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Vahagn Nazaryan* and Carl E. Carlson†

Particle Theory Group, Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, USA
(Received 13 October 2004; published 26 January 2005)
*Electronic
†Electronic

1550-7998=20
There is much discussion of scenarios where the space-time coordinates x� are noncommutative. The
discussion has been extended to include nontrivial anticommutation relations among spinor coordinates in
superspace. A number of authors have studied field theoretical consequences of the deformation of N �
1 superspace arising from nonanticommutativity of coordinates �, while leaving ��’s anticommuting. This
is possible in Euclidean superspace only. In this note we present a way to extend the discussion by making
both � and �� coordinates nonanticommuting in Minkowski superspace. We present a consistent algebra for
the supercoordinates, find a star-product, and give the Wess-Zumino Lagrangian LWZ within our model. It
has two extra terms due to non(anti)commutativity. The Lagrangian in Minkowski superspace is always
manifestly Hermitian and for LWZ it preserves Lorentz invariance.
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I. AN OVERVIEW AND INTRODUCTION

By now, there is a long history of theoretical studies
related to nontrivial, possibly richer structures of space-
time. Under this heading one may include supersymmetry
and extra dimensional theories, but we concentrate here on
theories with a noncommutative spacetime algebra. The
earliest motivation for such theories was the hope that
divergences in field theory would be ameliorated if there
were coordinate uncertainty, and coordinate uncertainty
would follow if coordinate operators did not commute
[1]. The idea did not bear direct fruit, and Snyder’s paper
[1] remained almost alone for many decades.

Recently, the idea of noncommutative coordinates has
blossomed, at least as theoretical speculation, with moti-
vation from several sources. For example, Connes et al.[2]
attempted to make gauge theories of electroweak unifica-
tion mathematically more natural by using ideas from
noncommutative geometry. Also, Dopplicher,
Fredenhagen, and Roberts [3] saw general relativity as
giving a natural limit to the precision of locating a particle,
which to them suggested an uncertainty relation and non-
commutativity among coordinate operators. They sug-
gested a particular algebra of the coordinates now often
referred to as the ‘‘DFR’’ algebra. However, probably the
greatest modern spur to studying space-time noncommu-
tativity was the observation that string theories in a back-
ground field can be solved exactly and give coordinate
operators which do not commute [4,5].

In theories with an underlying noncommutative space-
time algebra, the position four vector x� is promoted to an
operator x̂� that satisfies the commutation relation

�x̂�; x̂�� � ���: (1.1)

The ��� that comes out of string theory, which is directly
related to the background field B�� [5], is just an antisym-
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metric array of c-numbers. There has been a fair amount of
theoretical study learning how to work with fields that are
functions of noncommuting coordinates, and phenomeno-
logical studies of possible physical consequences of space-
time noncommutativity. However, theories based on (1.1)
with a c-number ��� suffer from Lorentz-violating effects.
Such effects are severely constrained [6–16] by a variety of
low energy experiments [17].

Returning to one of our previous remarks, in the DFR
noncommutative algebra [3] x̂� satisfies �x̂�; x̂�� � �̂��,
but where here �̂�� � ��̂�� transforms as a Lorentz
tensor and is in the same algebra with x̂�. Thus the algebra
formulated by DFR is Lorentz-invariant. Carone, Zobin,
and one of the present authors (CEC) [18] formulated and
studied some phenomenological consequences of a
Lorentz-conserving noncommutative QED (NCQED)
based on a contracted Snyder [1] algebra, which has the
same Lie algebra as DFR. In [18] light-by-light scattering
was studied, and it was found that contributions from
noncommutativity can be significant with respect to the
standard model background. Further studies of NCQED as
formulated in [18] may be found in [19–21]. In particular,
bounds were obtained on the scale of noncommutativity
[20] in the Lorentz-conserving case from an number of
QED processes for which there exist experiments at the
CERN Large Electron and Positron collider (LEP).

There have also been studies extending noncommutativ-
ity to the full set of supersymmetric coordinates, not just
limiting noncommutativity to ordinary spacetime. In this
paper, we wish to continue the study of noncommutative
coordinates in supersymmetric theories, by giving and
studying consequences of an algebra of superspace coor-
dinates that very definitely allows us to remain in
Minkowski space.

Recent work (e.g., [22–26]) has stimulated interest in
supersymmetric noncommutativity by showing, in
Euclidean space, how noncommutative supercoordinates
could arise from string theory. Further, some of the recent
work [24] defined a star-product from the commutation
-1  2005 The American Physical Society
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relations. Operators multiplied in noncommutative space
could then be replaced by their symbols in commutative
space with multiplication replaced by the star-product.
This was then used to study noncommutative modifications
to Wess-Zumino and gauge Lagrangians, albeit still in
Euclidean space. Proofs of renormalizability of the de-
formed Wess-Zumino Lagrangian were offered [27], but
it was noted that the deformed Euclidean space
Lagrangians, as well as the vector superfield, were not
Hermitian [27,28].

Working in Euclidean space allows coordinates � with
nontrivial anticommutators to be paired with ��’s that anti-
commute in the normal way; the phrase N � 1=2 super-
symmetry described this. There is no direct analog in
Minkowski space, where the �’s and ��’s are tightly
connected.

Useful formal developments include, using the star-
product to define the theory, a display of a number of
different ways to introduce noncommutativity into super-
space [29–31]. Also [32] showed that in Minkowski space
nontrivial anticommutation relations for the �’s and ��’s
were not compatible with having an associative algebra.
Hence we have some freedom in the choice of a star-
product, but must be open to using a star-product that is
nonassociative.

In the next section, Sec. II, we present a consistent set of
(anti)commutation relations among the supercoordinates in
Minkowski space. Following that, Sec. III defines our
theory by presenting a star-product that yields the de-
formed supercoordinate algebra developed in Sec. II. We
record the deformed algebra of supersymmetry generators,
and of the covariant superderivatives. The commutators of
the supergenerators and superderivatives break supersym-
metry. In Sec. IV we write down the chiral and antichiral
superfields, and show that products of (anti)chiral super-
fields are themselves (anti)chiral superfields. This is a
feature retained from commutative supersymmetry; some
of the choices in Sec. V were in fact made in the hope that
this would happen. We construct the Wess-Zumino
Lagrangian LWZ, and show how to avoid ambiguity in
our construction despite the nonassociativity of the prod-
ucts. We end with some discussion in Sec. V.
II. THE NON(ANTI)COMMUTATIVE
SUSY ALGEBRA

Noncommutativity has usually been studied as the non-
commutativity of ordinary space-time. Here we are con-
sidering noncommutativity in superspace1, and for
Minkowski rather than Euclidean space. The supercoordi-
nate is �x�; ��; �� _�� where �� and �� _� are normally anti-
commuting Grassmann variables that we shall promote to

nonanticommuting operators �̂� and �̂�
_�

in some algebra.
1We follow conventions of Wess and Bagger [33].
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The anticommutation for the �̂’s will be

f�̂�; �̂
g � C�
; (2.1)

where C�
 is a symmetric array of c-numbers. We shall
also suppose there is a mapping between the operator �̂�

and a Grassmann variable �� in ordinary (anti)commuta-
tive space. We will soon, as usual, obtain using commuta-
tive variables the multiplication rules of the
noncommutative algebra by using a star-product rather
than the ordinary product for variables and functions in
commutative space.

In Minkowski space, we relate �̂�
_�

to �̂� by

�̂� _� � ��̂��y; (2.2)

so that the �̂�
_�

are noncommutative also,

f �̂�
_�
; �̂�

_

g � �C _� _
; (2.3)

where �C _� _
 � �C
��
.

The commutators of �̂ and �̂� are still unconstrained, and
we make the simple choice

f �̂�
_�
; �̂�g � 0: (2.4)

Next we fix the commutation relations among �’s and
spacetime coordinates. We define the commutator of the

chiral coordinate ŷ� � x̂� � i�̂�� �̂� with �̂, and the com-

mutator of the antichiral coordinate �̂y� � x̂� � i�̂�� �̂�

with �̂�, in such a way that enables us to write products of
chiral fields, and products of antichiral fields, in their
canonical form. We choose

�ŷ�; �̂�� � 0; (2.5)

� �̂y�; �̂�
_�
� � 0: (2.6)

The nonzero commutators

� �̂y�; �̂�� � �2�i�̂�� �̂�; �̂�� � 2iC�
��

 _


�̂�
_

; (2.7)

and

�ŷ�; �̂�
_�
� � 2�i�̂�� �̂�; �̂�

_�
� � 2i �C _� _
�
��


 _

; (2.8)

are fixed by the choices already made.
The choices and results in (2.1), (2.2), (2.3), (2.4), (2.5),

and (2.6) also constrain the commutation relations of ŷ and
of �̂y with themselves. The following condition must be
satisfied:

�ŷ�; ŷ�� � � �̂y�; �̂y�� � 4� �C _� _
�̂��̂
 � C�
 �̂�
_� �̂�

_

���� _��

�

 _

:

(2.9)

Thus, the Hermitian part of �ŷ�; ŷ�� is fixed by choices
already made. Let us rewrite the previous equation in the
following way,
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�ŷ�; ŷ�� � � �̂y�; �̂y�� � �4 �C _� _
�̂��̂
 � 2C�
 �C _� _
���� _��
�

 _


� �4C�
 �̂�
_
 �̂�

_�
� 2C�
 �C _� _
�


 ��� _��
�

 _

; (2.10)

where each term on the right-hand-side is the Hermitian
conjugate of the other. Then we make the choices,

�ŷ�; ŷ�� � �4 �C _� _
�̂��̂
 � 2C�
 �C _� _
���� _��
�

 _

; (2.11)

and

� �̂y�; �̂y�� � �4C�
 �̂�
_� �̂�

_

� 2C�
 �C _� _
���� _��

�

 _

; (2.12)

which are natural and consistent with already defined
commutators. Finally, note that ŷ and �̂y do not commute
in this non(anti)commutative algebra,

�ŷ�; �̂y�� � 2C�
 �C _� _
��� _��
�

 _

; (2.13)

although their commutator is a c-number.
Commutation relations given by (2.1), (2.2), (2.3), (2.4),

(2.5), (2.6), (2.7), (2.8), (2.11), and (2.12) are compete,
consistent with each other, and represent the deformed
supersymmetry algebra in terms of chiral and spinor var-

iables. One can summarize this algebra in terms of �x̂; �̂; �̂��
as,

f�̂�; �̂
g � C�
; �x̂�; �̂�� � iC�
��

 _


�̂�
_

; (2.14)

f �̂�
_�
; �̂�

_

g � �C _� _
; �x̂�; �̂�

_�
� � i �C _� _
�̂
��


 _

; (2.15)

f �̂�
_�
; �̂�g � 0;

�x̂�; x̂�� � �C�
 �̂�
_� �̂�

_

� �C _� _
�̂
�̂����� _��

�

 _

:

(2.16)

Hence, the space-time coordinates x� do not commute with
each other either, or with the spinor coordinates � and ��.
III. THE STAR PRODUCT

We shall assume that there exists a mapping that relates
the ordinary variables �x; �; ��� in commutative to their

counterparts �x̂; �̂; �̂�� in noncommutative space, and that
relates functions f�x; �; ��� in commutative space to opera-

tors f̂�x̂; �̂; �̂�� in the noncommutative algebra. Products of
functions in commutative space will be defined by a
star-product. In noncommutative theories a star pro-
duct is used so that the result of products such as

f̂�x̂; �̂; �̂��ĝ�x̂; �̂; �̂��ĥ�x̂; �̂; �̂�� in noncommutative space cor-
responds to the result of f�x; �; ��� 
 g�x; �; ��� 
 h�x; �; ��� in

commutative space (provided f̂�x̂; �̂; �̂�� corresponds to
f�x; �; ���, etc.).

We operationally define our theory by finding a suitable
star-product. A properly defined star-product has to repro-
025019
duce the underlying deformed algebra of the supercoordi-
nates in its entirety. We will require that the star-product
satisfy the reality condition, that is, the star-product will
maintain the usual rules for products of involutions,

�f1 
 f2�y � fy2 
 f
y
1 : (3.1)

We find it convenient to use the supersymmetry generators
in defining the star-product, and will limit the star-product
to being at most quadratic in deformation parameter C.
This is also the minimum that will allow reproducing the
deformed algebra for the supercoordinates.

Before we define the star product, we find it useful to
have before us the well known canonical expressions for
covariant derivatives and supercharges. Acting on the right,

~D� �
~@

@��

��������x
�i��� _�

�� _�
~@

@x�
;

~�D _� � �
~@

@ �� _�

��������x
�i����� _�

~@
@x�

;
(3.2)

and

~Q� �
~@

@��

��������x
�i��� _�

�� _�
~@

@x�
;

~�Q _� � �
~@

@ �� _�

��������x
�i����� _�

~@
@x�

:

(3.3)

In (3.2) and (3.3) derivatives with respect to � and �� are
taken at fixed x, and derivatives with respect to x are taken
at fixed � and ��.

Let us also write down the corresponding equation for
two sets of coordinates �y; ��; �� _�� and � �y; ��; �� _��, where

y� � x� � i��� ��; �y� � x� � i��� ��: (3.4)

Then one can check that

~D � �
~@

@��

��������y
�2i��� _�

�� _�
~@

@y�
; D� �

~@
@��

�������� �y
; (3.5)

~�D _� � �
~@

@ �� _�

��������y
; ~�D _� � �

~@

@ �� _�

�������� �y
�2i����� _�

~@
@ �y�

;

(3.6)

~Q � �
~@

@��

��������y
; ~Q� �

~@
@��

�������� �y
�2i��� _�

�� _�
~@

@ �y�
; (3.7)

~�Q _� � �
@

@ �� _�

��������y
�2i����� _�

@
@y�

; ~�Q _� � �
@

@ �� _�

�������� �y
:

(3.8)

Expressions for D� �; �D� _�; Q� �; and �Q� _� are obtained
from above by simply changing! to , with the follow-
ing definitions,
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~@
@��

�
 � �
�; �

@�

@��
� ��
�; (3.9)

~@
@y�

y� � ���; y�
@�

@y�
� ���: (3.10)

Similar definitions apply derivatives with respect to �� _� and
�y�.

Now we can write down the star-product that we use for
mapping a product of functions f̂ ĝ in noncommutative
space to a product of functions in commutative space.

f̂ ĝ ��2 f 
 g � f�1� S�g: (3.11)

Here f and g can be functions of any of the three sets of
variables mentioned above, and the extra operator S is

S � �
C�


2
Q� � ~Q
 �

�C _� _


2
�Q� _�
~�Q _


�
C�
C��

8
Q� �Q� � ~Q�

~Q
 �
�C _� _
 �C _� _�

8
�Q� _�

�Q� _�
~�Q _�Q _


�
C�
 �C _� _


4
� �Q� _�Q� �

~�Q _

~Q
 �Q� � �Q� _�

~Q

~�Q _
� (3.12)

It is easy to verify that the star-product presented above
indeed reproduces the entire noncommutative algebra of
supersymmetry parameters, and that it satisfies the reality
condition (3.1).

If f and g are functions only of � or only of ��, then the
star-product takes the following simple forms, recogniz-
able from [24],

f��� 
 g��� � f���
�
1�

C�


2

@�

@��
~@

@�


� detC
@�

@��

~@
@��

�
g���

� f��� exp
�
�
C�


2

@�

@��
~@

@�


�
g���; (3.13)

and

f� ��� 
 g� ��� � f� ���
�
1�

�C _� _


2

@�

@ �� _�

~@

@ �� _


� det �C
@�

@ �� ��

~@

@ �� ��

�
g� ���

� f� ��� exp
�
�

�C _� _


2

@�

@ �� _�

~@

@ �� _


�
g� ���; (3.14)

where

@
@��

�
1

4

@
@��

@
@��

�
1

4
���

@
@��

@
@��

; (3.15)
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and

@

@ �� ��
�

1

4

@

@ �� _�

@

@ �� _�
� �

1

4
� _� _� @

@ �� _�

@

@ �� _� : (3.16)

The following equations are useful for deriving commu-
tation relations among various coordinates of deformed
superspace,

�� 
 �
 � �
1

2
��
���

1

2
C�
; (3.17)

�� _� 
 �� _
 � �
1

2
� _� _
 �� ���

1

2
�C _� _
: (3.18)

Also,

�� 
 �� � C�
�
; �� _� 
 �� �� � � �C _� _
 �� _
; (3.19)

�� 
 �� � �C�
�
; �� �� 
 �� _� � �C _� _
 �� _
; (3.20)

�� 
 �� � �
1

2
���0�

0C

�
C�
0
0

� � detC;

�� �� 
 �� �� � �
1

2
� _� _�0� _
 _
0

�C _� _
 �C _�0 _
0

� � det �C:

(3.21)

and

��� �� 
 ��� �� � �
1

2
�� �� ����� �

1

2
�� �C�� �

1

2
�� ��C��

�
1

4
C�
 �C _� _
��� _��

�

 _

; (3.22)

where C�� and �C�� are defined as

C�� �
1

4
C�
�
���

� ��� � �� �����
� � C�
�
���

����
�;

(3.23)

�C�� �
1

4
�C _� _
� _
 _�� ��

��� � ������ _� _�

� �C _� _
� _
 _�� ��
��� _� _�: (3.24)

One can now verify,

f��; �
g
 � C�
; �x�; ���
 � iC�
��

 _


�� _
; (3.25)

f �� _�; �� _
g
 � �C _� _
; �x�; �� _��
 � i �C _� _
�
��

 _

; (3.26)

f �� _�; ��g
 � 0; �x�; x��
 � �� ��C�� � �� �C��: (3.27)
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as they should be according to (2.14), (2.16), and (2.16).
Subscript ‘‘
’’ means use star multiplication when evaluat-
ing the (anti)commutators.

From (3.7) and (3.8), one may check that in noncommu-
tative space

fQ�;Q
g � �4 �C _� _
��� _��
�

 _


@2

@ �y�@ �y�
; (3.28)

f �Q _�; �Q _
g � �4C
�
��� _��

�

 _


@2

@y�@y�
; (3.29)

f ~Q�;
~�Q _�g � 2i��� _�

@
@y�

: (3.30)

Thus, we see that the first two of the above three anticom-
mutators of supercharges are deformed from their canoni-
cal forms. From (3.5) and (3.6) for the covariant derivatives
we find,

fD�;D
g � 0; (3.31)

f �D _�; �D _
g � 0; (3.32)

f ~D�;
~�D _�g � �2i�

�
� _�

@
@y�

: (3.33)

So, the anticommutators of covariant derivatives are not
deformed in this noncommutative superspace. The anti-
commutators of supercharges and covariant derivatives
with each other are not deformed either,

fD�;Q
g � f �D _�;Q
g � fD�; �Q _
g � f �D _�; �Q _
g � 0:

(3.34)
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Hence, we can still define supersymmetry covariant con-
straints on superfields as in commutative supersymmetric
theory, using the following defining equations for chiral
and antichiral superfields as before,

�D _���y; �� � 0; (3.35)

D�
��� �y; ��� � 0: (3.36)
IV. THE WESS-ZUMINO LAGRANGIAN

A. Chiral and Antichiral Superfields

Chiral ��ŷ; �̂� and antichiral ��� �̂y; �̂�� superfields satisfy
(3.35) and (3.36) respectively. We may expand ��ŷ; �̂� and
��� �̂y; �̂�� as a power series in �̂ and �̂�. Just as in commutative
theory, no term in the series will have more than two

powers of �̂ and �̂�. In noncommutative theory, this is true
because products with three or more factors of �̂ can be
reduced to sums of terms with two or fewer �̂, and similarly

for �̂�. Hence,

��ŷ; �̂� � A�ŷ� �
���
2
p
�̂ ��̂� � �̂ �̂ F�ŷ�; (4.1)

��� �̂y; �̂�� � A� �̂y� �
���
2
p

�̂� � � �̂y� � �̂� �̂� �F� �̂y�: (4.2)

The combination �̂ �̂ is already Weyl ordered, and maps
simply into �� in commutative space.

From (3.11), the product of two chiral and the product of
two antichiral fields is,
�1�y; �� 
�2�y; �� � �1�y; ���2�y; �� � C
�
 1� 2
 � detCF1F2 �

���
2
p
��C�
��
�� 1�F2 �  2�F1�

� �C _� _
��� _��
�
� _

�@�A1@� 2
 � @�A2@� 1
�� � ���2 �C��@�A1@�A2

� C�
 �C _� _
��� _��
�

 _

�@�A1@�F2 � @�A2@�F1��; (4.3)

and

�� 1� �y; ��� 
 ��2� �y; ��� � ��1� �y; ��� ��2� �y; ��� � �C _� _
 � 1 _�
� 2 _
 � det �C �F1

�F2 �
���
2
p

�� _� �C _� _
�� _
 _��
� 1 _�

�F2 � � 2 _�
�F1�

� C�
��� _��
�

 _��@� �A1@� � 2 _
 � @� �A2@� � 1 _
�� �

�� ���2C��@� �A1@� �A2

� C�
 �C _� _
��� _��
�

 _

�@� �F1@� �A2 � @� �F2@� �A1��: (4.4)
In (4.3) @� � @=@y�, while in (4.4) @� � @=@ �y�.
Thus the star product of chiral fields is chiral, and the

star product of antichiral fields is antichiral. One may again
note that the reality condition is satisfied,

��1 
�2� � ��2 
 ��1: (4.5)
B. Nonassociativity and Weyl ordering

As usual,

�1 
�2 � �2 
�1 (4.6)

�� 1 
 ��2 � ��2 
 ��1 (4.7)
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but here the difference persists even if one isolates (say) the
�� terms and integrates over space.

When constructing a Lagrangian this would lead to
different theories, depending on the ordering of the super-
fields. Following [24], for example, the Lagrangian can be
specified by requiring products of superfields to be Weyl
ordered. Then a Lagrangian will get no extra contributions
from noncommutativity from terms quadratic in chiral or
in antichiral fields, because the terms proportional to �� or
�� �� that involve C or �C are antisymmetric under inter-
change of the two superfields.

The situation is more complicated for three or more
fields, because the star product (3.11) is not associative,

�1 
 ��2 
�3� � ��1 
�2� 
�3: (4.8)

This is a consequence of having both Q and �Q in the star
product (3.11), with fQ; �Qg � 0. For discussion of associa-
tivity of star products see for example [32].

We deal with this by defining for a nonassociative prod-
uct a natural Weyl ordering given by

W�f1�f2f3�� �
1

6
�f1�f2f3� � f2�f1f3� � f2�f3f1�

� f1�f3f2� � f3�f1f2� � f3�f2f1��

�
1

6
�f1�f2f3 � f3f2� � f2�f1f3 � f3f1�

� f3�f1f2 � f2f1��: (4.9)

and similarly for W��f1f2�f3�. One can follow this by
Weyl ordering the result in the normal way and find that
025019
W fW�f1�f2f3��g �WfW��f1f2�f3�g � w�f1f2f3�:

(4.10)

It should be clear that for the star-product of just two
superfields, the second Weyl ordering leaves the result
unchanged. We use the double Weyl ordering just de-
scribed to unambiguously define any Lagrangian in the
noncommutative space given by (2.14), (2.15), and
(2.16). As an example, we will write down the Wess-
Zumino Lagrangian in noncommutative Minkowski
superspace.

C. The Lagrangian

It is useful to record some steps in the calculation of the
product of three chiral fields. Since the star-product of two
chiral fields is chiral, from (4.3) we can obtain the A12,
 12�, and F12 components of the chiral field �12 � �1 


�2 as

A12 � A1A2 � C
�
 1� 2
 � detCF1F2

 12� � �A1 2� � A2 1�� � C
�
��
�� 1�F2 �  2�F1�

� �C _� _
��� _��
�
� _

�@�A1@� 2
 � @�A2@� 1
��

F12 � �F1A2 � A1F2 �  1 2� � 2 �C��@�A1@�A2

� C�
 �C _� _
��� _��
�

 _

�@�A1@�F2 � @�A2@�F1�:

(4.11)

Then, the star-product of three chiral fields is
��1�y; �� 
�2�y; ��� 
�3�y; �� � A12A3 � C
�
 12� 3
 � detCF12F3 �

���
2
p
���A12 3� � A3 12�

� C�
��
�� 12�F3 �  3�F12� � �C _� _
��� _��
�
� _

�@�A12@� 3
 � @�A3@� 12
���

� ���F12A3 � A12F3 �  12 3 � 2 �C��@�A12@�A3

� C�
 �C _� _
��� _��
�

 _

�@�A12@�F3 � @�A3@�F12��: (4.12)
From (4.12), the only C-dependent term that will contrib-
ute to the Wess-Zumino Lagrangian from the double Weyl
ordered product w��1�y; �� 
�2�y; �� 
�3�y; ��� comes
from the A12F3 term. The contribution from this term is
proportional to�detCF1F2F3, which is Lorentz-invariant.
For the star-product of three antichiral fields, one finds a
contribution proportional to �det �C �F1

�F2
�F3.

There is no extra contribution to the Wess-Zumino
Lagrangian coming from the kinetic energy term. From
�� 
� there is a term S��@� �F@�F from the star product,

where S�� � C�
 �C _� _
��� _��
�

 _


is symmetric. However, it

is precisely cancelled when one adds � 
 �� in doing the
Weyl ordering.
We find the following simple result for the Wess-Zumino
Lagrangian with one chiral � and one antichiral field ��,

L � w

"Z
d2��d2 �� �� �� 
��

Z
d2�

�
1

2
m� 
��

1

3
g�


� 
�
�
�

Z
d2 ��

�
1

2
m �� 
 ���

1

3
g �� 
 �� 
 ��

�#

� L�C � 0�

�
1

3
gdetCF3 �

1

3
gdet �C �F3 � total derivatives:

(4.13)

This Lagrangian is Hermitian and Lorentz-invariant.
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V. SUMMARY

Our goal has been to find a theory that works in
Minkowski space that explores nonanticommutativity of
the supercoordinates � and ��. We have shown a consistent
set of commutation and anticommutation relations for the
full set of coordinates x, �, and �� (or equivalently y or �y, �,
and ��). We have found a star-product that reproduces all
the coordinate commutation relations, and use this star
product to define multiplication of arbitrary functions.

The star product is real, meaning it maintains the stan-
dard relations obeyed by involutions of products of func-
tions. This in turn means products that are Hermitian with
no star-multiplication are also Hermitian with star-
multiplication, after Weyl ordering. Any Lagrangian ex-
tended to noncommutative space using star-products and
Weyl ordering will necessarily remain Hermitian. Further,
the star-product maintains the chirality of products of
chiral fields, and the antichirality of products of antichiral
fields.

The star-product in this work is not associative, in keep-
ing with a general theorem of Klemm, Penati, and
Tomassia [32]. However, this interesting feature causes
little trouble after making a natural modification of the
Weyl ordering procedure. Also, the basic commutation
relation between the components of � violates Lorentz
025019
invariance. The example Lagrangian we studied, the super-
noncommutative Wess-Zumino model, gained only
Lorentz-invariant modifications, but this cannot be ex-
pected to occur in general.

There are a number of potentially interesting directions
to pursue in future work. One clearly wants to extend the
present supercoordinate algebra to gauge theories, and to
explore potential phenomenological consequences. One
would also like to study connections to string theory and
attempt a derivation of the present commutation relations
from a string model. One may also define an explicit
connection between operators in noncommutative space
and their commutative space symbols, and derive the
star-product from it. The current star-product may be just
the expansion to second order in deformation parameter C
of one found this way. We should note that if this proves to
be the case, the results of the present paper will still hold.
To this order the star-product we have is unique in satisfy-
ing the requirements of giving the supercoordinate com-
mutation relations and of being real.
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