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Field theory on noncommutative spacetimes: Quasiplanar Wick products
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We give a definition of admissible counterterms appropriate for massive quantum field theories on the
noncommutative Minkowski space, based on a suitable notion of locality. We then define products of
fields of arbitrary order, the so-called quasiplanar Wick products, by subtracting only such admissible
counterterms. We derive the analogue of Wick’s theorem and comment on the consequences of using
quasiplanar Wick products in the perturbative expansion.
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I. INTRODUCTION

Interest in quantum field theories with nonlocal interac-
tions has reemerged recently in the context of the analysis
of quantum field theory on noncommutative spacetimes.
Such spacetimes are studied for various reasons, one of
them based on the observation that Heisenberg’s uncer-
tainty principle along with classical gravity suggests that
the localization of an event in spacetime with an arbitrarily
high precision should be impossible. Based on this argu-
ment, a noncommutative spacetime (called the noncom-
mutative Minkowski space or quantum spacetime) was
introduced in [1]. Here, the ordinary coordinates are re-
placed by noncommuting ‘‘quantum coordinates,’’ i.e.,
self-adjoint operators q�, � � 0; . . . ; 3, with

�q�; q�� � iQ��;

subject to certain ‘‘quantum conditions,’’

�q�;Q��� � 0; Q��Q
�� � 0;

�12Q��Q��	�����2 � 16

8
PI

where 
P is the Planck length, such that for every state! in
the domain of �q�; q�� the following relations hold among

the uncertainties ��q�� �
����������������������������������������
!��q��2��!�q��2

p
:

�q0 � ��q1 	 �q2 	 �q3� 
 
2P;

�q1 � �q2 	 �q1 ��q3 	�q2 ��q3 
 
2P:

As shown in [1], the regular realizations of the quantum
conditions, i.e., those satisfying

ei�qei�q � ei��	��qe��i=2��Q�;

�; � 2 R4; �q � ��q�;�Q� � ��Q����;

are in one-to-one correspondence with the nondegenerate
representations of a C�-algebra which is isomorphic to the
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algebra E � C0�
;K�, where K is the algebra of compact
operators on a fixed separable infinite dimensional Hilbert
space and 
 is the joint spectrum of the operators Q��.
This spectrum, being fixed in a Poincaré-invariant way by
the quantum conditions, is homeomorphic to two copies of
the tangent bundle of the 2-sphere, the noncompact mani-
fold TS2  f1;�1g. The commutators Q�� are affiliated to
the center Z � Cb�
� of the multiplier algebra M�E� of E.

In less technical terms this means that, given a function
f on R4, a function f�q� on quantum spacetime can be
defined as an element of M�E� by a generalized Weyl
correspondence. The product of two such elements of
M�E� is given by the twisted convolution product

f�q�g�q� � �2���8


Z
dk1dk2f̂�k1�ĝ�k2�e

��i=2�k1Qk2e�i�k1	k2�q:

Here, ^ indicates the Fourier transform of a function on R4

and k1; k2 are elements of the ordinary Minkowski space.
The exponential exp�� i

2 k1Qk2� is referred to as the twist-
ing. In analogy, the free field ��q� on quantum spacetime
was formally given in [1] as��q� � �2���4

R
dk’̂�k�e�ikq

where ’ is the free field on Minkowski space.
Different definitions of perturbative quantum field the-

ory on noncommutative spacetimes have been discussed in
the literature (cf., e.g., [2]). While these approaches are
equivalent on the ordinary Minkowski space, they cease to
be so on noncommutative spacetimes with noncommuting
time variable.

One of the possible approaches is based on what is
known as the Yang-Feldman approach in ordinary quantum
field theory. As early as 1952, this approach was already
employed in the context of theories with nonlocal inter-
actions [3]. Here, the field equation is the starting point,
which for a self-interacting bosonic field on the noncom-
mutative Minkowski space may be given as follows:

��q 	m2���q� � �g�n�1�q�

with derivatives @q� defined as the infinitesimal generators
of translations (see [1]). The field equation is then solved
-1  2005 The American Physical Society
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recursively in terms of a formal power series in the cou-
pling constant,

� �
X1
"�0

g"�";

with �"�q� �
Z
d4yG�y�


X

P
n�1
i�1

"i�"�1

�"1�q� y� . . .�"n�1�q� y�;

(1.1)

y 2 R4, where G is one of the Green functions of the
ordinary Klein-Gordon operator, chosen according to the
given boundary conditions.

Unlike the modified Feynman rules [4] which are widely
used for perturbative calculations on the noncommutative
Minkowski space, neither the Yang-Feldman approach nor
the Hamiltonian approach proposed in [1] entail a formal
(i.e., before renormalization) violation of unitarity even for
a noncommuting time variable (see [2]).

Already a second order calculation performed in [2]
showed that the perturbation theory in these approaches
is not free of ultraviolet divergences. As in ordinary quan-
tum field theory this can be traced to the fact that products
of fields �n�q� are ill-defined. Mimicking the renormal-
ization procedure (in position space) of ordinary quantum
field theory, the first aim thus should be to find well-defined
products of fields. One of the conceptual problems we are
faced with here is to find an adequate generalization of the
locality principle on which the definition of such products
on the ordinary Minkowski space is founded. Various
approaches to address this question are possible.

In [5], which was based on the doctoral thesis of one of
the authors [6], we used the best localized states introduced
in [1] to replace the ordinary concept of locality by a notion
of ‘‘approximate coincidence,’’ compatible with the uncer-
tainty relations. The limit of coinciding points, which
usually entails the appearance of ultraviolet divergent ex-
pressions, is replaced by the evaluation of a conditional
expectation, given by the so-called quantum diagonal map,
which minimizes the difference variables while leaving the
mean coordinates invariant. Employing this concept of
approximate coincidence in the definition of the interaction
term leads to a natural regularization in quantum field
theory on the noncommutative Minkowski spacetime. No
ultraviolet divergences appear. Unfortunately, only trans-
lation and rotation invariance are preserved in this ap-
proach, and the free theory is treated on a different
footing than the interaction.

In the present paper we follow a different idea.
Heuristically, a local functional of a field is an element
of the algebra generated by the field and its derivatives. The
obstruction that, as on commutative spacetime, the field is
too singular for admitting pointwise products is circum-
vented by smearing the field over translations,
025022
�g�q� �
Z
dxg�x���q	 x�

with a test function g. The smeared fields �g�q� are then
well-defined elements of a topological algebra which de-
pends continuously on the test functions. We are therefore
led to algebra-valued distributions

�n
g�q��

Z
dx1 ���dxng�x1; . . . ;xn���q	x1������q	xn�:

Now let O be a neighborhood of the origin of Minkowski
space. We call �n

g�q� local of order O if suppg � On. Our
aim is to find suitable subtractions

�n
g �

Xn
k�1

�n�k
&�n�k �g�

with continuous linear maps &�n�k from test functions with n
variables to test functions with n� k variables such that
the limit g! ' (limit of coinciding points) is a well-
defined quantum field on quantum spacetime which is local
of all orders.

The crucial fact now is that the usual Wick ordering is
not of this type when applied to fields on quantum space-
time, as some of the subtracted terms are not local. We
would therefore like to refrain from subtracting them and
therefore introduce a modified Wick product, the so-called
quasiplanar Wick product, which is obtained by admitting
only such maps &�n�k in the subtraction procedure which do
not decrease the order of locality. Fortunately, the terms
which remain unsubtracted compared to the ordinary Wick
product turn out to be finite in the limit of coinciding points
such that our procedure yields a well-defined product in
this case.

We then postulate that only quasiplanar Wick products
are admissible as counterterms in perturbative renormal-
ization. While this seems to be necessary from the point of
view of locality (and, as far as we checked up to now, also
sufficient for the absorption of ultraviolet divergences), it
seriously modifies the asymptotic behavior of the theory. It
turns out that in the Yang-Feldman approach the asymp-
totic outgoing and incoming free fields are neither local nor
Lorentz invariant, although the subtraction procedure itself
is fully Lorentz covariant. We find that the notorious
infrared-ultraviolet mixing shows up in our framework
not as an inconsistency of the theory but in a drastic change
of the dispersion relation which we compute to first order
in �4 theory. This may allow new tests of the theory.

It is noteworthy that the formalism presented here may
formally also be applied in the Hamiltonian approach.

It should be stressed that in our setting the Planck length

P is kept fixed at its physical value. If one adopts the point
of view that in the limit ‘‘
P ! 0’’ the theory should
reduce to the usual renormalized theory on Minkowski
space, one has to find additional counterterms, which for

P � 0 correspond to finite renormalizations and in the
-2
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limit ‘‘
P ! 0’’ produce the missing ordinary counter-
terms needed on Minkowski space. So far, we have not
been able to find a local and Lorentz-invariant definition of
such counterterms.

Also in view of the modified dispersion relation, it seems
that in all our attempts to introduce interactions of fields on
quantum spacetime, Lorentz invariance is sooner or later
lost—although the underlying geometry of our model of
quantum spacetime as well as the theory of free fields on
quantum spacetime are fully Lorentz (and Poincaré) in-
variant. This point calls for a deeper understanding we still
lack at the moment.

We would like to emphasize that results regarding the
renormalization of field theories on a noncommutative
Euclidean spacetime [7] cannot be directly applied to field
theories on the noncommutative Minkowski space. We will
see explicitly in an example that a tadpole which is finite in
the Euclidean setting fails to be so on the noncommutative
Minkowski spacetime. This is not very surprising as no
generalization of Osterwalder-Schrader positivity seems to
be available and not even the Wick rotation itself has been
given proper meaning in a space/time noncommutative
setting.

We will furthermore see that a theory of self-interacting
scalar fields with commuting time variable cannot be re-
normalized by local counterterms.

This paper focuses on the combinatorial aspects and the
physical consequences of the idea to admit only local
counterterms. The full proof that quasiplanar Wick prod-
ucts are well defined at coinciding points (g! ') turned
out to be rather technical and is merely sketched in this
paper. Details regarding domains of definition and appro-
priate test function spaces will be the subject of a forth-
coming publication.

The results presented here are based to a large extent on
the doctoral thesis of one of the authors [8] where further
details may be found.

II. FIELDS ON THE NONCOMMUTATIVE
MINKOWSKI SPACE

In [1], the quantization of a function f�x� on ordinary
spacetime was defined in terms of the Weyl correspon-
dence

W�f� � f�q� :�
Z
dkeikq �f�k� � �2���4

Z
dke�ikqf̂�k�;

where �f�k� � �2���4
R
dxf�x�e�ikx, f̂�k� � �2��4 �f��k�.

By analogy, the free field� on the quantum spacetime was
defined by the heuristic formula

��q� � �2���4
Z
dk’̂�k� � e�ikq;

where ’ is the free field on Minkowski space and ’̂ is its
Fourier transform. ��q� is to be thought of as a (formal)
element of the tensor product F � E, where F is the algebra
025022
of polynomials of the free field. Roughly speaking, this
means that, after evaluation in a suitable state ! on E, we
obtain an element of F. A precise definition can be given in
terms of the dual W� of the Weyl quantization (known as
the Wigner transform), which is defined by

� !�k� � �W�!���k� � �2���4!�e�ikq�;

where ! is a state on E. Note that k � !�eikq� defines a
function in the Schwartz space S�R4�, provided that! is in
the domain of all monomials in the q�’s [since @

@��
ei�q �

iei�q�q� 	 1
2 �Q��

��, and i��ei�q � ��Q�1q��; e
i�q�]. For

such ! we may set

��!� � �W’��!� :� ’�W�!�;

and, with this definition, a quantum field on quantum
spacetime is an affine functional on a suitable *-weakly
dense subset of the state space S�E� of E, taking values in
F. In this sense, we may now write

��!� �
Z
dx’�x� !�x� �

Z
dk’̂�k� � !�k�;

and thus recover an expression which is well known from
field theory on Minkowski space.

The positivity property of the state ! implies that the
field � respects the Heisenberg uncertainty relations for
the simultaneous determination of the coordinates.
Nevertheless, the field is still too singular to admit (point-
wise) products: Indeed,

�k1; k2� � � �2�! �k1; k2� � �2���8!�e�ik1qe�ik2q�

fails to be strongly decreasing.
Therefore, as mentioned in the introduction, we smear

the quantum field over translations. Let f 2 S�R4�. Then
we set

�f�!� � ’� !  f�;

where  denotes the ordinary convolution product; even-
tually, we will be interested in the limit f ! '. According
to the above discussion, �f�!� can be written as

�f�!� �
Z
dx’�x�� !  f��x�

�
Z
dk’̂�k� �f�k��2��4 � !�k�;

and in order to establish the connection with the heuristic
formula from the introduction, we note that, formally, this
can be understood as the evaluation of

Z
dx��q	 x�f�x� �

Z
dk’̂�k� �f�k� � e�ikq

in a state !, since !�e�ikq� � �2��4 � !�k� by definition.
Now, the nth power of �f exists and is given by

��f�
n�!� � ’�n� �n�!  f�n�;
-3
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with f 2 S�R4�,

� �n�
! �k1; . . . ; kn� � �2���4n!�e�ik1q . . . e�iknq�; (2.1)

and where ’�n is the operator valued distribution

’�n�x1; . . . ; xn� � ’�x1� � � �’�xn�:

More generally, for f 2 S�R4n�, we may define regular-
ized products of fields by

�n
f�!� � ’�n� �n�!  f�;

so that

��f�
n � �n

f�n :

Products of regularized fields are defined by

�n
f�

m
g � �n	m

f�g ; f 2 S�R4n�; g 2 S�R4m�;

and the adjoint is given by

�n�
f � �n

f� ;

where f��x1; . . . ; xn� � f�xn; . . . ; x1�.
Given a regular representation of E on some Hilbert

space H , the (formal) elements �n
f of F � E can be

represented by operators on a dense domain in H ’ �

H , where H ’ is the Fock space of the free field.
We now look for suitably subtracted products of fields

..

.
�n
f
..
.
�

Xn
k�0

�n�k
&�n�k �f�

� �n
f 	

Xn
k�1

�n�k
&�n�k �f�

;

where &�n�k :S�R
4n� ! S�R4�n�k��, k � 0; . . . ; n, are con-

tinuous linear maps, such that . .

(1) w
hen f ! ', the limit of ..�n

f
.. exists as an affine

F-valued functional on some dense subset of S�E�;

(2) th
e maps &�n�k can be chosen to be local in the sense

that

supp&�n�k �f� �
[

U�f1;...;ng
jUj�n�k

PUsuppf;

where PU is the projection R4n � R4jUj given by

PU�x1; . . . ; xn� � �xu�u2U:
Note that condition (2) ensures that, in the limit where f !
', the product of fields (if it exists) is local of all orders.

In order to clarify the above idea, let us first discuss the
ordinary Wick product :’�n: on Minkowski space. It is
obtained from the product ’�n by ‘‘putting all annihilation
operators to the right,’’ or equivalently, given by an alter-
nating sum over all possible contractions of n fields. To put
this latter definition into a compact form, we now introduce
the following notation.

Let N be a finite ordered set. A contraction in N is a pair
consisting of a subset A � N and an injective map �:A!
025022
N n A such that ��a�> a for all a 2 A (with respect to the
order of N). The set of all contractions in N, including the
empty contraction with A � ;, is denoted by C�N�. A is
considered as an ordered subset of N (with its natural
order) and ��A� is an ordered set which inherits its order
<� from A via the map � [i.e., ��a�<� ��a0� if a < a0]. In
what follows, the letter U will denote the set of uncon-
tracted indices, U � N n �A [ ��A��. If different contrac-
tions C are involved, we label A;�;U by a lower index C.

To every contraction C 2 C�N� we associate a linear
continuous map, the so-called contraction map

&C0 :S�R
4jNj� ! S�R4jUj�;

by

&C0 �f��xU� �
Z
dxAdx��A�

Y
a2A

�	�xa � x��a��f�xN�:

Here, �	 denotes the ordinary two-point function of the
free field and we have used the convention that, for a finite
ordered set B, xB denotes the tuple xB � �xb1 ; . . . ; xbjBj �
with b1 < b2 < � � �< bjBj.

In Fourier space, the contraction map assumes the form

�&C0 �f����kU� � �2��8jAj
Z
d�A�kA� �f�kN�jk��A���kA ;

where d�A�kA� �
Q
a2Ad��ka� with d��k� denoting the

Lorentz-invariant measure on the mass shell

d��k� � �2���3
dk
2!k









k0�!k

; !k �
������������������
m2 	 k2

p
:

Making use of the contraction maps &C0 , we can now write
the Wick products on commutative spacetime as the alter-
nating sum

:’�jNj: �
X

C2C�N�

��1�jAj’�jUj � &C0 ;

where for U � ;, ’�jUj � 1. Roughly speaking, for co-
inciding arguments, the right-hand side of the above con-
sists of a vertex with n legs plus (or minus) all possible
tadpoles.

A first attempt to define suitably subtracted products of
fields on the noncommutative Minkowski space was to
generalize the ordinary Wick products to the noncommu-
tative spacetime [1]. However, while this prescription ful-
fills condition (1), it violates condition (2), as we shall see
below.

Before proceeding, we observe that any state ~! 2 S�E�
can be decomposed as ~! � � �!, where � is a proba-
bility measure on 
 and ! is a positive, unital Z-linear
map taking values in Z � L1�
; ��(‘‘a Z-valued state’’)
with

!
�Y
j2N

eikjq
�
� exp

�
�
i
2

X
j<l

kjQkl

�
!
�

exp
�
i
X
j2N

kjq
��
2Z:
-4
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Unfortunately, no Lorentz-invariant choice of � exists.
Particular choices of � are the measure which is supported
on the rotation and translation invariant subset 
1 � 

(see [1]) and the point measure. The latter choice can
equivalently be understood as the case where a fixed non-
commutativity matrix �q�; q�� � i5�� 2 
 is used and Z
is trivial. This special case is therefore included in our
more general setting. In the considerations which follow,
the integration over 
 will for the most part be irrelevant,
and we therefore refrain from performing it until the very
last. Note that the formalism is fully covariant, but that we
will frequently replace the operators Q�� by generic spec-
tral values ���, � 2 
, in the sense of the joint functional
calculus of the Q��. If necessary, we will furthermore
consider Z-valued test functions, distributions, Hilbert
space vectors and operators.

We now set

:�n
f:�!� � :’�n:� �n�!  f�;

with f 2 S�R4n� and with � �n�! �� given by (2.1). From the
above it then follows that

:�jNjf :�!� � :’�jNj:� �jNj�!  f�

�
X

C2C�N�

��1�jAj’�jUj�&C0 � 
�jNj�
!  f��:

We now define the quantum contraction &C by requiring
(for Z-valued states !)

&C0 � 
�jNj�
!  f� �  �jUj�!  &C�f�;

such that

:�jNjf :�!� �
X

C2C�N�

��1�jAj�jUj
&C�f�

�!�:

To compute &C we use the fact that due to the commu-
tation relations of coordinates on quantum spacetime we
have

Y
j2N

e�ikjq








k��A���kA

�
Y
j2U

e�ikjqe�ihkA;IkAi�ihkA;EkUi

where I is a 4jAj  4jAj matrix (called the intersection
matrix) and E a 4jAj  4jUj matrix (called the enclosure
matrix) with 4 4 blocks, where [with respect to the
natural order of both A and ��A� as subsets of N]

Iaa0 �

Q; if a < a0 <��a�<��a0�
0; otherwise

Eau �

Q; if a < u < ��a�
0; otherwise

and where for two momenta k; k0 the contraction with Q is
defined by kQk0 � k�Q��k0�.
025022
We thus obtain

�&C�f����kU� � �2��8jAj
Z
d�A�kA�e

�ihkA;IkAi�ihkA;EkUi

 �f�kN�jk��A���kA : (2.2)

In terms of graphs, these definitions can be visualized as
follows: For the ordered set N � �1; . . . ; n� draw a number
of n points in a horizontal line. For a contraction C, connect
each point a 2 A with its respective partner ��a� by a
curve in the upper half plane (called an internal line).
Then the entry Iaa0 of the intersection matrix is nonzero
if and only if their connecting curves intersect and a < a0,
and the entry Eau of the enclosure matrix vanishes if and
only if the vertical line from u to 	1 (called an external
line) crosses the internal line connecting a and ��a�.

Example: Consider the contraction C in N � �1; . . . ; 8�
where A � �2; 4; 6� and ��A� � �3; 7; 8�. The correspond-
ing graph then is , and it allows to
directly read off the intersection and the enclosure matrix:
I46 � Q, E45 � Q, all others 0.

Note moreover that every contraction may be naturally
decomposed into connected components as illustrated by
the following example.

Example: The contraction C 2 C�f1; . . . ; 9g� where
A � �1; 2; 4; 5�, and ��A� � �9; 7; 6; 8� has two connected
components C1 and C2 with AC1 � f1g and AC2 � f2; 4; 5g.
In terms of graphs, the connected components of

are given by (C1)

and (C2).

III. QUASIPLANAR WICK PRODUCTS

According to the program outlined in the previous sec-
tion, we now want to introduce subtracted products of
fields on the noncommutative Minkowski space which
are defined in terms of local contractions only. This con-
dition is not satisfied by ordinary Wick products. To see
this, consider the third Wick power :�3f: which in terms of
graphs is given by the following sum of contractions

� � � . The last contraction
yields

&C�f��x2� �
Z
dx1dx3

Z
d��k�e�ik�x1�x3�

 f�x1; x2 	Qk; x3�

where we have performed the fiberwise-defined coordinate
transformation x2 ! x2 	 �k. This expression clearly vio-
lates the locality condition [Condition (2) of Sec. II]. For
f�x1; x2; x3� � '�x1 � x2�'�x1 � x3�g�x1� (which renders
a well-defined expression, as we shall see below) it was
-5
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shown in [8] that this nonlocality cannot be cured by add-
ing a correction term from the range of the Klein-Gordon
operator.

It is easy to see that a contraction is local if its enclosure
matrix vanishes, since in this case the uncontracted varia-
bles decouple from the contracted variables and we find

supp&C�f� � PUsuppf:

The contractions with vanishing enclosure matrix may be
represented by graphs whose external lines are not crossed
by internal lines. We call these graphs (and the correspond-
ing contractions) quasiplanar. The set of contractions for
which all connected components are quasiplanar will be
denoted by Cqp�N�. Note that due to the definition of
connected components used here (which differs from the
one in [8] and simplifies the combinatorics below), the
contraction is quasiplanar but not in Cqp�N�.

We now define the quasiplanar Wick products by the
following formula [f 2 S�R4jNj�]:

..

.
�jNjf

..

.
�

X
C2Cqp�N�

��1�"�jUj
&C�f�

; (3.1)

where " is the number of connected components of C. For
an example see Appendix A. It is clear that by definition
quasiplanar Wick products fulfill the locality condition.

With the initial conditions ..
.
1..
.
� 1 and ..

.
�..
.
� �, the

quasiplanar Wick products can be uniquely characterized
by the recursion relation [f 2 S�R4�; g 2 S�R4jNj�]

..

.
�jf1gtNjf�g

..

.
� �f

..

.
�jNjg

..

.
�

X
C2Cqp�f1gtN�
C connected 12A

..

.
�jUj
&C�f�g�

..

.
: (3.2)

Here, the symbol t denotes the disjoint union of two
ordered sets, where the second set is appended to the first
set, such that for all n 2 N, m 2 M, n < m in N tM. For
an example of (3.2) see Appendix B.

Instead of directly proving the recursion relation (3.2),
we prove the analogue of Wick’s theorem of which (3.2) is
a corollary. Let N and M be ordered finite sets. We let
C�N;M� denote the set of all quasiplanar contractions C 2
C�N tM� which have the property that every connected
component C0 of C connects N and M, in the sense that
��AC0 \ N� \M � ;. Note that C 2 C�N;M� is in gen-
eral not in Cqp�N tM�.

Theorem 1 ‘‘Wick’s theorem for quasiplanar Wick
products’’: Let f 2 S�R4n� and g 2 S�R4m�. Then

..

.
�n
f
..
...
.
�m
g
..
.
�

X
C2C�N;M�

..

.
�jUj
&C�f�g�

..

.
(3.3)

where N � f1; . . . ; ng and M � fn	 1; . . . ; n	mg
Proof.—After inserting the definition of quasiplanar

Wick products (3.1), the left-hand side is
025022
X
C2Cqp�N�
C02Cqp�M�

��1�"C	"C0�
jUCj	jUC0 j

&C�f��&C
0
�g�
:

For the right-hand side we findX
C2C�N;M�

X
C02Cqp�UC�

��1�"C0�
jUC0 j

&C
0
�&C�f�g�

:

In the latter expression, C0 may be decomposed into three
mutually disconnected contractions C1, C2 and C3 where
C1 2 Cqp�N \ UC�, C3 2 Cqp�M \UC� and C2 2 C�N \
UC;M \UC�. Note that C2 is connected since C0 2
Cqp�UC�. We may now combine C and C2 to a single
contraction C4 2 C�N;M�. We observe that every non-
empty contraction C4 2 C�N;M� appears twice in the
sum, but with opposite signs. Hence all these contributions
cancel, and only the empty contraction remains which
yields the theorem. �

Two concrete applications of Wick’s theorem for quasi-
planar Wick products [formula (3.3)] may be found in
Appendix C.

We will now give a closed formula specifying the rela-
tion between quasiplanar Wick products and ordinary
Wick products. In fact, we show that quasiplanar Wick
polynomials can be expressed in terms of Wick polyno-
mials via the formula

..

.
�jNjf

..

.
�

X
C2Cap�N�

:�jUj
&C�f�

:: (3.4)

Here, Cap�N� is the set of all aplanar contractions of N. A
contraction is called aplanar if for every connected com-
ponent the corresponding part of the enclosure matrix is
nontrivial. Note that the empty contraction is quasiplanar
and aplanar, and that contractions may be neither in Cqp
nor in Cap. For an example of (3.4) see Appendix D.

We prove formula (3.4) by showing that it satisfies the
recursion relation (3.2). The initial conditions are obvi-
ously fulfilled. Now for the first term on the right-hand
side of the recursion relation we find, using (3.4) and
Wick’s theorem (for ordinary Wick products),

�f
..
.
�jNjg

..

.
�

X
C2Cap�f1gtN�

1=2A

�
:�jUj

&C�f�g�
:	

X
u2Unf1g

:�jUj�2
&�1;u��&C�f�g�

:
�

(3.5)

where �1; u� is the contraction with A � f1g and ��1� � u.
Applying (3.4) also to the second term in the recursion
relation yields

�
X

C2C�f1g;N�

X
C02Cap�UC�

:�
jUC0 j

&C
0
�&C�f�g�

::

The combined contractions from (3.5) may be decomposed
into connected components. Now, those contractions for
which the component containing 1 has a vanishing enclo-
-6
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sure matrix cancel with the second term in the recursion
relation. Hence, only the sum over all aplanar contractions
of f1g t N remains, which proves the claim.

Formula (3.4) shows explicitly that the limit ‘‘
P ! 0’’
does not yield the ordinary Wick products, sinceX

C2Cap�N�

:�jUj
&C�f�

: � :�jNjf :	
X

C2Cap�N�
U�N

:�jUj
&C�f�

:

and the terms which compared to the ordinary Wick prod-
uct remain unsubtracted do not vanish in this limit.
IV. QUASIPLANAR WICK PRODUCTS AT
COINCIDING POINTS (SKETCH)

Let us now consider a quasiplanar Wick product at

coinciding points, i.e., an expression of the form ..
.
�n
g
..
.
�q�

where g�xN� �
Qn
j�1 '�xj�,N � f1; . . . ; ng. We will sketch

an argument showing that such a product is well defined.
The mathematical details will be treated in a forthcoming
publication. The proof is based on the idea that using (3.4)
we may rewrite the quasiplanar Wick product in terms of
ordinary Wick products and that for a suitable test function
h, the normal ordered product of fields at coinciding points,

Z
dkU:

Y
i2U

’̂�ki�: �h
�X
j2U

kj

�
�

Z
dx:’�x�jUj:h�x�

is a well-defined element of F.

We therefore apply (3.4) to ..
.
�n
g
..
.

and evaluate the result-
ing expression in a suitable state ~! � � �! to obtain

..

.
�n
g
..
.
� ~!� �

X
C2Cap�N�

�
�Z

dkU:
Y
i2U

�2��4jUj �’�ki�:

 �&C�g����kU� ̂
�jUj�
! ��kU�

�
; (4.1)

where �&C�g����kU� is a bounded (not rapidly decreasing)
function of kU given by (2.2) with �g�kN� � �2���4n, and
where � �jUj�! which is given by (2.1) is quickly decreasing
only in the sum of the momenta. Let us now pick an
arbitrary contribution to the right-hand side of (4.1).
Using ’�x� � �2��3=2

R
d��k��a�k�e�ikx 	 a��k�e	ikx�,

we then decompose the Wick polynomial into a sum of
normal ordered products of creation and annihilation op-
erators

Q
u2UnU0a

��ku�
Q
u02U0a�ku0 � with U0 � U.

We now consider the pure creation part (U0 � ;), since
we know from ordinary field theory that it is the term
requiring the most care in a product of fields at coinciding
points. From (2.2) we conclude that, in this case,
�&C�g����kU� is of the form

�2���4jUj
Z
d�A�kA�e�ihkA;IkAi�ihkA;E��kU�i;

where all momenta are on the positive mass shell. We now
025022
parametrize the mass shell in coordinates in which � has
the standard form ��0� by k � �w cosh5; v1; w sinh5; v2�
with 5 2 R, v � �v1; v2� 2 R2 and w �

������������������
v2 	m2

p
, such

that the measure on the mass shell assumes the form
1
2

R
d2vd5. This may be done without loss of generality,

since for any � 2 
, there is an element � of the full
Lorentz group such that � � ���0��t, and thus k�p �
��tk���0���tp�. If � is proper, all �tkj, j 2 U [ A can
obviously be parametrized by such coordinates as above,
and if � is improper, we use k�p � ���tk���0����tp�
and parametrize ��tkj, j 2 U [ A by the above coordi-
nates. In (4.1), this amounts to simply renaming the argu-
ments. Up to numerical constants, �&C�g����kU� is therefore
given by
Z
dk�5;v�Aexp

�
�i

X
s<t

Jst�wswt sinh�5s�5t�	vs^vt�
�
;

(4.2)

where vs ^ vt � vs;1vt;2 � vs;2vt;1 and where the indices
s; t are elements of the index set U t A. Jst � 1 if the
corresponding block of the intersection or enclosure matrix
is nonzero and Jst � 0 otherwise. The integrals over kA are
not absolutely convergent but oscillatory. To evaluate
them, we shift the integrations over the rapidity variables
5A into the complex plane, 5a 	 i>a such that for a < a0,
a; a0 2 A,

0<>a < >a0 <�:

Using the formulas

sinh�5	 i>� � sinh5 cos>	 i cosh5 sin>

and cosh�5	 i>� � cosh5 cos>	 i sinh5 sin>;

and setting 5st � 5s � 5t; >st � >s � >t we may now re-
place the integral appearing in (4.2) by the following ex-
pression:
Z
d2vA

Z
d5A exp

�
�i

X
s<t

Jst�wswt sinh5st cos>st

	 vs ^ vt� 	
X
s<t

Jstwswt cosh5st sin>st

�
(4.3)

where we put >u � 0 for u 2 U. The integrand decreases
fast in the variables �5st; Jst � 1�, since by construction

sin>st < 0 for all s < t 2 U t A:

Since by definition C is aplanar, all connected components
of the contraction have a nontrivial enclosure matrix, and
we infer that exp�	

P
Jstwswt cosh5st sin>st� is also fast

decreasing in 5A: Connectedness ensures that all 5A appear
at least once and aplanarity ensures that the exponential
does not only depend on the difference variables 5aa0 ,
a; a0 2 A. Hence, the integrations over d�A�kA� are well
defined. Since furthermore, � �U�! ��kU� is fast decreasing in
�
P
u2Uku (all on the positive mass shell), we may con-
-7
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clude that the pure creation parts appearing on the right-
hand side of (4.1) yield well-defined operators in F.

An analogous argument shows that the pure annihilation
parts (U0 � U) are well defined. In this case, we find

�&�g����kU0 � �
Z
d�A�kA�e

�ihkA;IkAi�ihkA;EkU0 i

and an analytic continuation 5a 	 i>a, a 2 A, with ��<
>a < >a0 < 0 for a < a0, would yield the desired result
since � �U

0�
! ��kU� is fast decreasing in

P
u2U0ku. More

generally, for contributions with U0 � ;, we have

�&�g����kU� �
Z
d�A�kA�e

�ihkA;IkAi�ihkA;E�	UkU�i;

where 	UkU is the tuple �	uku�u2U, with 	u � 	1 for u 2
U0 and 	u � �1 for u 2 U nU0. In this case, � !��kU� is
fast decreasing in�

P
u2U	uku. We evaluate the expression

on a suitable vector in Fock space to get rid of the annihi-
lation operators and shift the integrations over the rapidity
variables 5AtU0 into the complex plane, 5s 	 i>s for s 2
A tU0, such that 0<>s < >t < � for s < t, s; t 2 A t
U0. Note that in this case, also some of the arguments of � !
will be analytically continued.

In a similar manner as in the above discussion, we can
give meaning to expressions of the form

Ym
i�1

..

.
�ni�q� xi�

..

.

which appear in the perturbative solution of the Yang-
Feldman Eq. (1.1). Here, we may formally write

Z
dx..
.
�n�q� x�..

.
G�x� �

def ..
.
�n
g
..
.
�q�

where g�xN� � G�x1�
Qn
j�2 '�x1 � xj�, N � f1; . . . ; ng

with a suitable test function G. Applying Wick’s theorem
for quasiplanar Wick products (Theorem 1) to an expres-

sion ..
.
�n
g
..
...
.
�m
f
..
.
, with g�xN� as above and for M�

fn	1; . . . ;n	mg, f�xM��F�xn	1�
Qn	m
j�n	2'�xn	1�xj�,

we obtain integrals of the form

�&C�g � f����kU� �
Z
d�A�kA�e

�ihkA;IkAi

 �G
�X
i2N

ki

�
�F
�X
j2M

kj

�







k��A���kA

;

where C 2 C�N;M�. Again, we use coordinates k�5; v�
such that the twisting is given by ��0� and shift the inte-
gration over 5A into the complex plane, 5a 	 i>a such that
0<>a < >a0 <� for a < a0, a; a0 2 A. We now observe
that from the analytic continuation we obtain the factor
exp�	

P
a<bIabwawb cosh5ab sin>ab�, a; b 2 A, which

strongly decreases in �5ab; Iab � 0�. By definition, we
have ��AC0 \ N� \M � ; for any connected component
C0 of C 2 C�N;M�. Therefore, in any connected compo-
025022
nent at least one internal momentum k ~A appears both in �G
and (with opposite sign) in �F and we conclude that the
integrand is strongly decreasing in 5A such that the inte-
grals are well defined.

In order to make the above discussion mathematically
sound, several details are missing. Since they turned out to
be quite complicated, we shall treat them in the forthcom-
ing publication mentioned above, and only name the nec-
essary steps here. First of all, we will specify the space of
suitable test functions on which the analytic continuation
as performed above is well defined. In this test function
space, sequences of functions have to exist which converge
to '-distributions in an appropriate topology, such that the
integrals in question, evaluated in such sequences, con-
verge to the expressions discussed above (in the appropri-
ate topology). We will moreover show that the Fock space
vectors with wave functions from this set of functions form
a Lorentz-invariant stable domain for the quasiplanar Wick
products and specify the set of admissible states ~! on E.
V. CONSEQUENCES

In this section we would like to point out some of the
consequences of our analysis. In particular, we comment
on the modified dispersion relation resulting from the use
of quasiplanar Wick products in the perturbative expan-
sion. While these remarks are not yet conclusive, they
provide a hint as to how the ultraviolet-infrared mixing
problem appears in our framework.

The first conclusion we may draw from the previous
sections is that the divergences discussed here are not
compatible with those arising in a theory on a Euclidean
noncommutative spacetime. To see this, consider the qua-
siplanar contraction . As is well known, on a
Euclidean noncommutative spacetime this contribution
yields a finite result in the limit of coinciding points (i.e.,
as a tadpole contribution). This can be understood as
follows: Consider a test function f in the relative coordi-
nates x1 � x3, x2 � x4 and in x5 which tends to a product of
a test function g in x5 and '-distributions in the relative
coordinates. Then on a Euclidean noncommutative space-
time, we have

&Ceuc�f��x5� /
Z
dp

Z
dk

1

k2 	m2
1

p2 	m2
e�ikQp

 �F�1
1;2f��k; p; x5�;

where F�1
1;2 indicates the inverse Fourier transform with

respect to the first and the second argument. Introducing
Schwinger parameters and swapping the order of integra-
tion, we then find

Z 1

0
d�d�

Z
dkd@e���	��m

2
e�k

2
e�@

2=4��2��2

 �F�1
1 f��k;Qk� @; x5�:
-8
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For Q being of maximal rank, this yields a well-defined
expression even for �F�1

1 f��k; y; x5� tending to c'�y�g�x5�,
namely,

g�x5�
Z 1

0
d�d�e���	��m

2 1

���	 
4P
4 �
2
;

where, without loss of generality, we have set �Qp�2 �

4P�p

2
2 	 p21 	 p20 	 p23�.

In contrast to this, the same contraction is ill-defined on
the noncommutative Minkowski space in the limit of co-
inciding points. In order to keep the calculation simple, we
consider a test function f in the relative variable x1 � x3
with �f tending to a constant. We then find &C�f� /R
d��p�d��k�e�ipQk �f�p� /

R
d��p� �f�p��	�Qp� and,

while �	�Qp� is a bounded function for p on the positive
mass shell, it is not integrable. To see this, we choose
coordinates on the mass shell such that the twisting is
given by ��0� and the argument of the two-point function
is�
4P�p

2
1 	 p23�. It follows that, in the limit where �f tends

to a constant, the integration over p2 diverges logarithmi-
cally. This means that results on renormalization gained in
a Euclidean theory may not be directly applied in the
Minkowskian regime.

Furthermore, we would like to emphasize that, for com-
muting time variable, the quasiplanar Wick products are in
general no longer well defined. To see this, we first use the
fact that an antisymmetric 3 3 matrix has determinant
zero. We can therefore set, without loss of generality,
Qp � 
2P�0; p3; 0;�p1�. Already the simplest aplanar
contraction, becomes ill-defined in the limit of
coinciding points, since (contrary to the case where Q is
nondegenerate) it contains the ill-defined integralR
d��p� exp��i
2P�p3k1 � p1k3��. Since the contraction

still violates the locality condition, it follows that such a
theory is not renormalizable by local counterterms.1 See
also [9].

The application of quasiplanar Wick products in the
framework of the Yang-Feldman equation is straightfor-
ward. In the rules spelled out explicitly in [8] for ordinary
Wick products, one only has to replace the Wick products
by quasiplanar Wick products. From preliminary calcula-
tions we have performed at lower orders of the perturbative
expansion, it is reasonable to hope that quasiplanar coun-
terterms suffice as counterterms to render the theory ultra-
violet finite. However, if we employ the quasiplanar Wick
products and thus refrain from subtracting nonlocal coun-
terterms, we encounter a serious modification of the dis-
persion relation. Similar discussions in the context of
space-space-noncommutativity, which are not founded on
the general construction of quasiplanar Wick products,
may be found in [10,11].
1The ill definedness of the contraction may also be understood
by the fact that for the Q under consideration, �	�x	Qk�
cannot be multiplied (as a distribution) with '�x0�'�x2�.

025022
Let us assume that all ultraviolet divergent terms can be
absorbed in quasiplanar (thus local) counterterms, leading,
in particular, to a finite mass m in the renormalized field
equation,

��q 	m2���q� � �g�n�1�q� 	 �m2 �m20�|������{z������}
�'m2

��q� 	 � � �

where m0 is the bare mass and the dots indicate the
remaining counterterms (starting with order g2). If we
now insert the renormalized field as a formal power series
in g, we find at lowest order, for n � 4,

��	m2���0�q� 	 � � �� � �g�30�q� 	 'm21�0�q� 	 � � �

(5.1)

Now according to our program,

such that taking the expectation value h0j � jpi on both
sides of Eq. (5.1), we find a modification of the ordinary
dispersion relation of the following form:

�p2 	m2 � �g�	�Qp� 	 � � � ;

where �	 is the two-point function at mass m.
Allowing for additional counterterms, � and �p2, we

thus find at this order

p2 �m2 � g��	�Qp� 	 �1 	 �1p
2� � 0:

We now choose the fixed value ��0� for Q. Then the
transversal velocity v? � �v1; v3� is

v? � rp?p0 �
p?
p0

1	 g
1�g�1

>�p�

1� g
1�g�1

>�p�
;

where

>�p� � �2p1��1@p1�	��
�0�p� � �2p3��1@p3�	��

�0�p�

� �
m2K2�


2
Pm

������������������������������
p20 � p22 	 p2?

q
�

8�2�p20 � p22 	 p2?�
;

and therefore depends only on ���0�p�2. Now assume that p
is on the physical mass shell, p2 � M2, where M is al-
lowed to be different from m (though the latter is finite),
then

>�p�jp2�M2 � �
m2K2�


2
PmM

����������������
1	

2p2
?

M2

q
�

8�2M2�1	
2p2

?

M2
�

:

If the masses m and M are both assumed to be of the order
of the Planck mass, the factor �1	 g

1�g�1
>�p��=�1�

g
1�g�1

>�p�� as a function of the transversal component
p? is of the following form:
-9
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Surprisingly, the maximal deviation does not occur at high momenta but at p? � 0. In the above numerical setting, this
point of maximal deviation is of the order of 1%,

�1	 g~>�m��=�1� g~>�m��jm2�1 ’ 0:99; ~>�m� �
def
>�p�j p?�0

p2�m2
� ��8�2��1K2�
2Pm

2�:

Using smaller massesm � M<mP, the deviation becomes even larger, as we can see in the following plot, where 1	g~>�m�1�g~>�m�
(i.e., the maximal deviation from 1) is plotted as a function of the mass m, ranging from 0 to 1:
We see that the group velocity may even become negative.
Integrating over, say, 
1 would not improve the situation:
Since the scale 
P remains fixed, the behavior sketched
above would qualitatively remain the same.

If we take into account that m and M may differ from
one another, it is possible to allow for small physical
masses M while taking m to be very large. To see this,
observe that at p? � 0 and p2 � M2,

>�p� � �
1

8�2
m2

M2K2

�

2PM

2 m
M

�
;

and since �2K2���� ! 0 for � large enough, it is possible
to make the deviation arbitrarily small even for small
masses by choosing m large enough. It remains to be
investigated whether this scheme can be applied consis-
tently to all orders, but in any case it would be a ‘‘fine-
tuning’’ procedure which does not seem to be very natural.

However small, the modification of the dispersion rela-
tion has serious consequences. In ordinary local quantum
field theory, the Hilbert space of the asymptotic fields is the
025022
Fock space of the free fields with fixed (constant) mass.
The above analysis shows that this cannot be true for the
asymptotic fields in the framework considered here, since
their mass will in general depend on the momentum. In a
realistic model such as quantum electrodynamics, the
modified dispersion relation could provide predictions
which by comparison with experiment might seriously
restrict the scale of noncommutativity. In the above, this
scale was taken to be of the order of the Planck length. The
effect being larger for a smaller parameter 
P (i.e., for a
higher energy), it is not impossible that in a realistic model
such as quantum electrodynamics, where phenomenologi-
cal calculations so far have provided lower bounds for the
energy scale of noncommutativity, an upper bound for the
energy scale could be derived in this way—depending on
how questions concerning renormalization can be solved.

APPENDIX: EXAMPLES

In the following examples, quasiplanar Wick products
are symbolized by boxes, and contractions by connecting
lines as explained at the end of Sec. II.
-10
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A. Formula (3.1)

B. Formula (3.2)

C. Formula (3.3)

In what follows, the underscore symbolizes quasiplanar Wick ordering of fields which are not direct neighbors. For
instance, for the contraction C 2 C��1; . . . ; 4� t �5; . . . ; 8��withUC � �1; 2; 3; 8�, AC � �4; 5�,��4� � 6 and��5� � 7, we
write

where the small vertical line serves to separate the sets �1; . . . ; 4� and �5; . . . ; 8� from one another.

Example 1:

where

with N � �1; . . . ; 6�, and where

�4j4 �
X

C2C�NtM�
UC�;

&C�f� �
X

C2C�NtM�
AC��1;2;3;4�

&C�f� 	
X9
i�1

X
Ci2C�NtM�

&Ci�f�
025022-11
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with N � �1; 2; 3; 4�, M � �5; 6; 7; 8�, and with the pairs �Ai; �i� of the contractions Ci determined by

A1 � �1; 2; 4; 5�; �1�1� � 3; �1�5� � 7 A2 � �1; 2; 4; 5�; �2�1� � 3; �2�5� � 8

A3 � �1; 2; 4; 6�; �3�1� � 3; �3�6� � 8 A4 � �1; 2; 3; 5�; �4�2� � 4; �4�5� � 7

A5 � �1; 2; 3; 5�; �5�2� � 4; �5�5� � 8 A6 � �1; 2; 3; 6�; �6�2� � 4; �6�6� � 8

A7 � �1; 2; 3; 5�; �7�1� � 4; �7�5� � 7 A8 � �1; 2; 3; 5�; �8�1� � 4; �8�5� � 8

A9 � �1; 2; 3; 6�; �9�1� � 4; �9�6� � 8

such that for instance,

Example 2:

D. Formula (3.4)

Here, the round brackets denote ordinary Wick ordering (of all uncontracted fields in an expression).
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