap-
proach [2] was to add anti-D3-branes at the tip of the
deformed conifolds, as in Fig. 1. This breaks supersym-
metry explicitly, so the authors of [36] suggested replac-
ing the effect of the anti-D3-branes by a D-term potential
due to the introduction of a background for the gauge
fields on the world-volume of the D7-branes. In this
scenario, supersymmetry is only broken spontaneously,
and N = 1 supersymmetric Lagrangians can be used
straightforwardly.'> Here we focus on the original model
involving anti-D3-branes, but like in [1,2], we mostly
ignore their effects except for their contribution to the
vacuum energy.'”

0f course, one has to make sure that this definition leads to a
viable Kéhler coordinate on the moduli space. This is clear
from the appendix of [7].

"Note that nonperturbative effects release us from the
shackles of the no-go theorems [35] that prohibit compactifi-
cations with fluxes and/or branes to four dimensions with a
positive cosmological constant.

'2A different approach has recently been put forward in [37],
where the potential energy is positive because one expands
around a relative dS minimum as opposed to an absolute AdS
minimum.

13Consequences of soft supersymmetry breaking in effective
actions derived from D-brane models (in orientifolds) have
recently been discussed in [30,38].
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It was the idea of KKLMMT [1] to study brane-
antibrane inflation [39]' in the previously described
KKLT background, by adding mobile D3-branes to the
D7- and anti-D3-branes already present in the KKLT
model. This approach solves one of the generic problems
that brane-antibrane inflation had struggled with; in a flat
geometry, the attractive potential between a brane and an
antibrane is too steep to allow for slow-roll inflation.
Placing the antibranes at the tip of the curved-geometry
throat as in Fig. 1 reduces the attractive force between the
mobile D3- and the anti-D3-branes by gravitational red-
shift (due to the warp factor in the metric), and the
potential can become flat enough to allow for slow-roll
inflation, at least in principle.

In practice, the story is more complicated due to the
“rho problem” outlined in the introduction, and this was
realized in [1]. To decide whether slow-roll inflation is
possible or not, it is not sufficient to consider only the
attractive force between the branes and antibranes, but
one has to take into account the other contributions to the
potential as well. The potential generated by fluxes and
gaugino condensation leads to a stabilization of the geo-
metric moduli, but in the presence of mobile D3-branes,
the Kéhler modulus p that is fixed is not the geometric
volume, rather it is a combination of the volume and the
D3-brane scalars. As the inflaton field ¢ is supposed to be
represented by D3-brane scalars, expanding the potential
around the minimum shows that in the KKLMMT model
the inflaton has a mass that (after canonically normaliz-
ing the field) is of the order of the Hubble parameter:

m(zp = 2H2 = gvds, (6)

with Vyg the vacuum energy density at the de Sitter
minimum. This mass is too large to allow for slow-roll
inflation. Still there is hope; this mi was derived by
neglecting any explicit dependence of the superpotential
on the open string scalars, and thus on the inflaton. It was
already indicated in [1] that such a dependence could
contribute to the inflaton mass, allowing the value
(6) to be lowered. It is clear from (2) that the open
string scalars can enter the superpotential directly, i.e.
Waonpert = Whonpert(0; @), if the gauge kinetic function
receives corrections depending on them. In other words,
apart from the dependence through f(p(¢)) that we al-
ready argued for, W could also depend on ¢ through
additional explicit dependence f = f(p(¢), ¢). We will
see that such corrections typically do arise at the open-
string one-loop level.

One of the important lessons here is that the question of
the inflaton mass cannot be discussed separately from the
issue of volume stabilization, and that the precise form in

“For a recent review of D-brane cosmology and more refer-
ences see [40].
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which the open string scalars enter into the definition of p
can have a large impact on the physical outcome. This
precise form can be determined by direct computation, as
we will discuss later, but let us now briefly review general
arguments why such a dependence is expected at all,
following [1]. It was conjectured in [41] that the K&hler
potential for the volume modulus p in the presence of D3-
brane scalars cf)i, i =1, 2,3, should be modified to

K(p, p. . &) = —=3In[—i(p — p) + k(¢, $)l (T

where k(¢, ¢) is the (so far unknown) Kihler potential of
the metric on the Calabi-Yau manifold. This leads to a
kinetic term for the 3-brane scalars of the form

_ kiz0,, @0+ ¢/ _

—ilp = p) + k(¢ &)
where k;; is the derivative of k(¢, ¢) with respect to ¢’
and ¢/, and the dots include further contributions to the
kinetic terms of the 3-brane scalars involving single
derivatives of k(¢, ¢p). Comparing this to the kinetic

term that one would infer from considering the DBI
action of a D3-brane transverse to the Calabi-Yau, i.e.

kizd ¢ ok I
T—i—...,

where V is the volume of the Calabi-Yau as measured in
the Einstein frame, suggests the identification

—i(p — p) = V3 —k(¢, §), (10)

so that the imaginary part of the Kéhler modulus is
indeed a mixture of the geometric volume and a function
of the 3-brane scalars. Thus we see that the form (10)
follows from the conjectured form (7)."?

The identification (10) leads to an intriguing puzzle
[4,11]. Comparing with (4) shows that the gauge coupling
of the D7-brane gauge group as derived from a reduction
of the DBI action is not the real part of a holomorphic
function in the corrected p. More precisely, in (4) a term
of the type k(¢, ¢)tr(F,, F*”) is missing to complete the
imaginary part of the modified p. The restoration of the
holomorphy of the gauge kinetic functions is the ‘“rho
problem” described in the introduction. As we will argue
in the following and as already anticipated in the intro-
duction, this missing term should arise at open-string
one-loop level. The computation we will present confirms
the conjectured form of the corrected p, making it com-
patible with supersymmetry, and thus solves the puzzle
(at least in our simplified setting, but as mentioned, we
expect this to be true more generally). Moreover, addi-

L ®)

L~ 9)

'S Another argument comes from the analogy to the heterotic
string. In compactifications on either a Calabi-Yau manifold or
a torus, the Kéahler moduli are corrected in the presence of
Wilson line moduli, the heterotic analogs of open-string scalars
[42,43].
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tional terms depending on the open string scalars arise at
this order.

The reasons why the corrections must arise at open-
string one-loop level are easy to state. First, the missing
term does not involve the ten-dimensional dilaton,
whereas the term from reduction of the DBI action has
a factor e ®n, je, it is open string tree-level.'
Therefore, the missing term comes with a power of the
dilaton appropriate for string diagrams of Euler character-
istic zero. Second, for several coincident D-branes the
scalars ¢’ would carry a representation of the world-
volume gauge group, and non-Abelian versions of the
missing term, e.g. t[k(¢, )Jtr(F,,F**), would involve
at least two traces over gauge indices. This requires an
open-string diagram with two boundaries, but there is no
such diagram at tree-level.

We conclude this review section with a few remarks on
D3/D7-inflation; the rho problem arises also in that con-
text. There, the idea is to consider a system of D3- and D7-
branes that have four noncompact directions in common.
In the absence of world-volume fluxes, this system is
supersymmetric and the distance between the D3- and
D7-branes along the two directions transverse to the D7-
branes is a massless modulus. Turning on a non-self-dual
magnetic background flux for the gauge fields on the D7-
branes breaks supersymmetry, and leads to an attraction
between the D3- and D7-branes [3]. In other words, the
scalar parametrizing the distance feels a potential, and
this potential turns out to be flat enough to allow for slow-
roll inflation with the distance scalar as the inflaton field.
The rho problem then arises in this string-theoretic model
of inflation, just like in the KKLMMT model.

III. ONE-LOOP CORRECTIONS TO THE
VOLUME MODULUS

In this section we are going to compute the dependence
of D3- and D7-brane gauge kinetic functions on the open
string scalars by determining the complete one-loop cor-
rection, which also involves terms depending on the
background complex structure moduli. As explained in
the previous section, this produces an explicit expression
for how the nonperturbative superpotential due to gau-
gino condensation depends on the open string scalars, and
addresses the rho problem and the inflaton mass problem.

One could in principle obtain the desired renormaliza-
tion from string amplitudes with vertex operator inser-
tions, depicted in Fig. 2. The wiggly lines are vector
insertions, and the dashed lines are (open string) scalar
insertions. For the KKLMMT model, Fig. 2(a) with one
end on D5-branes and the other on D9-branes would be
sufficient to determine the renormalization of the D5-
brane gauge kinetic function and its dependence on the

Note that this e~ % is implicit in (4) and (5) but appears
when we express the volume in the string frame.
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a)

b) ©)

FIG. 2. D-brane gauge kinetic term corrections. a) Nonplanar
annulus amplitude, b) Planar annulus amplitude, ¢) Mobius
amplitude.

D9-brane Wilson lines to quadratic order (recall from
Sec. I that we work in the D9/D5-picture). For the other
dependences we are interested in, computation of
Figs. 2(b) and 2(c) would also be necessary.

Here, however, we will use a convenient shortcut to
gauge coupling renormalization: the background field
method.

A. The background field method

The background field method was introduced in [16]
and used there and in [17,18] to calculate threshold cor-
rections to gauge coupling constants in type IIB orienti-
folds. The basic idea is to study how the one-loop vacuum
energy is deformed by the presence of a constant back-
ground gauge field strength, where the background field is
turned on in a U(1) subgroup of the gauge group factor of
interest. The deformed vacuum energy is straightforward
to calculate, since the background field only modifies the
boundary conditions; the worldsheet conformal field the-
ory is still free. By expanding the deformed vacuum
energy for small background fields, one can extract the
zero-momentum limits of the string amplitudes in Fig. 2.
In models with both D5- and D9-branes, one can consider
a background in either the D5- or D9-brane gauge group,
or both. Here we will consider the most general case, in
which we turn on constant background gauge field
strengths in both gauge groups at the same time, denoted
by F; and F,, respectively. The indices i and a enumer-
ate gauge group factors in the D9- and D5-brane gauge
groups. In components, the gauge field background reads

A =

“ X’ only e.g. Fo3 # 0. (11)
The expressions for the relevant one-loop diagrams are
then expanded to quadratic order in the field strengths F;
or F, around F; = F, = 0, which yields the correction
to the gauge coupling. In principle one could limit oneself
to turn on only one type of background field and invoke T-
duality to infer the corresponding terms for the other
gauge groups. However, since we want to consider the
effect of both types of Wilson lines (denoted by d; and d,)
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on both types of gauge couplings g; and g,, we turn on
both types of gauge fields concurrently.'”

Let us concretize these introductory words in three
schematic formulas. The one-loop vacuum energy in
type I theory receives four contributions, from the torus,
Klein bottle, Mdbius strip and annulus diagrams,'®

Acroop(Fr @) =T + K+ M(F, a) + A(F, @), (12)

where we made explicit the fact that only diagrams with
boundaries can have insertions of background gauge
fields and Wilson lines. If one expands the vacuum energy
to second order in the background field, the coefficient of
the quadratic term directly gives the one-loop threshold
correction to the gauge group for which the background
was turned on. Omitting indices (that enumerate the
gauge group factors) for backgrounds and Wilson lines,
the expansion schematically looks like

Al*loop(j:’ &) = A(O) + l<£>2A(2)(C_l>) + ..., (13)

2\2m

where A© is the one-loop induced cosmological constant,
and the one-loop corrected gauge coupling can be iden-
tified as

4772

g2

_ 4772

2
1—loop 8

N 1
tree +/ 84
Here ‘“‘tree” signifies open string tree-level, which in
principle means disk diagram, although in practice the
gauge kinetic term is of course easier to obtain by dimen-
sional reduction of the DBI action. Unfortunately, the
type I literature is littered with pitfalls when it comes
to the precise meaning of ““tree-level”, so this would be an
appropriate place to elaborate on this issue.

A@(a). (14)

B. Tree-level effective action of type I on T2 X K3

Before we present the relevant loop calculations in
Sec. IIIC, let us collect some results on the known
“tree-level” supergravity action for the model considered
in that section: the orientifold T? X T*/Z,.

This orientifold is a special case of a type I compacti-
fication on T2 X K3, with the K3 at a particular orbifold
point. We are interested in computing corrections to the
gauge kinetic terms of the Yang-Mills theories supported
by D9- and D5-branes. The reader may rightly wonder
why we begin by considering an /N = 2 orientifold when
we are interested in 2N = 1 models; the detailed reason
is explained at the beginning of Sec. III D, but the basic

"More precisely, for non-Abelian gauge groups, it is in fact
sufficient to turn on only one of the gauge fields and both types
of Wilson lines, but for Abelian gauge groups it is not; one
would miss cross-term corrections such as Eq. (49).

®Note that we have moved the factor of 1/2 that appears
explicitly in A _jo0,(F, d) in much of the literature, e.g. in [18],
to our definition of the amplitudes, Eq. (A2).

026005-6



LOOP CORRECTIONS TO VOLUME MODULI AND...

idea is that the relevant part of the full result in N = 1
models is very similar to the result in this N' = 2 model,
and the latter is simpler.

We have already bemoaned the fact that some of the
literature on Kaluza-Klein (KK) reduction of type I is not
precise in the usage of the term ‘“‘tree-level””. More con-
cretely, it secretly incorporates various terms that really
only arise at string one-loop level, and one may wonder
whether including some terms but excluding others is
consistent from the point of view of string perturbation
theory—hence our quotation marks on “tree-level”. This
potentially confusing situation comes about because part
of the relevant literature concerns heterotic-type I duality,
and certain terms are loop corrections on the type I side
but tree-level on the heterotic side. Here we use type I
terminology exclusively.

Some general aspects of compactifications of type I
strings on T2 X K3 have been discussed in [44], and we
review the relevant results here. However, since the ex-
plicit factors will turn out to be important for our con-
clusions later on, we redo some of their analysis and adapt
it to our conventions.

The closed string spectrum contains hypermultiplets
and vector multiplets. The hypermultiplets, which will
not be of great concern here, consist of the geometric
moduli of the K3, moduli from an expansion of the
antisymmetric tensors into the harmonic forms of the
K3, and the six-dimensional dilaton. More important
for our purposes are the vector multiplets. There are 3 +
Ny + N5 of them, where Ng and N5 denote the number of
vector fields from the open string sector of the 9- and 5-
branes, respectively. The three additional vector multip-
lets arise in the closed string sector. There are four KK
vectors from the metric and the antisymmetric 2-form
due to the presence of the two 1-forms of the torus. One of
them, the graviphoton, resides in the supergravity multi-
plet and the other three are contained in the three closed
string vector multiplets. Their scalar components are
given as follows. Let

G=—"_

Re(U) |U|?

be the metric of the torus in string frame.'® Then U =
(Gus + iv/G)/Gyy is its complex structure modulus, which
belongs to one of the closed string vector multiplets. In
the absence of Wilson line moduli the other two scalars
are given by

"9We use the same letter G for both the torus metric and its
determinant, but the determinant always occurs in the form
VG, so no confusion should arise.
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1
S=——(b+ie ®0V/Ga'3),
277.\/5( K3 )
1 @ 1 (16)
S = ——(Bys + ie"P0/Ga' ™),
2m/§( 4s )

where b is the scalar dual to B,,, @ is the ten-

dimensional dilaton and Vﬁ? denotes the volume of
the K3-manifold measured in the string frame metric.
Moreover, we keep a’ explicit in this section to have
better control over numerical factors. The three scalars
U, S, S’ span the moduli space [SU(1, 1)/U(1)]® with pre-
potential F© = SS'U.

We included an extra factor 1/(277+/2) in (16) as com-
pared to the definition of [44] because we want the
relations g@)z = Im(S) and 85 = Im(S’) to hold. Let us
check this explicitly for the case of S, by reducing the 5-
brane DBI action on the torus. To this end, we start with
the standard expression for the DBI action

Ts fd6§e_q’10\/det(—g6 + 27a'Fs))

1 _
= _ZTS(Z’]TCY/)Z[dﬁf\/_—g()e (bmtI'F(ZS) + .- ° (17)

where Ts = (1/+/2)2m(4m%a’) 3. The factor of 1/4/2 in
T arises in type I theory and is absent in type IIB, see e.g.
[45]. Reducing (17) on a torus of volume (277)%/G leads
to a gauge coupling

1
g5 = o 0\/Ga'~! = Im(S"), (18)
where we choose the normalization such that — (g~%) X
[d*x/=g4 tr F? is the kinetic term for vector fields in
four dimensions.

Including Wilson line moduli of the open string vector
fields, i.e., components of the (higher-dimensional) vec-
tors along the T2, leads to a modification of the expression
(16) for the scalars S and S’ cf. [43,44]. Explicitly, we
parametrize the Wilson line moduli by a 2-vector @ =
(as, as) with an index i or a for the stack of D9- or D5-
branes, respectively, where a, and as are related to the
internal components V, and Vs of the corresponding
higher-dimensional vectors as (ay, as) = Va'(Vy, Vs). To
be precise, the d are defined as components with respect
to the basis of the dual lattice (&% &3). The original
compactification lattice is then (&4, €5) with conventions
such that

(0151) : (ajgf) = G”a,a,, el EJ = 51,

1,J €{4,5}, (19

where G is the inverse of the metric (15). Note that [44]
considers the case when the gauge group is broken to the
Abelian subgroup, so for notational simplicity we restrict
to that case in this section, but the string computations in
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later sections will be performed also for the non-Abelian
case. Adopting to our conventions, the modified scalars
are given by’

S =S|+ %Z‘aﬂAw S =840 + %ZaiAi.
(20)

Here we used the complex Wilson line modulus
A= Uay — as, 21

which is the complex combination that makes the metric
of the four-dimensional scalar manifold manifestly
Kihler. The modifications (20) of the scalars S and S’
are not supposed to be obvious; one way to see that they
must be modified is to consider the reduction of the
kinetic term of the 3-form RR field strength in six di-
mensions. This term includes a Chern-Simons correction
in the presence of open string fields.

In fact, we can fix the relative factor 1/87 between the
leading term and the one-loop correction in (20) by
inspection of precisely this Chern-Simons-corrected ki-
netic term. It can be reduced on the torus according to

1 o o
9,Bys — mZ[(aﬂag)ag —(9,ab)dl]  (22)

where w3 is the standard Yang-Mills Chern-Simons 3-
form. We used the type I relation g2,x;, = 227)"?a/
and «3, =1(2m)7a" cf. [46]. This leads to «},/g}, =
a'/(2+/2) and we absorbed «’ in the definition of the
fields d; as explained above (19). Thus the relative factor
between Re(S’) and ¥ ;a} dal contains an additional 1//2
as compared to (3.6) of [44]. Taking into account the
overall factor introduced in (16), we arrive at the 1/87
factor in the modification of S’ given in (20). A similar
argument should hold for the modification of S.

The full moduli space of the vector multiplets was
identified in [47] to be a space called L(0, N5, Ng) in
[48], which is homogeneous but not symmetric. The cor-
responding Kihler potential is determined by a holomor-
phic prepotential that was derived in [44]. An explicit
KK-reduction of the ten-dimensional type I action (in-
cluding the 9-brane vector fields but not those from the 5-
branes) leads to F© = S(S'U — L3 ,A?), where we ad-
justed the formula of [44] to our conventions. To derive

*°In [44] it was shown that there appears a further correction
to Im(S), given by Im(S) — Im(S) + /G8/[2Im(S")], where & is
the correction to the Einstein-Hilbert term arising at open
string one-loop level. This redefinition is even higher order in
an expansion in e®10 and we will ignore it in the following. It is,
however, important to establish the duality to the heterotic
string [44].

PHYSICAL REVIEW D 71, 026005 (2005)

the form of the prepotential including the 5-brane vectors,
one first has to compactify to six dimensions and add in
the kinetic term for the 5-brane vectors (17) and the
Chern-Simons term that is needed to cancel anomalies
[49]

L CcsS dvol ~ —B A F(s) A F(S)’ (23)

where dvol is the six-dimensional volume form. Taking
these terms into account in a further reduction to four
dimensions leads to what is called the ‘“‘tree-level” pre-
potential in [44], et

1 1
O =850 — —8SA? — —§'Y AL 24
F g Z - Z : (24)

We will come back to this prepotential in Sec. II1 C2.
The important bottom line of this section is that the
geometric closed string moduli are corrected in the pres-
ence of open strings and D-branes, cf. (20). As discussed
in the previous section, we want to show that the gauge
kinetic functions are holomorphic in the corrected closed
string moduli fields S, ', or more precisely, in their N =
1 analogs. We will see that, in the N =2 case, the
correction terms present in (20) arise as open string
one-loop contributions to the tree-level result (18).

C. One-loop threshold corrections in N = 2

Let us now specialize to the orbifold limit of K3 by
considering the T? X T#/Z, orientifold. (The parts of the
following computation that can be considered standard
are collected in appendix A). The orientifold group is
generated by {(), O}, where () is world-sheet parity and ©
is a reflection along the T*. Threshold corrections to
gauge couplings in this model were studied in [17], for
the case where the background field and Wilson lines are
turned on only on D9-branes. It is true that this situation
is T-dual to the case with background field and Wilson
lines on D5-branes, but as we already pointed out, mixing
between D9-brane and D5-brane gauge groups (that may
occur for U(1) group factors) cannot be obtained by T
dualizing the results in [17], and the same holds for any
dependence of the D9-brane coupling on the D5-brane
Wilson lines and vice versa; this dependence is crucial for
the application we are interested in.

We first summarize a few important features of the
T? X T*/Z, orientifold. Tadpole conditions (cancellation
of RR charge) imply the presence of 32 units of D9- and
32 units of D5-brane charge, with maximal gauge group
U(16)pg X U(16)ps. The one-loop vacuum energy (12)
becomes

2Ty be more precise, one has to take into account additional
counterterms in the derivation, cf. [44,50].
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Al—loop = T + .7( + Mg + .,]Vls + .ﬂgg + ﬂss + .ﬂgs
+ ﬂsg.

We use labels i and a for stacks of D9;- and DS5,-branes,
and assume that the maximal gauge group is broken to a

subgroup
G= ®U(N,») X ®U(Na), ZN,- = ZNa =16,
(25)

through the presence of Wilson lines along T2, denoted by
d; or d,. For example, one may want to consider breaking
to the Abelian subgroup N; = N, = 1; we will consider
both Abelian and non-Abelian groups. The overall U(1)
factors in the two U(16)’s are actually anomalous, and
will decouple from the low energy theory [49]. Given a
configuration of branes, a background gauge field strength
F: or F, can be turned on on any individual stack of
branes. Each stack is represented in the CFT by a bound-
ary state

|D9i, IJ> = |D9i(j:iy 5[), IJ>,

IDS,., 1J) = ID5(F.. o). 1), (26)

with Chan-Paton (CP) indices I, J. The explicit form of
the boundary states is standard (for a review see [51]), but
will not be needed here. The elements of the orientifold
group act on the boundary states, e.g. by

QD9 17) = (ya)k|Q - D9, LK)y 1)

_ 27
OID9, 1) = (yo)ix|® - D9, KL)(yghy &7

where () - D9; and O - D9; schematically represent the
action on the string world-sheet fields. The unitary ma-
trices y summarize the action on the gauge bundle. In this
notation it is evident that a 32 X 32 matrix 7y labeled by i
or a only acts on the respective stack, with all other
entries vanishing, and

(28)

Yao = D Yai  Yes = D Yoi
i i

o
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and so on. The solution of the tadpole constraints fixes the
only nonvanishing blocks to the form given in (A9),
(A10), and (A12), in the appendix.’* In this 32 X 32
matrix formulation, the original 32 D-branes of either
type are pairwise related under ), breaking U(32) to
SO(32) as in type I, and further subjected to the
O-projection. This breaks the gauge group to U(16),
without further rank reduction. Therefore, the 32 + 32
Wilson lines in the Cartan subalgebra are really 16 + 16
independent pairs. T-dualizing to D3- and D7-branes
localized on the 2-torus, this means the 32 + 32 branes
can be moved pairwise out of the fixed locus of the T-dual
Q-projection QR(—1)F, R being a reflection of all six
internal coordinates, and F; the left-moving space-time
fermion operator. Apart from breaking the gauge group,
the Wilson lines have the effect of introducing shifts &;
and d, in the spectrum of KK states.

1. Couplings of non-Abelian gauge groups

We will first determine threshold corrections to non-
Abelian gauge group factors, i.e., to SU(N) groups, post-
poning the discussion of U(l) factors to the next
subsection.

To describe the embedding of the Wilson line in the
gauge group we introduce charge matrices of the form
.,0)

W, = diag(0, ..., 0,1y, 14,0, .. (29)
%K_J

p; entries

with nonvanishing entries in the block of the i-th factor of
the gauge group, and similarly for W,. The two factors of
the gauge group (25) are just by definition the subgroups
of the two U(16) that commute with all W; or W,. For
example, the W; belong to U(1);, the overall factor in
U(N;) = U(1); X SU(N;). The Wilson lines take their
values in these U(1) factors.

To specify the background gauge fields in some direc-
tion of the SU(N;) subgroup, we can choose the matri-
ces

1
Qi = Edlag(ul’ _1; 0; ..

~
Pi N;

with just four nonvanishing entries. The first 1, —1 pair
occurs at the position of the first nonvanishing block 1,
in W;, the second pair at the position of the block —1y, in
W,. Together, these matrices specify the background in
32 X 32 matrix notation, and the matrix valued gauge
field strengths and Wilson lines are Q; F; and W,d;, etc.
To keep the expressions for the annulus diagrams com-
pact, we introduce the following notation for the back-
ground fields:

s Ojk 1’ 1’ O’ ) QJ 0’ s O ) (30)
;\(fi 32—p;—2N;
|
F,=(Q;F:®lyn) e[l ®(—0;F))]
(1)

gij = (W;a; ® 13,) ® [15, ® (—W;d;)],
and similarly for (F,, A,), (F,, A,). The background is

now tensor-valued, with one factor for each end of the

22We actually use the solution presented e.g. in [18], not that of
the original literature [20]. The former has the advantage that
ve; 18 diagonal.
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open string in question. The matrices y are then also tensor-valued: y; = y; ® 13, or y; = 13, ® y; etc., depending on
whether the matrix y acts on the left or the right end of the string. The trace on CP indices is defined as the product of the

traces on both ends, e.g.

(v o; v o, F7;) = tl(ve; ® 13) (13, ® v, {[(Q: F)* @ 13,1 @ 2[(0, F)) @ (=0, F )] @ [13, ® (=0, F)*1}]
= T?tr('y@)iQ%)tr('YGj) —2F: F jr(ve:Q)tr(ve,Q;) + sztr(y@,»)tr(y@ijz.)

=0,

where for the last equality we used (30) and (A12). More generally, one has

tr(ye 07" "' W) = ey, Q" Wi") = tr(y, 07" 'W}) = tr(y, 07" Wi"™1) = 0,

4
tr(y,Q"W) = —

_ 4
tr(ye, Q"W 1) = ITE

1
22n ’

For the Mdbius strip there is only one boundary, so we
write

F,=0F, A; = W,
without tensor products. To exclude the two overall U(1)
factors in the two U(16) gauge groups, as mentioned
above, we impose the additional conditions

(34)

M, = —7G tr<yagl.yg®iFga[g](z&, suc)),

A= (167G tr<y@,«y ;ngﬁ[g](&,-j, 2ilG)),

A+ A= (321)7VG tr(('Yi'Y;l + Y@i?é},)F%aﬁ[g](z&iazilG))

where we set o’ = 1/2. Here, G is the metric on the
torus (15). The sums over string oscillators have collapsed
to numbers, due to N = 2 supersymmetry [17] and
only KK states originating in the torus reduction from
D = 6to D = 4 contribute. These contributions appear in
the form of Wilson-line-shifted KK momentum sums,
that we have written as (genus-two) Jacobi theta func-
tions. Some useful properties of theta functions are col-
lected in appendix C.

One can proceed to directly evaluate the traces in the
amplitudes (36) with the help of (33) as in the example
(32). This evaluation is straightforward but fairly tedious,
and we will not repeat it here. Instead, we will condense

(32)
(33)

tr()/@iWiz”_l) = 2l'Ni, tr(‘ylle”) = 2Nl
ZN@, = ZNa&a =0 (35)

on the Wilson line moduli. Expanding the amplitudes to
leading quadratic order in the background fields,
Eqg. (Al14) in the appendix gives the total one-loop cor-
rection

M, = —72JG tr@aﬁ;ﬁ&[%](zéw 8ilG)>,
A = (1672)7VG tr(v«)m?)}y Fibﬁ[g]@ﬂil@)

(36)

the trace evaluation to a simple prescription that is hope-
fully more transparent. Let us first note that all traces
in (36) are effectively over 2N X 2N matrices for some
Ne{N,N N, N,}. Moreover, these 2N X 2N matri-
ces are diagonal, and the first N elements on the diagonal
are either the same as or the negative of the next N
elements. Thus one can express each trace in terms of
traces over N X N matrices that consist of the first N
elements of the corresponding 2N X 2N matrix. In
the following we denote such a trace with try, and use
the same letter for the matrix. With this prescription,
we arrive at the following form of the one-loop ampli-
tudes:
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= -7 WG Fi9a) + 9(—2dy)]

= -7 WG Fil9(a,) + 9(—2d,)]

PHYSICAL REVIEW D 71, 026005 (2005)

M; = =7 G Frry (Yo b Vhe:0D[9(2d,) + 9(—2d,)]
M, = -7 NG Fluy, (vl v, 0[0Q24,) + 9(—24,)]

A= (16772)_1\/E[f?trN,(V@iQ?)trN,(yéj) + Fitry, (vt (ve; 0F)]

= (327%) " 'WG(FIN; + FAN)Ha; — a;) + H—d; + a,) — 9a; + a;) — H—d, — a,)], (37)

ab — (16772)_1\/6[:]:%UN“(7uQ%)trN,,(y(;)ll;) + f[%trNa(ya)trN,,(y(g)llei)][ﬁ(au - ab)
+(=d, +ap) — Ia, + ay) — H—d, — ap)]

G
|

= (32772)71\/6(.7:%11\]}1 + .T%Na)[ﬁ(&)a - &)h)

+3(=a, + ap) — Hd, + ap) — H—d, — a)},

Aig+ Ay = (3277'2)71\/E[f%trNi('yiQ%)trNa('ygl) + Fary (y)uy (vo ' Q@D9GE; — a,) + 9(—a; + d,)

+9(d; + d,) + 9(—d; — d,)] + 3277 VG Fluy, (ve: 0Dy, (ver) + Fatry (veuy, (7o, 03]
X[9a; — d,) + I—d; +a,) — Ha; + a,) — H—d; — d,)]

= (327 'WG(FIN, + FIN)G; — do) + 9(=a; + d,)]

For notational simplicity, we abbreviated 19[8] as ¥ and
left the second argument of the theta functions implicit.
Moreover, we directly omitted terms that vanish in the
non-Abelian case due to the appearance of a single factor
of O, or Q, in the trace.

To finish the computation, we want to integrate these
expressions over the world-sheet modulus / (see Eq. (A6)).
One has to take extra care of massless fields propagating
in the loop due to coincident D-branes. In particular, for
each of the theta functions in (37) we must distinguish
between zero and nonzero argument. When an argument
is zero, massless modes appear, and we have to introduce
an explicit IR cutoff* to regulate the integral over [ for
the massless states (i.e. the zero modes 777 = (0, 0) in the
theta function (C1)). If an argument is nonzero, the
Wilson lines act as an effective IR cutoff for that integral
and all states are massive; then the only contributions
from massless states come from the A ;; and A ,, ampli-
tudes. As far as UV divergences are concerned, we know
that they all cancel in the end, but it is still useful to
introduce a UV cutoff in addition to the IR cutoff, to
check that this indeed happens.

Now for the explicit integration, beginning with
the case of vanishing first argument of the theta func-
tion. Using [18] we have for annulus amplitudes that

ZHere we mean IR in the open string channel, i.e., cutting off
large values of ¢, cf. (A2), or equivalently small values of
I~ 1/t

> 2A2 PO
Axk(AZ0) = f 19310, 2ilG)e~ /!
0

1 dr =

=_ — ¢ 0, itG~ e 27xt
NI [21(0, irG™")e
1

= (A2VG — In[87 x~/GU,|n(U)[*)),
2J6( n[87° 2 n(O)I1*))

(38)

where 87 y corresponds to w? in [18]. This integral is
truly divergent for y — 0; this is the usual field-theory IR
divergence due to massless modes.

For the nonvanishing first argument, we argued above
that there is no need to introduce the IR cutoff y; the
Wilson lines act as IR regulators. Let us check that this
works, by keeping y for now. Using [52] we have

272 .
A(A2 §) = f d19(0)(d, 2i1G)e ™"
0

1
26

1 e
=— | —In(2my + =) + A2VG
zm[ ( ™ ﬁu)
JGU, lﬁl(A, v) |2
Y L e
A n(U)

dr .
— 94](0, itG~V)e 27Xt
a2t 9

—1 +27TU26!421:|,

(39)
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where we used the complex Wilson line A introduced in
(21), and U, = Im(U). The first logarithm in (39) is the
contribution of states with 71 = (0,0), which was the
source of the IR divergence in the previous case. It is
clear that as long as |A| # 0, we can set y = 0 in this first
term, and then it cancels against the third term. Thus,
provided |A| # 0, we can remove the IR regulator y = 0
as promised and find the answer for nonvanishing first
argument of the theta function:

2

Ag(A2 ) = (AWE “In I %4, U)

1
2JG n(U)

+z7TU2a§). (40)

Before continuing, let us make a quick consistency
check. In the form (39), that includes the IR cutoff y,
we could have taken |A| — 0 which should yield (38). To
see this, it suffices to know that the other terms in (39) are
actually finite in the limit |[A| — 0 as can be seen from the
expansion (cf. (C6) together with Eq. (C7))

(A U) |2
lnl (A, U) = In(27)? + In|n(U)|* + In|A[?

n(U)

2
- %Re[Ez(U)Az] + O(A%), 41)

where E,(U) is the holomorphic second Eisenstein series
(C8). The logarithmic term In|A|? cancels the third term
in (39), the contribution of massive modes is manifestly
IR finite, and taking |A| — 0 we recover (38).

To use the same formula for the Mobius strip ampli-
tude, one simply needs to keep track of the different
modular transformation, ¢ = 1/(8/) instead of t=
1/(21) that we use for the annulus, and one finds

2A2 =
My (A2 &) = ] 1919124, 8iG)
0
_ L dty
8VG Ji/an2) t
!

(%70, irG™")

These expressions can now be used when integrating (37).
We only give the result for the correction to the D5-brane
gauge couplings; the correction for D9-branes can be
obtained from this via the replacement (a, b, i) —
(i, j,a). Itis

PHYSICAL REVIEW D 71, 026005 (2005)

2
5(4” ) = ~2JG A(4A% 2d,) + VG Y N,

% b#a
X[ Axk(A? a, — d,) — Agg(A? d, + a,)]
+\/5Na[ﬂKK(A2: 6) - ﬂKK(Azy Zaa)]

1 ..
5 x/@ZNiﬂKK(AZ, a, — a;). 43)

One important check of this result is that it is UV finite,
due to tadpole cancellation. It is easy to carry over the
actual check from [17], using (38) and (39). In these two
equations it is obvious that the A-dependent terms are
independent of the Wilson lines, so they drop out of the
contribution to (43) from the 55-annulus amplitudes A ,,
(given in the second and third row). Moreover, using
> :N; = 16, it is also evident that the UV-divergent terms
cancel between the Md&bius and 95-annulus amplitudes,
leaving a UV-finite result in which the cutoff A can be
taken to infinity. Using (38) and (39) and assuming for
concreteness that all d, and d; are distinct and nonzero,
the result (43) can finally be expressed as

4772 1
5( g ) = — SN, 7 x/GUy) + (6 = 3N,) Il (V)|

1
F3 U i@} + (2 + N Inl9,24,, U)

1
- EZ_Ni In|$ (A, — A;, U)|

+ZNbln

b+a

lﬁl(Aa + A,, U) (44)

9(A, — A, U) |

This formula is one of the main results of this paper. Note
that we have used the extra condition (35) that excludes
Wilson lines in the anomalous U(1) factors. The first term
is the contribution of massless fields. All the other
terms—except the third one—are the real part of a
holomorphic function in the variables A and U. We will
come back to the interpretation of the third term in
Sec. IV.

2. Couplings of Abelian gauge groups

Before we go on to generalize the result to the N =1
case and draw our conclusions for inflationary models in
string theory, let us first, for completeness, also discuss
the corrections to the gauge couplings of (nonanomalous)
U(1) group factors, although it is not the case relevant for
the discussion of the KKLMMT model. Readers who are
more interested in the application of our result to that
model can therefore skip this subsection.

To deal with the U(1) case, we choose the generators
specifying the background fields to lie in the U(1) factors.
For each of the U(N) factors in (25) we have one U(1),
whose background can be characterized by replacing the

026005-12



LOOP CORRECTIONS TO VOLUME MODULI AND...
Q; of (30) with matrices equal to the W; of (29), i.e. take
Qi = Wi Qa = War (45)

and the W; and W, defined as before. As the overall two
U(1) inside U(16)pg X U(16)ps are anomalous [49], we
also have to impose

M, — —72JGN, FLIa) + H—2d)), M,

PHYSICAL REVIEW D 71, 026005 (2005)
SNFi=0  DINF.,=0 (46)

for the field strengths in this case. Repeating the steps of
the non-Abelian case leading to (37), we end up with

= —7 2JGN, FA9(2a,) + H—2d,)]

(1672 'NGNN,(F? + FI0G; — a)) + 9(—a; +a,) — 9 + @) — 9(—a; — G))]
+(1672) NGN,N, F, F 100G, — a;) + O(—a, + a;) + 9@, + a;) + H—a; — a,)

(47)

Ay = (1677 'GN,N,(F2 + FOING, — dp) + H(—d, + a,) — Had, + dy) — H—d, — )]
+(1672) " 'NJGN, N, F, F[ G, — a,) + H—a, + a,) + da, + a,) + 3H—a, — a,)],
A+ Ay = (16772)_1\/61\71'1\"1(.7:% + FiFa+ Foloa; — a,) + 9—a; + a,)].

The main difference to the non-Abelian case appears in
the annulus diagrams. Now there are also off-diagonal
terms present, mixing different gauge groups, and in the
given basis the gauge kinetic terms will no longer be a
simple sum of terms for the stacks labeled by i and a, but
of the bilinear form

1
- —g4(zg,-;2f,-f,» + S 2 FiFa + Zg;;fafb).
ij ia ab

(48)

In the non-Abelian case the cross-terms are not allowed
by gauge invariance, which is encoded in the fact that

2
8ab

_NaZNi In| ¢, (A, — A, 9]

+2N, > N,In

c#a

‘ (A, + A, U)
$h(A, — A, U)

4 2
5<_Z> — N N2mUs(ay)s(a)s + Il (A, — Ay D[]
gai

There are no summations over repeated indices here;
rather, all summations have been written explicitly.
Moreover, we have used (35) and (46) in the derivation.
Again, the correction to glsz can be recovered from & g;bz
by replacing (a, b, ¢, i) — (i, j, k, a) and we assume also
here that all d; and d, are nonzero and distinct. As before,
there is a contribution from massless modes, one term
depending on the open string scalars that is not the real

‘ } S (1= 8,)N,N, |y (A, — Ay U, (A, + Ay, U)]

try,(Q;) = 0 for the non-Abelian Q; of (30), whereas
trN[(Q,-) = N, for the Abelian ones cf. (29), which we
use presently. To remove the extra factors of N; from the
gauge couplings, we could redefine the gauge fields by
/Nj, but here we leave the expressions as they are.

For the terms proportional to F? and F? the cancella-
tion of the U V-divergence proceeds in the same way as in
the non-Abelian case. On the other hand, for the cancel-
lation in the mixed terms, it is important that we de-
coupled the anomalous U(1) by imposing (46). The same
condition also implies that the mixed terms would be
absent for vanishing Wilson lines.

We then derive, for Abelian gauge groups,

47 3
5<l> = 5a,,[— SNz In(87 xVGU,) + (12 = NN, Inln(U)| + 7U,N, > Ni(a:) + (4 + NN, In| 924, U)|

(49)

part of a holomorphic function in U and A and various
others that are.

Let us close this section with two side remarks. We
stress again that the result for the couplings of the 9-brane
gauge group and the 5-brane group are exactly the same,
related just by exchanging indices a < i. This means that,
in the case where the gauge group has been broken to the
Abelian subgroup, string theory seems to choose a differ-
ent symplectic section than the one used in the supergrav-
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ity literature, see e.g. [47,53], where the gauge groups are
treated asymmetrically.** As we only derived the gauge
couplings for the open string vectors and not for the
closed string KK vectors, we cannot say precisely what
symplectic section is used by string theory. Let us discuss
this point in a little more detail. Consider the ‘““tree-level”
prepotential of [44] given in (24), when absorbing the
1/(47r) in the definition of the Wilson line moduli. If one
calculates the gauge couplings according to*

813 = 5(Nas — Nas),

Im(F y=)Im(Fyy)X=XY
Im(Fzy)XEXY

(50)
Nys = FAE + 2i

>

and performs the symplectic transformation a la [47] one
derives the following coupling constants for the open
string gauge groups (for notational simplicity we consider
only one 9-brane vector A and one 5-brane vector A’ here):

g§92 = SZ!
853 = S
1052208, — AR)AR + AR) + (AR — AP)S,A3

(2U,S, — A})? '
-2 _ A2A/2S2

= 2% 51
$95 7 72u,s, — AR oY

Obviously, the 55 and 99 gauge couplings are rather
different and therefore correspond to a different symplec-
tic section as chosen by the string in our background field
calculation. In the absence of charged fields, the two
choices of symplectic section lead to an equivalent set
of equations of motion and Bianchi identities, see e.g.
[54,55]. In the closed string sector such charged fields
would arise e.g. through gauging the theory by turning on
background fluxes [47,56].

Finally, let us make a remark about the “tree-level”
approximation using the prepotential (24). The term
“tree-level” is used in analogy to the perturbative heter-
otic string, where the last term of (24) is absent. In the
heterotic theory S’ is usually called T and is a Kdhler
modulus that is independent of the ten-dimensional dila-
ton, i.e., the string coupling constant g,. Thus both terms
in the heterotic analog of (24) have the same dependence
on the dilaton and their sum does, in fact, correspond to a
consistent tree-level truncation cf. [54,55]. Here, however,
both S, and S’2 depend on the dilaton, as is obvious from

Z4Note that the coordinates used in [47] are related to ours in
the following way: s = S, t & U, u < S, x* < A, (resp. A’ in
(51)), y" < A; (resp. A in (51)).

We refer again to [12] for notations and conventions on
N =2 gauge couplings. Note, though, that we include an
additional factor of 2 in the definition of the couplings as
compared to [12], in order to get the same normalization in
the relations gog> = Im(S), etc., as in Sec. III B cf. (51) below.
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(16), and therefore the first and the second two terms of
(24) have a different dilaton dependence. This fact, that
there are two independent gauge couplings S, and S)
which should both be large in perturbation theory, raises
the question in which sense it is possible in open string
perturbation theory to truncate the prepotential to the
“tree-level” terms of (24). To see the problem more ex-
plicitly, consider, for example, the 55 gauge coupling in
(51). Expanding the second term in the couplings S, and
S’ gives to leading order

SY(AD + A7)

52
5,0, (52)

This term is of order @(g%). A term of the same order
would, however, be generated, e.g., by a “one-loop’*-cor-
rection to the prepotential of the form?°

SF ~ UA”. (53)

We call this “one-loop” because it is neither multiplied
by S nor §’. Taking such a term into account and perform-
ing the same symplectic transformation as in [47] leads to
an additional contribution to the 55 gauge coupling of
order O(g?) and proportional to U,. Thus it is doubtful
whether a truncation to the prepotential (24) and the form
(51) of the gauge couplings would be consistent in string
perturbation theory, since it does not appear to corre-
spond to a systematic expansion of the effective
Lagrangian (in particular, of the gauge couplings) in
powers of the string coupling. For example, only some
terms of the order O(g?) would be included, others left
out.

We do not claim that previous literature on the subject
is wrong; we merely wish to emphasize that “tree-level”
should not be taken too literally.

D. Generalization to N =1

In this section we want to generalize our results to
the case of interest with only N = 1 supersymmetry.
In terms of toroidal orientifold models, we will use
a background T®/Zy or T°/(Zy X Z,). In order to
be able to employ the results of [18], we first concentrate
on the Z; orientifold. Another reason for choosing
this model is that the discussion of Wilson lines is rather
similar to the one in the Zg orientifold given in [57]. It
turns out that the one-loop corrections to the gauge
kinetic function (and thus to the nonperturbative super-
potential) do not contain any terms quadratic in the
Wilson line moduli and thus cannot help to reduce the
inflaton mass in a KKLMMT-like scenario. To show that

2The argument does not depend on the particular form
chosen here. Any 8F ~ f1(U)f2(A)A™, with n =2 and f,,
f> some arbitrary functions, would lead to the same conclusion.
Comparing this with (49), it is obvious that such terms indeed
do appear at one-loop level.
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this is not a generic problem, we also consider the Z, X
7, model of [24]. We do not go into the details as much as
in the Zf case but our results show that the one-loop
corrections in this model are capable to lower the inflaton
mass by fine-tuning.

1. The 7| model

This orientifold is defined in terms of the eigenvalues
exp(2miv), v = (1, —3,2)/6, of the generator O, acting
on the three complex coordinates of a T¢ = T2 X T3 X
T3. The first and third of the three 2-tori are assumed to
allow a crystallographic Z4 and Z; operation, respec-
tively. Since @3 is just identical to the geometric operation
of the generator of the Z, we considered in the previous
section on T*/Z, X T?, the Z} model includes 32 D5-
branes extended along the third 2-torus T3, in addition to
the 32 space-time filling D9-branes. The moduli space of
the untwisted moduli is given by three copies of
SU(1, 1)/U(1) for each of the three generic Kihler moduli
of the three 2-tori, and one extra copy each for the dilaton
and the only complex structure modulus of the model, the
complex structure of the second 2-torus [58]. The com-
plex structure of the third 2-torus T2, that we denote by
U, will actually appear in the one-loop correction to the
gauge couplings discussed below, but this is not a modu-
lus, since it is fixed to a rational value by compatibility
with the orbifold action.

For application to the KKLMMT model, we are mainly
interested in the dependence of the 5-brane gauge cou-
plings on the Wilson line moduli of the 9-branes along
their common world volume directions, which is the third
torus. This dependence is completely contained in the 95
annulus. Moreover, the only sectors that can depend on
Wilson lines along the third torus are those in which this
torus is left invariant, i.e., those with insertions of the
identity or ®3. The relevant amplitudes are given in (B2)
of appendix B, where we also give all the other ampli-
tudes for completeness. The important point that allows
to reduce much of the calculation to the N = 2 case of
the previous section is the fact that the amplitudes in the
sectors with insertions ®, k = 0, 3, are formally identi-
cal to those arising in the case of T? X T*/Z,. Because of
the fact that the element ®3 of the orbifold group is
exactly the same as the Z, generator in the N = 2 case
discussed above, the result formally exactly carries over
to the case at hand, up to an overall factor that we will
determine.

|
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T-duality along all six internal directions again maps
9- and 5-branes to 3- and 7-branes, localized on the third
torus. It is clear that these now have to be moved in sets of
six at least: the orbifold generator ® identifies three of
them and the T-dual world sheet parity QR(—1)"* acts
geometrically as a reflection on the 2-torus, and thus
identifies these three with another set of three images.
When analyzing the allowed Wilson lines in the next
subsection, we will use this geometric intuition of moving
sets of six branes.

Thus, the most important difference to the N =2
case is that the gauge group and the allowed Wilson lines
are different. The latter have to be compatible with the
operation of the orbifold generator on the third torus,
while in the previous section, the Wilson lines were
turned on in a 2-torus that was invariant under the orbi-
fold action. Thus, here in the N' = 1 case we have to go
into some detail to solve this compatibility condition. As
usual, the action of ®* on the CP labels is encoded in a
32 X 32 matrix ygt. Without Wilson lines, the tadpole
cancellation conditions for twisted tadpoles are [23]

k=135,

tr(ygio) = tr(yges) =8
(54)

tr(yerg) = tr(ygrs) =0,
tr(ygg) = tr(yges) = —8,

and the solution with the maximal gauge group is given
by

Yoo = Yos = diag(B1,, ,3514’ :8918’ 314, 5_514: 5918)
(55)

and ygro = Yo, Yars = ¥5s. where we used g = €'™/°.

This choice of matrices y implies the gauge group
[U4)> X U®)Ipg X [U@4)? X U@®)]ps.  (56)

We will see in the next subsection how this gauge group
can be broken by turning on continuous Wilson lines.

2. Wilson lines in the Z orientifold

The classification of Wilson lines in the Z{ orientifold
has not been considered in the literature so far. However,
our discussion will be very similar to that for the Z¢
orientifold [57], and we will be able to make use of the
results for Z5 [59] as well. To introduce Wilson lines it is
convenient to reorder the blocks in ygg in the following
way (by abuse of notation we still use ygq9 after the
reordering):

Yoy = diag(ﬁl4fng: 3514*@’ B9187"lg’ ['_314,”9, 35147119’ 3918*@» 7[(339]) (57)

with

yioml = diag(B, 85, B°, B, B%, B) ® 1,, = Yl ® 1,
(58)

and similarly for the 5-branes, using ns and y[(gg. (We use
bracketed superscripts to denote the size of the matrix).
Obviously, ns, ng = 4 has to hold. The most general an-
satz for the Wilson lines that leaves (at least) the gauge
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group
[U4 — ng)*> X U(8 — ng) X Ulng)Ipe X [U(4 — ns)?
XU(8 — ns) X U(ns)]ps (59)
intact is

Ywo = diag(13,_gp,, 7%?1]9 ®1,)

] 60
Yws = dlag(13276n5’ Y[V?/]s ® 1"5)' ©0

In order for the matrices yy to describe Wilson lines
along the third 2-torus, they have to satisfy three con-
ditions. Tadpole cancellation has to remain fulfilled, they
need to be compatible with the orientifold operation on
the third 2-torus, and finally they have to be unitary. The
tadpole constraints are satisfied if [57,59]

(YD) ()1 = el (ygD (¥ih)r1 =0,
k=1,245, p=012 61
Note that there is no condition for k = 3 because @3 acts
as the identity on the third torus. Further, consistency
conditions for the Wilson line to be compatible with the
action of ® on the third 2-torus have to be satisfied,

(YaAib)e = —1

[V = 15,

6 (’}’[@?15’}’%?/]5)6 = —1,

[(YSPYsP = (62)
The T-dual geometrical interpretation goes as follows:
Originally, with the maximal gauge group given above,
all 32 + 32 D7- and D3-branes are located at the origin.
One can then move six in a Z3 X Z, invariant fashion,
two sets of three being identified under the T-dual world
sheet parity, and the elements of each set of three are
identified under ©, leaving just a single independent
brane. Moving ng coinciding sets of 6 D3-branes then
leaves a U(ng) on the mobile stack, while reducing the
rank of the total gauge group by 3ng — ng = 2ng. The
tadpole consistency requires that one takes one brane each
from the three sets that made up [U(4) X U(4) X U(8)]pe,
which explains the breaking pattern. Guided by the geo-
metrical intuition that the Wilson line that corresponds to
the T-dual separation of D3-branes from the origin should
reflect the fact that there are two triplets of branes, which
are separately identified under ®, but not mixed, we now
make an ansatz, where the Wilson line is block diagonal
in 3 X 3 blocks, i.e., we choose

Yol = diag(y5h, #50). (63)

Here y[ 1 is the complex conjugate of 7’[;/]9- For the blocks,
we adopt the form of the most general Wilson line con-
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sistent with a Z twist (5917

Yob = bils + bad + by, (64)
having defined the permutation matrices of three ele-
ments via

010
{= (0 0 1), =" (65)
1 00

The three coefficients b; are a priori free complex pa-
rameters. This choice automatically satisfies the tadpole
constraints (61). Evaluating the consistency conditions
(62), one finds

(Yob?ib)® = —16(b} + b3 + b}

(YA =

= 3b1byb3)?,

—16(b3 + b3 + b3 — 3b,byb3). (66)

Upon diagonalizing the matrix { via the unitary trans-
formation

1 1 1 1
Pr=—|1 «a a? |, 67)
ﬁ(l a? a)

27i/3  one has

a =e

Pyl Pt = diag(b, + bz + by, by + bya? + bya, b,

In the diagonal form, unitarity is most easily imposed,
and implies that the three diagonal elements are just
phases. The extra condition b3 + b3 + b3 — 3b,byby =
1 means that the determinant has to be one as well, so
that we can finally write

PyyBLPT = diag(efer, eie2, e~ilerte) (69)

This provides an explicit parametrization in terms of two
periodic variables, which are related to the T-dual posi-
tions of the branes on the 2-torus. In order to implement
the Wilson line in the open string KK spectrum as shifts
of momenta, we define d through

27Despite such claims in the literature, this does not seem to
imply that the Wilson lines in the Z; model on the third torus,
where O is of order 3, are fully classified by the solution for Z5.
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@ =¢éd, @, =¢éd®%  —¢ — @, =éa",

(70)

where a is the Wilson line on the first D9-brane, i.e., the T-
dual of the D3-brane position, and d® and a® are its
images under the orbifold generator, acting on the third 2-
torus. Explicitly, the action is (ay, as)® = (—as, as — ay).
Moreover, ¢ can be chosen to be one of the basic lattice
vectors (€4, €5). Thus the complete Wilson-line on the 9-
branes is given by

P327W9P§2 = diag(135—¢p,, ngg])

.0 2202
e lea )

(71)

with P3 = 155 ¢, ® (P3 ® 15,). In the T-dual picture
this describes 6n9 mobile D3-branes at positions given
through =a®", n = 0, 1, 2, and supporting a mobile U(rn)
gauge group.28 This is depicted in Fig. 3. The points
labeled by d have coordinates a,é’, the é’ being the basis
of the dual lattice, as in (19).

In this basis, where the Wilson line is diagonal, the
operation of the orbifold no longer is, except for

(Y6p) = Pe(ve) PL = (Vgy)?
= diag(il;, —ily),

Pe()’[ﬁ] )3P+
(72)

where we have defined Pg = P;®1,, acting block-
diagonally. This is, however, all we need to evaluate the
amplitudes in the k = 0, 3 sectors explicitly. This matrix
is identical to the matrix representation (A9) of the Z,
generator in the N" = 2 model of the previous chapter. In
the basis where the Wilson line is diagonal, we expect the
orbifold generator to act in a way on the CP labels that
matches with our geometrical intuition. Indeed, one finds
that

(6] PT

diag(B¢, BLY). (73)

Thus, ygg really just permutes the three CP labels of each
of the two sets separately, as expected.
To determine the matrix representation

Psveo

A=
diag(05,— ¢, Alnl) of the surviving, say, 9-brane gauge
fields in the mobile U(ng), one has to regard the projec-
tions

Albne] — 7&/%9])\[6%](7%39])71’

Albns] — ,y[(ggg] A[fmg](,y[ggﬂ)*l. (74)

This leads to gauge fields represented by CP matrices

*$Note that the lattice and the dual lattice are exchanged via T-
duality.
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FIG. 3. Z;-symmetric Wilson lines in Zf
Aol = diag[1; ® 0,13 @ (=Q,,)l  (75)

where Q,, is an arbitrary ng X ng matrix in the adjoint of
U(ng). A field strength in the Cartan subalgebra would
now be given by e.g.

——diag(1, — .., 0),

Oy = (76)

NG

where we included the factor of 1/ /3 in order to normal-
ize tr(Alo»])2 = 1. All the above works analogously for
the D5-branes, respectively, their T-dual D7-branes.

3. Results for Z;

In this subsection we would like to use the above in-
sights into the breaking of the gauge group to determine
the dependence of the 5-brane gauge couplings on the 9-
brane scalars, i.e., we consider the case with vanishing
Wilson lines on the 5-branes so that their gauge group is
the unbroken [U(4) X U(4) X U(8)]ps. Moreover, being
interested in the 5-brane gauge couplings, we only con-
sider a background for the 5-brane gauge fields, specified
by a matrix similar to (30), where the position of the
nonvanishing entries depends on the gauge group factor
according  to  Ququ), = ydiag(l, —1,0'", —1,1,0"),
QU(4)2 = %dlag(O“, 1, —1, 014, —1, 1, 010) and QU(S) =
3diag(0%, 1, —1,0', —1,1,0°), where the ordering is
chosen to be consistent with (55). Furthermore, we only
give the dependence on the 9-brane scalars. The full gauge
couplings could be extracted from the formulas given in
[18] without much more difficulty. An important point to
mention is that, as opposed to the N = 2 case, it is no
longer possible to go to an Abelian limit (the Coulomb
branch) by just turning on Wilson lines of the specified
type, since a remnant non-Abelian U(4)pg X U(4)ps can-
not be broken this way. In the T-dual version this implies
that one cannot move all the branes away from the origin.

Recall that the two amplitudes of interest for us are
formally given by the 95 annulus of the N =2 case
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discussed above, up to an overall factor of 1/3. The main
difference of the two cases is the fact that the Wilson lines
in the N =1 model have to be consistent with the
orbifold operation, which amounts to moving the T-dual
D3-branes in groups of multiples of six. In other words,
for any Wilson line d one has to turn on G© and a°” at the
same time. In addition, as in the N = 2 case, also the
negative of these values appear due to the world sheet
parity projection.

Thus we can just copy the result from the last line of
(37) including the different normalization factor to get

2 0 2 (0) 2 3) 2 (3
JZlia + leai + ‘Aia + le(/zi

2
(327) WG Fin; Y [9(=aP") + 9(a")],
m=0

W =

)

where we allowed for various mobile stacks now, using n;
instead of ng as before. As we already mentioned, the
total sum of all n; is limited to four now. Moreover, in
(77) we only wrote down the amplitudes for 9-branes
with a nonvanishing Wilson line. Other D9-branes will
only contribute universal terms, independent of the open
string scalars. From (77) we can read off the dependence
of the 5-brane gauge couplings on the 9-brane scalars
according to

2

47 1 ,,,
() s 2

m=0

1 2 "
— EZn,- Z In| % (A", U)| + ..., (78)
i m=0

where the dots stand for correction terms that are inde-
pendent of the Wilson line moduli. We now note that the
Wilson line moduli on the images under © are related by
multiplication with a phase, i.e. A® = ¢2™/3A, which can
be verified using the action of ® on a given above
Eq. (71).%° This implies that A2 + (A9)¥" + (A20)2n =
0 for all integers m that are not multiples of 3. Thus, using
the fact that <%, is an odd function in A, we see that for
small |A]

2
6<4g—3> = %77-U22n,-[(a,-)421 + (a)3 — (a;)a(ay)s]

- %ZnilnlAil + O(A®) + ... (79)

The terms quadratic in the A; have canceled out. Since the
A; are the candidate fields for the inflaton in the T-dual
setting with D3-branes, this implies that the above gauge

*This mapping under ® ensures that in the N" = 1 analog of
the Abelian gauge coupling g, (49), the first term on the right-
hand side drops out when summing over orbits of @. This is
necessary to guarantee that the gauge coupling is the real part
of a holomorphic function.
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kinetic function would produce no extra contribution to
the inflaton mass. This is not generic in N = 1 orienti-
folds, but an accidental consequence of the global Z;
symmetry of the Wilson lines, as we shall demonstrate
in the following section.

4. The 7, X 7, model

We would now like to discuss another Calabi-Yau ori-
entifold model with N = 1 supersymmetry, the type IIB
T®/(Z, X Z,) orientifold [24]. We have not worked out all
the details, but we intend to stress its qualitative features
here. In particular, we shall point out why the one-loop
correction in the Z, X Z, model relevant for the correc-
tion of the inflaton mass does not cancel out, as it did in
the previous section for Zg.m

This orientifold is defined by the action of the three
orbifold group elements ®,, p = 1,2, 3, on T6 =T X
T3 X T3, where each @, is a reflection along two 2-tori,
leaving the torus T% invariant. The orbifold symmetry
does not impose any further requirements on the back-
ground tori, such that all three complex structure moduli
remain in the spectrum, together with the generic three
complexified Kidhler parameters. Thus, the untwisted
moduli space consists of a total of six copies of
SU(1,1)/U(1) plus one for the dilaton [58]. When the 3-
form fluxes are turned on, the complex structure and the
string coupling are assumed to get fixed. But compared to
the previous Z; example, the modulus U that appears in
the relevant one-loop corrections to the gauge coupling is
not fixed universally by the orbifold symmetry, and can,
without fluxes, take any value. In analogy with the Z, K3-
orientifold there are four types of untwisted tadpole
divergences in the Klein bottle, canceled by 32 D9-branes
plus three sets of 32 D5 ,-branes each, wrapped around T2
respectively. Together they support the maximal gauge
symmetry Sp(8)pg X Sp(8)ps, X Sp(8)ps, X Sp(8)ps,.”'

Again, we are now only interested in that part of the
one-loop amplitude that depends on the Wilson lines on
the D9-branes and on the gauge field background on one of
the three stacks of D5 ,-brane. The latter is T-dual to the
stack of D7-branes that undergoes gaugino condensation,
while the other D5-branes are ignored for the moment. It
is evident that again, the only relevant amplitudes are

3We hope to give a more complete analysis of this example in
a forthcoming publication [60].

3 This phenomenologically less interesting gauge group was
actually one of the main reasons to concentrate on the Zf
orientifold in the first place. It has, however, also been argued
that the gauge group may be changed to a group of unitary
factors in the presence of discrete torsion [23]. The Z, X Z,
orientifold was also the starting point of constructing super-
symmetric intersecting brane models in [61], which do possess
unitary gauge symmetries plus chiral matter. Hence, it may
turn out that this model allows for better phenomenology than
the standard solution with symplectic gauge groups suggests.
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(©,) (©,)

AG + AP+ Ay + A5 (80)
where the upper index (@ ,) stands for the insertion of ®,
in the trace, and (0) for the identity as before. Formally,
i.e., up to the concrete charge matrices to be used in
evaluating the traces, this amplitude is again identical
to the last equation of (37) up to a different overall
normalization, which this time is 1/4 compared to 1/2
(or 1/6 in the Z; case). Now using the solution of [24] for
the operation of the orientifold group elements on the CP
indices, one can pick matrices yg 9 and yg s, with ei-
genvalues *i, that after diagonalizing become again
identical to yg¢ and ygs of the Z, K3-orientifold as given
in (A9) with N = 16.>? Given this, we now would have to
determine the consistent forms of Wilson lines on the
p-th 2-torus, defined by matrices yyyo,, along the same
lines as for Z¢, and find the patterns of gauge symmetry
breaking.*> However, for the time being, we will not go
through the procedure explicitly, leaving it to future work
[60], and simply follow geometric intuition. Thus, we just
use the analog of (77), but now summing over the images
of the elements of Z, X Z, instead of Zj.

The two orbifold elements ®,, g # p, only act by
reflection on —[F%,, and so on d;. Thus the final form of
the relevant one-loop correction reads

Jq(g(;) +Jrz\(0) +ﬂ(ﬂ) +ﬂ(ﬂ)
1

L 32m) 1VG Fn iy > 9=

q#p m=0

iy + 9@

[\)

81)

where now 5?“ = —a;. Since the theta function is even,
all contributions add up. In particular, the outcome is
identical to our result (37) for the N° = 2 model, up to
an overall numerical factor. The expression for the cor-
rection to the gauge coupling on the stack of D5-branes
labeled by a then reads

4772

6(?) = WUZZH (a;)}

Zn In| & (4;, U)| + .
(82)

Unlike in the Z; model, the terms quadratic in A; do not
cancel out. This leads to a new contribution to the inflaton
mass, as we will discuss in the next section.

3See equation (4.7) and the table above (4.15) in [24]. Pick
p = 1 which 1mphes Y0,9 = Ye,5, = —M; with the claimed
property M2 = —13,.

31n [24] it was already argued that moving D5-branes out of
the fixed points of the orbifold group would still lead to
symplectic gauge groups on the various stacks.
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IV. INTERPRETATION

In this section we would like to interpret our results of
Sec. III and draw some conclusions for inflationary mod-
els in string theory. For readers who decided to skip
Sec. 111, a few key facts from that section will be repeated
here. We state our results for the N =2 and N =1
cases in turn. For 2N = 2 we find a clean solution to the
rho problem and for N' = 1 we describe the implications
of our results for the inflaton mass problem. Let us also
remind the reader that, as already stated in the introduc-
tion, the results have to be understood as giving a quali-
tative picture. Our toy models are not close enough to the
actual KKLMMT model to allow for reliable quantitative
predictions (e.g. our calculation of the one-loop correc-
tions to the gauge kinetic function of the 7-branes in
Sec. III neglected the warp factor and the fluxes; it would
be very nice, but with present techniques very difficult, to
perform our calculation in a more realistic setting). We
will come back to this issue at the very end of this section.

AN =2

Let us start by reviewing the N = 2 model that we
discussed in Secs. III B and III C. Readers who have gone
through these sections can skip the following paragraph.

The model under consideration is the type IIB T*/Z, X
T? orientifold [19-21], i.e., we consider an orbifold limit
of K3 X T2. It contains 32 D9-branes and 32 D5-branes,
wrapped around the torus T2. This leads to a gauge group
SU(16)pg X SU(16)ps if all 5-branes are at the origin of
the T* and there are no Wilson lines on the 9-branes. The
closed string spectrum contains hypermultiplets and vec-
tor multiplets but for our purposes we can restrict to
vector multiplets only. In addition to those from the
open string sector, there are three vector multiplets
from the closed string sector, whose complex scalars are
given by the complex structure modulus of the torus, U,
and the two scalars S and §’, given in (16) for the case of
vanishing Wilson line moduli and in (20) for the case
with corrections due to nonvanishing Wilson line moduli
[43,44]. The scalars in the vector multiplets of the open
string sector, on the other hand, are given by the Wilson
line moduli on the 5- and 9-branes along the torus and are
defined according to (21). Turning on Wilson lines breaks
the gauge group to a product of unitary groups (25), where
the overall U(1) factors are anomalous for both the 5- and
the 9-branes and therefore become massive [49]. In the T-
dual picture (with 6 T-dualities along all compact direc-
tions), the breaking of the gauge group can be understood
in terms of D7- and D3-branes that are moved away from
the origin of the torus T2. The main results are formulas
(43) and (44), which give the one-loop correction to the
couplings of non-Abelian gauge groups on the 5-branes,
in particular displaying the dependence on the open
string scalars of both 5- and 9-branes.
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Having repeated the relevant aspects of this model, let
us now draw some conclusions for the rho problem de-
scribed in the introduction. To do so, we have to make use
of the relation between the variables common in the
inflationary literature (e.g. in the KKLMMT model) in-
troduced in Sec. II and those common in the orientifold
literature used in Sec. II1L** The volume modulus p cor-
responds to the field S’ and the combination of the D3-
brane scalars ¢ denoting the inflaton field corresponds to
the Wilson line modulus A on the D9-brane which is T-
dual to the mobile D3-brane, i.c.

p — S, ¢ — A (83)
Other fields present in the T*/Z, X T? orientifold are the
modulus U, which corresponds to one of the complex
structure moduli that are supposed to be fixed in the
inflationary models by fluxes, the modulus S, which, in
the T-dual picture, gives the gauge coupling on the D3-
branes, i.e., the dilaton, which is also supposed to be
fixed, and finally the Wilson line moduli other than those
corresponding to the inflaton. These do not have any
direct counterpart in the original KKLMMT model,
which only considered a single mobile D3-brane. In
Sec. III we denoted all Wilson line moduli (including
the one corresponding to the inflaton) by A;, where i
enumerated the different stacks of branes. In the follow-
ing, we will use the notation introduced in Sec. II, be-
cause we want to interpret our results in the context of
inflationary models in string theory. In order to translate
the formulas from Sec. 111, we have to use the dictionary
just outlined, in particular (83). However, we continue to
use the formulas derived in the T-dual D9/D5-picture, and
it is understood that the D9-branes (resp. D5-branes) are
mapped to D3-branes (resp. D7-branes) after six T-
dualities. Our formulas equally hold in the T-dual (D3/
D7) picture if one maps the fields in the usual way (see e.g.
[63]). At most instances we give our formulas including
the other Wilson line moduli (corresponding to positions
of further D3-branes in the T-dual picture that are present
for consistency in our toy models but not in the
KKLMMT model). We denote all Wilson line moduli
collectively as

¢, — A, (84)

where as in (21) the ¢; are related to the D3-brane
positions (a;)4 and (a;)s on the third torus according to
¢; = Ula;)s — (a;)5. Note that the index i on ¢; has a
completely different meaning now than the index in (8),

3Strictly speaking, the KKLMMT model has 2N” = 1 before

supersymmetry breaking through antibranes and in this sub-
section we are considering our N = 2 orientifold example.
However, the notational dictionary works the same way as in
the N = 1 examples of the next subsection. Also, inflation
based directly on K3 X T? compactifications was studied in
[3,53,62].
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where the i denoted the internal direction. Here, it enu-
merates the stacks of branes; all ¢; correspond to loca-
tions of the branes along the third torus.

The general form of one-loop physical gauge couplings
in string theory is given by
M,

b
g7 (W) = Re(f) + 7 ln< > > +o, o (85)

where b is the one-loop beta function coefficient and the
dots stand for moduli-dependent terms that are not real
parts of holomorphic functions, as opposed to the Re(f)
term. This first term is the Wilsonian coupling from
integrating out heavy fields, whereas the second term
and the nonholomorphic contributions are due to light
fields, with masses below the scale w?> at which the
coupling is probed. Formula (85) is valid both for all
gauge couplings in N = 1 (where f is the gauge kinetic
function) and for non-Abelian couplings in N =2
supersymmetric theories (in which case f is related to
the prepotential). Abelian gauge couplings in N =2
theories are a bit more complicated due to a possible
mixing of the Abelian gauge fields with the graviphoton.

For simplicity, let us now consider the case with van-
ishing Wilson lines on the 5-branes, such that the 5-brane

gauge group is the unbroken SU(16), i.e., we take all a, =

0. Moreover, in order to make contact to the formulas of
Sec. III B, we assume that the 9-brane gauge group is
completely broken to its Abelian subgroup so that all
N; = 1 and all g; are distinct and nonzero. In this case
we can read off the one-loop corrected gauge coupling of
the 5-brane gauge group from the sum of (18) (with o’ =
1/2) and (43), using y ~ u?, and find

1
—®y./ E 2
e 104/G + gUz ' (a,»)4

1
) a2
01(¢1’ )

16772Z S0

+ ﬁ In(87° u2V/GU,), (86)
e

where U, = Im(U). Comparing the first two terms on the
right-hand side with (16) (again for o’ = 1/2) and (20)
we see that they combine to Re(—ip) with the modified
field p. The third term on the right-hand side of (86) is an
additional one-loop contribution to the gauge coupling
which is the real part of a holomorphic function in the
variables U and ¢;, and the last term corresponds to
contributions from massless modes that are not given by
the real part of a holomorphic function. From (86) we
read off

fo =~ lnn(U) (87)

Zlnﬁ1(¢,, U)+—

35Cf. [12] and references therein.
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involving the modified Kidhler modulus but also includ-
ing an additional dependence on the 9-brane scalars. This
solves the rho problem described in the introduction. Of
course, we could have done the same analysis with 5- and
9-branes exchanged, in which case we would have found
that the 9-brane gauge kinetic coupling depends holo-
morphically on the modified field S of (20).

BN =1

There are two different N' = 1 models that we con-
sidered in Sec. III D, the TTG/Z’6 model [18,23] and the
T®/(Z, X Z,) model [24]. Again, readers already famil-
iar with that section can skip the following two
paragraphs.36

The T®/Z) model is defined in terms of the eigenvalues
exp(2miv), v = (1, —3,2)/6, of its generator @. The open
string sector is similar to the N = 2 model just dis-
cussed, i.e., it has 32 D9-branes and 32 D5-branes
wrapped around the third torus. This leads to a gauge
group [U(4)> X U(8)]py X [U(4)?> X U(8)]ps. The moduli
space of the untwisted moduli is given by three copies of
SU(1, 1)/U(1) for each of the three generic Kdhler moduli
of the three 2-tori, and one extra copy each for the dilaton
and the complex structure modulus of the second torus.
The complex structures of the first and the third torus,
around which the 5-branes are wrapped, are no moduli.
Rather, they are fixed to some rational values.’” In this
case the dependence of the one-loop correction to the 5-
brane gauge couplings on the 9-brane Wilson line moduli
is given in (78) and (79).

The Z, X Z, model is defined by the action of the three
orbifold group elements ©,, p = 1,2, 3, on T6=T2 X
T3 X T3, where each ©,, is a reflection along two 2-tori,
leaving the torus T% invariant. Now the open string sec-
tor is more complicated. In addition to 32 D9-branes
there are three sets of 32 D5-branes, wrapped around
the three tori that make up the T®. The resulting gauge
group is symplectic, specifically Sp(8)pyg X Sp(8)ps, X
Sp(8)ps, X Sp(8)DS3.38 Another difference to the Z
case is that the complex structure moduli of all three
tori are moduli and therefore the untwisted moduli space
consists of six copies of SU(1, 1)/U(1) for the geometric
moduli and one copy for the dilaton. The dependence of
the one-loop correction to one of the S-brane gauge
couplings on the 9-brane Wilson line moduli is given in
(82).

We start the discussion of our results with the Z
model. Adding (78) to (18) we derive

*As for the N =2 case also here we use the notation of
Sec. II. The dictionary to the variables of Sec. III is basically
the same as the one given in the last subsection.

3For the moduli spaces of the untwisted moduli in N = 1
orientifolds see e.g. [58].

38Note footnote 31, however.
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o1
8(s) T 32

1
—®y - . )2 )2
e P1yG + o U, E,- nil(a); + (a;)s

2
~(@sa)s] = 3o 5 Ym S ldy (89", )P
i m=0

+..., (88)

where compared to the N' = 2 case there is an additional
factor of 1/3 in the tree-level contribution due to the
smaller volume of the orbifolded torus and n; denotes
the number of 9-branes in the i-th stack. This formula is
valid for all three factors of the gauge group U(4)? X U(8)
on the 5-branes. The dots stand for further one-loop
corrections that do not depend on the Wilson line moduli.
These could in principle be extracted from [18] and con-
tain terms that would depend on the only complex struc-
ture modulus U’ of the model, in the form In|n(U’)|,
whereas the U appearing in (88) is the complex structure
of the third torus, which is not a modulus, as we already
mentioned.

In the N = 1 case we do not know of a derivation of
the proper Kiéhler coordinates in the presence of open
string scalars from a KK reduction. The analogy to the
N = 2 case suggests that the sum of the first two terms
in (88) should form the imaginary part of the Ké&hler
modulus (of the third torus) in the Z; model, i.e.

1
Im(p) = s

+(a))? — (a;)4(a)s] (89)

Geometrically, this just means we propose to define the
N = 1 version of the corrected coordinate by summing
over the three ®-images of the correction that appeared
in N = 2, and properly normalized. This is supported by
the fact that the one-loop correction included in (88)
originates from open strings stretched between 5-branes
and 9-branes that, for large enough Wilson line moduli,
do not have any light fields in their spectrum. Thus they
only contribute to the Wilsonian gauge coupling, i.e., their
contribution to the gauge coupling should be the real part
of a holomorphic function in the proper Kihler coordi-
nates. In addition, (88) contains further dependence on
the open string scalars, one of which is meant to be
interpreted as the inflaton. Assuming that the Wilson
line moduli are still given in the form (21), we read off
the gauge kinetic function for the D5-brane gauge groups

1
—®, L (2
e P0G + P U, E,- n;[(a;);

1 2
s ) om
f(s) = p —2477-2 Ei n; ngolnﬁl(d)i y U) + ...

1
= —ip — WZniln(cﬁi) + 0% + ..., (90)

where, again, we neglected one-loop corrections that are
independent of the Wilson line moduli and the second
equality comes from the fact that the Wilson line moduli
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on the images under O are related by multiplication with a
phase, ie. ¢© = e2™/3¢p. This implies that 2" +
()2 + (29)>" = 0 for all integers m that are not
multiples of 3. A few comments are in order here.

(i) First, we see that (90) contains the modified Kahler
modulus (in fact, it was defined so that this would be the
case). This is the solution to the rho problem that we
propose in the N = 1 case. Note that there is a slight
difference to the model of KKLMMT. In their case only
one Kéhler modulus is present, whereas in our case there
are three untwisted Kidhler moduli. It is the one measur-
ing the volume of the third torus that enters f(s) at tree-
level, so this is the relevant Kdhler modulus for the rho
problem in our case. This modulus is mapped via T-
duality to the volume of the four-cycle (transverse to
the third torus) around which the 7-branes (the T-duals
of the 5-branes) are wrapped.39

(ii) Moreover, the gauge kinetic function (90) blows up
for ¢; — 0. The beta function coefficient of the
SU(8)-factor of the 5-brane gauge group without Wilson
line moduli is H(SU(8)) = —6 [18] and it can only be-
come more negative if bifundamental matter turns mas-
sive for nonvanishing Wilson lines. Therefore the gauge
group is asymptotically free, and at low energies a non-
perturbative superpotential due to gaugino condensation
is generated. From (2) we read off

1
Wnonpert ~ exp{a[ip + WZ”I ln(¢z)

+O(5) + }} o1)

As a is positive for a negative beta function coefficient b,
we see that the nonperturbative superpotential vanishes in
the limit when, in the T-dual language, the 3-branes hit
the cycle on which the 7-branes are wrapped, in accord
with the results found in [64].*°

(iii) Furthermore, the superpotential develops an ex-
plicit dependence on the open string scalars at one-loop
level, hence the shift symmetry discussed in [4,53,65] is
violated by the one-loop corrections.

(iv) Finally, there is no quadratic term in the open
string fields in (90). Thus the one-loop corrections to
the superpotential in the Z model turn out to be incapa-
ble of reducing the inflaton mass. However, this is just an
accident occurring in this model due to the Z5 symmetry
of the Wilson line.*'

*Note that for this mapping of volumes, it is important that
there is a factor of e~ %1 in the definition of p, cf. (16).

4OStrlctly speaking, it is no longer valid to integrate out the
modes from 59 strings when determining the gauge kinetic
function in this limit; one has to introduce an IR cutoff as in
(39).

“'We do expect a mass term to appear also in this model if one
deforms away from the orbifold limit, but we will not do so
here.
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This last problem is absent in the Z, X Z, model to
which we turn now. In this case the one-loop corrected
gauge coupling of one of the 5-brane gauge groups is

e AN CAS IOV

‘mZ_mlnlﬁl(m Ul + ..., ©2)

where, as in the Z’6 model, the tree-level term contains an
additional factor (1/4, this time) due to the orbifolding of
the torus and the dots stand for all the one-loop correc-
tions that do not depend on the Wilson line moduli. In
analogy to [14,18] we expect them to again include terms
of the form In|np(U"))| for all three complex structure
moduli U(P), p = 1,2, 3. Formula (92) holds true for each
of the three different types of 5-branes, and JGand U €
{U} denote the volume and complex structure of the
corresponding torus around which they are wrapped. To
keep the notation simple we just focus on one of them,
without explicitly indexing the coupling or the volume
and complex structure of the torus. Moreover, (92) also
holds if the gauge group on the stack of 5-branes is broken
to some smaller Sp group by moving some of them out of
the origin.

As above, we suggest that the Kdhler modulus for the
torus, around which the 5-branes are wrapped, is modi-
fied at one-loop level to

e ®0J/G +—U22n a; )4 (93)

Im(p) =

mf

and the gauge kinetic function is given by

fis = —ip — #Znilnﬁl(@, U)+.... (94)
To calculate the beta function coefficient of the orienti-
fold model we need the charged spectrum derived in [24].
At a generic point in the moduli space of the N = 1
supersymmetric theory considered there, all bifundamen-
tal matter is massive due to Wilson lines, and the only
massless charged matter resides in the vector multiplet
and three chiral multiplets transforming in the antisym-
metric representation of the unbroken Sp group of the 5-
branes under consideration. Since the KKLMMT model
furthermore involves (at least spontaneous) supersymme-
try breaking, one would expect that mass terms will be
generated even for these matter fields, since only chiral
fermions should generically remain massless.*> In any
case, if the rank of the symplectic gauge group has been
broken to a small enough value, the beta function is
negative even with the antisymmetric matter remaining

“*For possible forms of soft breaking terms in (orientifold)
models with D-branes, see [30,38].
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massless, and gaugino condensation occurs at low ener-
gies. Substituting (94) into the formula for the resulting
superpotential (2) now gives

} 1
Wnonpert ~ exp{a[lp + mznl 1nl91(¢i: U) +.. ]}
95)

When expanded around generic values for the open string
scalars, the potential that follows from this superpotential
in general possesses both linear and quadratic terms in the
¢;, whose coefficients depend on all the complex struc-
ture moduli. Thus the inflaton mass correction depends on
the values at which the complex structure moduli are
fixed by the background fluxes. It is then plausible that
it is possible to fine-tune the fluxes to achieve a correction
that leads to a value for the mass that is small enough to
allow for slow roll inflation, a possibility that was antici-
pated in [1]. However, to obtain a conclusive answer, the
one-loop corrections to the Kéhler potential have to be
known as well. Since they are not known, we hope to
come back to them in a future publication [60].%3

Our lack of knowledge of the corrections to the Kihler
potential notwithstanding, and ignoring the fact that the
Z, X Z, orientifold is at best a toy model for the actual
KKLMMT setup, let us conclude by combining our result
(95) with the analysis of [1],** in order to get a rough
picture of fine-tuning the inflaton mass. To do so, we focus
on a single dynamical D3-brane (i.e. n = 1 in (95)) whose
scalar ¢ we interpret as the inflaton field. We then want to
expand the superpotential to quadratic order in ¢. In the
KKLMMT model one considers a D3-brane that is well
separated from both the D7-branes and the anti D3-branes
at the tip of the throat. In principle, any such value would
be a valid expansion point. In practice, however, it is most
convenient to perform the explicit expansion of ¢ (¢, U)
either around ¢ = 0 or ¢» = 1/2. As we do not want to
consider the special point ¢ = 0, at which the gauge
symmetry gets enhanced and new massless states appear,
we choose to expand (95) around ¢ = 1/2 for definite-
ness. Shifting ¢ — ¢ + 1/2, so that ¢ now denotes the
fluctuations around 1/2, we can use the relation (¢ +
1/2, U) = 9,(¢, U) and (C6) and (C9), to expand

77.2
mw+uzm=@@m@—gﬂum+wmw
+93(0, U)] 9> + ) (96)

Substituting this into the formula for the superpotential
(95) we obtain

*3One-loop corrections to the Kihler metric in the Zj model
without Wilson lines were calculated in [66].
44See their appendix E in particular.
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W WoU?) + WP, e (1 = ZTED)
+%mm+%mmmu,> 97)

where we reinstated the contribution W, to the super-
potential coming from the 3-form fluxes, and the function
C depends on all three complex structure moduli U?)
and the Wilson line moduli ¢; other than the inflaton field
¢. In principle the additional dependence of the non-
perturbative superpotential (and possibly also of the
Kihler potential) on the complex structure moduli would
require reminimizing the potential with respect to them.
It is conventional, however, to assume a separation of
scales, such that the complex structure moduli receive
a flux-induced mass term that is much bigger than the
scale of nonperturbative physics leading to gaugino
condensation. In this case one can assume that the addi-
tional U(p)—dependence in (97) does not alter their values
at the minimum very much, so that they can be consid-
ered constant. This is also the philosophy that we follow
here.

Comparing (97) with formula (E1) of [1]*, ie. W =
W, + Ce®P(1 + §¢?) in our notation, we read off

5= — %[EZ(U) +930,0) + 9}, )l (98

This quantity determines whether the one-loop correc-
tion to the superpotential can help to lower the inflaton
mass or not, as can be inferred from (E8) of [1],

my _ 5 2|Vags| A (99)

2 Vs

where ¢ is the canonically normalized inflaton field,

A=p—-2p with
5 1
B =—— = [ExU) + 950, U) + 90, U)]  (100)

and V45 and Vg are explained in [1]. (However, the mass
formula (99) does not include any contributions from one-
loop corrections to the Kihler potential.) Obviously, if A
is positive for some value of U, the inflaton mass is
lowered. Note that neither the value of the beta function
coefficient nor the function C(U"), ¢;) enter into A and
so it is insensitive to the uncertainties with which these
quantities are afflicted.

“Note that our a corresponds to their a, our C(U), ¢;) to
their A and there is a relative factor of i in our definition of the
Kihler coordinates as compared to theirs.
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In Fig. 4 we plot the dependence of A on the value of U,
which, for ease of presentation, we assume to be imagi-
nary at its minimum, i.e., we assume that Re(U) = 0 is
consistent with minimization of the flux-induced poten-
tial. It is clear in the plot that for a large range of values
for Im(U), the function A(U) is positive, so if the complex
structure is stabilized in this range, the inflaton mass is
lowered by the one-loop corrections to the superpotential.
The explicit value also depends on the values of the other
complex structure and open string moduli, as well as on
the beta function coefficient and the one-loop corrections
to the Kihler potential. Moreover, our analysis is not able
to take into account any possible effects of the warp
factor present in the actual KKLMMT model. Because
of these uncertainties, we refrain from giving a numerical
correction to the inflaton mass, which would require
computing the value of |V4sl/ Vs in (99) by minimizing
the full scalar potential.

Nevertheless, our conclusion is that the open string
one-loop corrections to the superpotential should, in
general, provide the added flexibility needed to fine-
tune the inflaton mass to small values. In the philosophy
of [1,2,7] this fine-tuning is achieved by choosing appro-
priate values for the 3-form fluxes, because their values
determine the warp factor (and thus the effective tension
of the anti-D3-branes at the tip of the throat) and the
values at which the complex structure moduli are fixed.
(As stressed on p. 37 of appendix F in [1], this fine-tuning
is only numerical at the 1% level.) The possibility to lower
the inflaton mass in the KKLMMT model via moderate

02 T T T T T T T T T T T T

-0.1 :

FIG. 4. The function A of Eq. (72); for positive values the
inflaton mass is lowered by the one-loop corrections to the
superpotential.
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fine-tuning was already anticipated in [1], assuming the
superpotential may contain terms quadratic in the inflaton
field with moduli-dependent coefficients. Even though
our calculation is not realistic enough to make this
completely quantitative, the merit of our result is to
show that terms quadratic in the inflaton field with
moduli-dependent coefficients do indeed appear in the
superpotential in our explicit string theory model. They
are induced by open string one-loop (annulus) correc-
tions to the gauge kinetic function on the D7-branes, and
this gauge kinetic function appears in the superpotential
after gaugino condensation. We believe this qualitative
result to be generic in models with D3/D7-branes, not an
artifact of the simplifying assumptions in our explicit
calculation, and that it will survive in more realistic
cases.
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APPENDIX A: ONE-LOOP AMPLITUDE FOR
T4/7, X T?

In this appendix we summarize the technical steps to
compute the relevant one-loop amplitudes. The conven-
tional method to incorporate the background gauge fields
into the amplitude is to introduce them in the loop chan-
nel by replacing the momentum integration in the direc-
tions with a magnetic background field by the degeneracy
per unit area of the Landau levels, and further shift the
modings of the string world sheet fields by

1
€, = — arctan(2wa'F,)
T

(AD)

1
€; = — arctan(Q7a’F;),
T

according to the sigma model boundary conditions
[16,17]. We actually prefer to compute the diagrams with-
out the gauge field in the loop channel, and then later
directly implement its effects on the tree channel result.

The open string amplitudes in (12) are defined in the
loop channel
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. — &4 ot Q1+C=DF 1+ @ —2mid,, — ®, ®),
M_(4V772a’)2[ ST R<2 SUSELPE ) /—g4f P Ol[zmi (—a)+ S M q):|,

0 7

2 V8 [oo dt ™S~ R(l 1+ (=DF 1 +® 2mﬂop>

(4m*a’)? Jo (2t)° 2 2 2 (A2)
=T [ s [Zw")(q) + S AW + SALW + A%a]
k 0,1 a,b

where k = 0, 1 stands for the power of © inserted in the trace. The contributions with k = 1 originate from the twisted
components of the relevant boundary states, and are thus called twisted contributions. The arguments of theta functions
are abbreviated ¢ = e 2" and § = e *"' (used below), i.e., we leave out the second argument of ¥{%](v, it) or
1‘}[2](1/, 2il). In the loop channel, the presence of the background gauge field amounts to a shift of the first argument
v of the theta functions by e;, etc., This implies that we can ignore the N = 4 “subsectors” of the amplitude, since

MO MP, A0 A = 0(1) + O, €4) (A3)

iy’

by (C12). The constant tadpole O(1) cancels after adding up all contributions to the one-loop amplitude. So we are
interested in the quadratic term in the expansion of

S M0 + ZN(O) n Zﬂm +5Al+ T TP+ ab) (A4)

i a,b k=0,1 i,a

To implement the Wilson lines, we use the notation introduced in Sec. III C, and write bold A for the tensor-valued

quantities. As well, we extend the usual matrices 7y to this notation and formally write a single trace (cf. the discussion
below (31)). The results are

M)+ M = s (gwiaf)ztz tr[yai'ygiﬁ[zé"]((), 201G ) + Yy, 910, 2itG_1a’)i|
XD Map W’
«p n° ;9]

A+ AL = W YoiY @,ﬁ[ 210, 2irG™ 1 a’) + vouv ;}ﬁ[Aﬂb](o 2itG~ a/)L nw%,
a2 9[a+1/272

Al + Ay = m viva U0, 2067 o) + v, 9110, 200G ) }Zﬁw%

Ay + AL = m Yory 020210, 211G @) + vou v, 9410, 201G a/)L - ﬁ[gi’?éﬁﬁ]z

(AS)

Transforming to the tree-channel by ¢ = 1/(21) for the annuli and ¢ = 1/(8]) for the Mdobius strip, one finds the
amplitude in a form

M= [ ‘”kzm[ _MS")<—q)+zﬂM£ﬁ<—q)}
! “ (A6)

k=0,1

A=y fay [zﬂ@(q) * S ARG + SIALG + Al
a,b
with (again focusing on the N = 2 sectors that contribute to the gauge coupling corrections)
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sy 4 g aere e
MY + MO = ~ GRaR VGa'~ tr[yﬂolym)l I[UN2A,, 4ilGa' ") + vl vE, 024, 4ilGa’ 1)}
AP, P
Znaﬁ T
1 PN
(1 (1) . _
A+ AL = e VO Yoy oOIEIA HGa ) + Yoira) A, itGal ) |
PRy~ 1/2-BP
XS s [a]6 [0 B ] ’
ap n 19[1/2]
- . 1 61 I LTI, Ll
() () -1 —1,970 : -1 @ a+1/2
P+ A0} = g YOt it AR 1600 [ x S map =S
1 I LR PP
) ) — 1 -1 1/2+a
‘ﬂia + ‘Aai = 8(877—26‘(/)2\/6 tr['y.,‘y@) 19[ ](Am, ilGa )i| X C%T]aﬂ 619[8]2 (A7)
The Klein bottle is normalized such that the untwisted voi = diag(0,...,0,ily, —ily,0,...,0),
tadpole cancellation (which involves also contributions %rt—’ 1 ‘
from the N' = 4 sectors that we did not write out in (A7)) biemmes (A12)
is achieved with Yoo = diag(0,...,0,ily , —ily ,0,...,0).
p. entries

drly) = Yuly,) = Y ulyglvg)

= Ztr(’yi_léa’y};@a) =32, (A8)
which is solved by
Yi = dlag(O, e ,.0, 121\/’,, 0, ey O),
. p; entries (A9)
v, = diag(0, .. 0 1y,0,..., 0),
Pq entries
and
Yai = Yai
75}7}11 = diag(0, .. O 1oy, 0, ..., 0),
) y p; entries (AIO)
Yaea = Yaow
yﬁ}aa'yg@a = diag(0, ..., 0, Ly, 0, ..., 0),
Pp. entries

with the same p; and p, as in (29) and (30). The twisted
contribution vanishes for

Ztr(7’®1) = > tu(yeq) = 0. (A1)

The solution to the latter condition can be achieved by
[18]

The notation assumes that all 32 X 32 CP matrices are
subdivided into the (2N;) X (2N;) blocks (and similarly
for a) referring to the factors of the gauge group (25),
such that the matrices in (A9) and (A12) exactly act on the
blocks iand a We are using the conventions of [23], such
that 7@1 = 'y®a —13, and later similarly for the Z
model y.g 7.5 —13,. In this basis, the operation of
Q) on the CP labels is off-diagonal, given by [23]

. Oy, 1y . Oy, ily,
Yoo = ®i< 1N,- ON,- ): Yas = ®a< _ilNa ON“ )
(A13)

To incorporate the background gauge fields, denoted F as
in Sec. IITC, we make the replacement (cf. the discussion
in [67])

tr[yﬁ[g](& ilGa’_l)} [ 10

— tr[‘}’[—Z sin(ﬂ'e)]ﬁ[g](& i1Ga') ﬁ[%](e) }

SN )

Effectively, we have added phase factors for the world
sheet oscillators along the space-time directions, where
the magnetic field is pointing, and the phase prefactor in
the numerator cancels against that of the denominator.
Expanding the prefactor —2sin(7e) in F to first order
gives back the semiclassical result —47a’F, in accord
with point particles in a background magnetic field. Using
the identity (C15), one can expand the oscillator sums in €
and up to O(F*) we find
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’ © T @)

+Y0nY 0 ﬁ[g]@z&w 4ilGa' ") (2md'F,)? :|
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N 'tr[yﬂgi«y}l@iﬁ[g](z&,4ilGa’1)(27ra'Fi)2

'yolyolﬁ[ ](A,j, llGa’_l)(Zﬂ'a’F,-j)2 + 'yoa'yObﬁ[O](Aab, ilGa' ") (2ma'F, b)2:|

(Al4)

1 D _ -

AP+ Al = S VGa' 't
1 Mg

(0) 0 _ [~ 1—1 A1 9r01(A . -1 R )2
‘/,Z"ia + “ﬂ'al 4(877_2“/)2 Ga tr ’Yz'Ya ﬁ[o](Ala’ llGa )(277(1 Fm) :|r
~ ~ 1

(1 1 _— -
A+ A = TEEPE VGa'

For &’ = 1/2 and vanishing Wilson lines we recover the
formulas given in (3.18) of [18] if in the final result we
take into account the different factors which were fac-
tored out in (2.1) and (2.7) of [18], and we correct their
formula (3.11) by adding an additional factor 1/2 in the
exponent, which leads to an additional factor of 2 on the
right-hand side of their (3.18).

APPENDIX B: ONE-LOOP AMPLITUDE FOR
T6/7,

Here we collect some formulas which are relevant
for our discussion of the Zg orientifold in Sec. IIID.

vomodﬂ[%m, iIGa' '>(2m'FM>2}

Q1+CDF1+0 +--

The one-loop amplitude without Wilson lines can be
directly copied from [18], taking into account the
remarks at the end of the previous section, and adapt-
ing to our notation. We include them here for complete-
ness, and to make our statement concrete that the part
important for the discussion of the rho problem is just
identical to the Z, result, up to an overall numerical factor
1/3.

We use an analogous normalization as for the Z, model
and absorb all relative factors into the integrands of the

amplitudes, writing

3\4=J_—g4/°° ;

@ a’)? Jo (2t)3TNS R(

-t ®5 6_27”}["?
2 6

- \/——g4/ Z[ZM“‘)( q) + ZWI(")( q)}

A = 84

11+(-DF1+0+ -

(BI)

TNS R<

B (477'2a’)2j;) (2t)3 2

- [

-t ®5 e*Zﬂ'lf]‘[“p
2 6

[ S AYG) + T AN + STAY () + ﬂtg’?w)]}
a,b i,a

The only amplitudes that depend on the D9-brane Wilson lines on the third 2-torus and on the background field strength

on the D5-branes are given (to order O(F?)) by

1

A4 40 -~
ta a“ 12(872a’)?

~ - 1
a a 12(8mal)?

In the Z; model there will also emerge a dependence of
the correction to the gauge couplings on the moduli of the
second 2-torus, whose metric we denote G,. This is
evident from the classification of all amplitudes in Table L

VGa ] v Yo WA G el |

VGa' ! tf vy, R 162k |

(B2)

Explicitly, the other contributions are given by (sup-
pressing the JN' = 4 sector again, and leaving out terms
that can be restored trivially by using the symmetry
between 9- and 5-branes)
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MO = —7\/Ea”1tr<y§%i(yggi)3ﬁ[g](6, 4ilGa’*')(27Ta’Fi)2>,

3(872a’)?

JGa'~ 1tr<'y®l'y®3ﬂ[0](0 i1Ga'~ 1)(27Ta’F,/)2>

ML) 2 (Y8 o) 70k (2ma'F; )2)1_[ (k )iﬁ/[l/zlfkv]( )
i = tr((Ynei) Yoo l7ma sin(wkv; —
3m(8ma’)? aei)' Yoo —1 19[1/2142/(1, 10)°
= (k= 8 _ _ 51 _ . .
ﬂVlEk 24 = W\/Gza’ 1tr<(y5®i)kyﬂl(i)i19[g](0, 4ilG,a’ l)(27ch’Fl~)2> X sin(wkv,) sin(7kvs), (B3)
& (k=1,5) 1 '[1/2142k 1(0)
AT = ——————u(vh veRma'Fi)H) [ [ sin(mkv) > —— - —
J 3m(8mal)? OO ! l_[ Z 19[1/21421(1,[](0)
ﬁlg?:“) = 6(877&’)2‘/ G,a'” ltr<'y®l'y®J 19[0](0 ilGya'™ l)(27Ta/FU)2> X sin(wkv,) sin(7kvs),
- (= 2 O 5%, 00 2T, 0, )0)
.7[5.’;71’2'4’5) _ ——lztr('yoly@k(%ra’Fm)z) sin(7kvs) X < l/f/zk 1/20 kv )
37(877-& ) 0[1/2_](,,3](0) i=1 ﬁ[l/Z—kvi](O)
\
We have given these amplitudes only for vanishing The eta and theta functions we use are
Wilson lines. Turning on Wilson lines would lead to
nonvanishing first arguments 2A and A in the theta 124 i ;
functions appearing in M> and A, respectively. In (1) = ¢ l_[(l —4")
the other amplitudes (tw1sted by @é with k & {0, 3}), n=l (C1)

turning on Wilson lines would require summing over
fixed points of ®* on the third torus and inserting powers
of the matrices yy9 (71) (and the analogs yys for DS5-
branes), appropriate to the fixed point, into the traces cf.
[23,57]. Obviously, the combined set of k = 0, 3 ampli-
tudes is formally identical to the results (A14) for the
N = 2 model, up to the overall normalization factor 1/6
instead of 1/2, and the necessary replacements of the
appropriate matrices y. The rest will contribute terms
independent of the Wilson line moduli, for example, a
term ~ In|5(U’)|, where U’ is the only complex structure
modulus of the model as explained in Sec. IV. These
contributions could in principle be extracted from [18].

APPENDIX C: FORMULAS

Here we collect some formulas about elliptic functions
that are all available in various corners of the literature,
but usually in different notation. We make an effort to
consistently follow the conventions of the textbook by
Polchinski [46].

TABLE 1. Amplitude summary
SUSY Untwisted T? Amplitudes
N =1 B jlg;:l,s)’ ﬂEZ:l,ZA,S)’ Mgk:l,s)
N=2 2nd V.
N=2 3 AW A% k=Y

ij ia

ﬁ[g](;’ G) — Z eiﬂ'(ﬁ+5z)TG(ﬁ+o7)e2m’(1§+B)T(ﬁ+o7)’

iezN
where G is an N X N matrix with Im(G) >0, and g =
e?™™ The case N = 1 is the usual set of genus one theta

functions. For N = 1 and half-integer characteristics we
use the notation

I 7) =
0], 7) =

(v, 1),
194(7/’ T):

I (v, 7) =
IR, 7) =

(v, 1),
— N (v, 7).

(C2)
Comparing to another good source for theta identities, the

lecture notes by Kiritsis [68], we have 1‘}[2] = ﬁK[Z%g,],
where 9 is that of Kiritsis. A word of warning:

(v, 7) = K[w, 7) = v, 7)

1/2
= -9 7) =

”l?l (V, T).
The modular transformation property of (C1) that will be
relevant to us is

9[810, itG™") = VGr ¥29[Q(a, ir'G),  (C3)
where the G under the square root denotes the determi-
nant of the matrix G in the argument. The modular trans-
formations for N = 1 read
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19[%](1/ T) = e”i“(“+1)ﬁ[ﬂ_a"_1/2](v, T+ 1),
B51(w, 7) = (—im) V3e2mia sl o F\(v /5, ~1 /7).
(C4)

For the Mobius strip the following sequence of modular
transformations is useful:
1 1 1

T ——+ 2> —
T T -

giving
19[%](1}’ 7.) — (1 _ 27.)7l/2e7277i,86*77i1/2/(7'*l/2)

a+28 v T
o ]<1 —27'1— 2r>'

(C5)

For v-derivatives we use the notation 19/[;;](0, T) =
ayﬁ[;;](v, 7)|,—o. For the four special theta functions
(C2), we have

950, 7) = 940, 7) = 9;,(0, 7) = 0,

90, 7) = 27 (7)°. (C6)
In Sec. ITIIC, we also make use of the third v-derivative
(cf. (F14) in [68])

0, 7) = — 729 (0, 7)E,(7), (C7)

where E,(7) is the holomorphic second Eisenstein series,

00

Ey(r) = (C8)

Moreover, in Sec. I'V, we use the second v-derivative (cf.
(A.25) in [68])

2

90, 7) = — %02(0, T)E, (1) + ﬁg‘(O, T) + 1‘}2‘(0, 7]
(C9)
From the basic quartic Riemann identity
| 4 4
Ezﬂnaﬁ 1:! 91 7) 1:[ [1/3)(g}, 7)  (C10)
a number of useful identities follow. Here
, 1
g1 = 5(81 + g+ g3+ gu),
, 1
& = 5(81 +8 — 8 — &)
1 (C11)
g5 = 5(81 — 8 T 83— &)
, 1
84 :E(gl —8 — gt 8&)
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are those of [46]. (The identity holds for other sign
combinations as well.) For instance, setting g, = g, =
g3 = 0, g4, = v and expanding in v, one has

> 1ap?"[510)I5F(0) = 0. (C12)
aB

It will be useful to have the following slightly more
general theta identity, which allows for shifts not only
in the v argument (or equivalently in the 8 characteristic)
but also in the & characteristic. It can be proven from the
standard one using periodicity properties (see e.g. [68]).
For >';g; =0, > ;h; = 0, the most useful form is to in-
clude an additional spin-structure independent denomi-
nator:

9a)0) T, 9500 & 920

Zn 5 — _ Z 1/2+g;
210 RO T, 0 2 a0
(C13)

where we set the g; of (C11) to zero and relabeled the
other g; — g;_1,i = 2,3,4. We now turn to two useful
special cases.

Special case 1: hy = 0, hy = 1/2, hy =

—-1/2:
3 F'510) I 55, 10)9%210)9%./210)
2P0 9, N2 100,000, 0, 10)
_ ﬁ/[l/lz/fgl](o) + s ﬁl[1/20+g[](0)
ﬁ[l/IZ/Jrzgl](o) i=2 19}[1/20+g,~:|(0) .

(Cl14)

In applying this identity, it is useful to note that all theta
functions have periodicity one in the upper characteris-
tic.

Special case 2: Let us in addition to the previous
assumptions assume g; = 0 (untwisted first two-torus).
Then the last two terms on the right-hand side cancel, as
they must since 49;(0) must cancel out of the denomina-
tors for the expression to remain regular When h; =
g1 =0, we can denote h, = —h; =: h, and similarly
g» = —g3 =:! g. This is the familiar case that the sum
collapses to a number:

S'[E10)9[510) GOS0
%W“B n° [1/2”](0)19[‘/2 10) i

1/2+g 1/2—g

(C15)
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