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Superconformal symmetry, the supercurrent, and non-BPS brane dynamics
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The Noether currents associated with the nonlinearly realized super-Poincaré symmetries of the Green-
Schwarz (Nambu-Goto-Akulov-Volkov) action for a non-Bogomol’nyi-Prasad-Sommerfield (non-BPS)
p � 2 brane embedded in a N � 1,D � 4 target superspace are constructed. The R symmetry current, the
supersymmetry currents, the energy-momentum tensor and the scalar central charge current are shown to
be components of a world-volume supercurrent. The centrally extended superconformal transformations
are realized on the Nambu-Goldstone boson and fermion fields of the non-BPS brane. The superconformal
currents form supersymmetry multiplets with the world-volume conformal central charge current and
special conformal current being the primary components of the supersymmetry multiplets containing all
the currents. Correspondingly the superconformal symmetry breaking terms form supersymmetry mul-
tiplets the components of which are obtainable as supersymmetry transformations of the primary currents’
symmetry breaking terms.
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I. INTRODUCTION

The formation of a membrane in target space sponta-
neously breaks its symmetries to the isometries of the
world volume and its complement. The normal mode
oscillations of the brane into the covolume are described
by world-volume localized Nambu-Goldstone fields. In the
case of a target superspace, Goldstino modes must accom-
pany the broken space translational Nambu-Goldstone bo-
son modes. The Green-Schwarz action [1] describes the
dynamics of these world-volume fields. In Ref. [2] the
Nambu-Goto-Akulov-Volkov action for a non-BPS p � 2
brane embedded in N � 1, D � 4 superspace was con-
structed via the nonlinear realization [3–5] of the sponta-
neously broken super-Poincaré symmetries of the target
superspace. In Ref. [6] the Green-Schwarz action for this
brane [7] was shown to be equivalent to the Nambu-Goto-
Akulov-Volkov action by means of explicit nonlinear field
redefinitions. The action described the motion of the brane
in N � 1, D � 4 superspace through the brane localized
Nambu-Goldstone boson field � associated with motions
in space directions transverse to the brane, hence in the
direction of the broken space translation symmetry. It also
involved brane localized D � 3 Majorana Goldstino fields
�i and �i, i � 1; 2, describing brane oscillations in
Grassmann directions of superspace which are associated
with the completely broken N � 1, D � 4 supersymmetry
(SUSY). The action, after application of the ‘‘‘inverse
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Higgs mechanism’’ [8], is the N � 1, D � 4 super-
Poincaré invariant synthesis of the Akulov-Volkov [3]
and Nambu-Goto [9] actions
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�������������������������������������
1� r̂a��

abr̂b�
q

� �

Z
d3x detê
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where 
 is the brane tension and, in the static gauge,
the world-volume coordinates are xm, m � 0; 1; 2.
The Akulov-Volkov dreibein is êam � �am � i 
��a@m��
i 
��a@m�. The Nambu-Goto dreibein is given

by Nb
a � �ba � �r̂a�r̂

b�=�r̂��2	�
�����������������������
1� �r̂��2

q
� 1	, in

which the Nambu-Goldstone boson covariant derivative,
r̂a�, is defined as

r̂a� � D̂a�� 
�D̂a�� D̂a

��

� ê�1m
a �@m�� 
�@

$

m��: (1.2)

The partial covariant derivative, D̂a, is defined by D̂a �
ê�1m
a @m. The notation of Ref. [2] is followed throughout

this paper.
The purpose of this paper is to determine the symmetry

currents of this action, which are those associated with the
nonlinearly realized N � 1, D � 4 super-Poincaré sym-
metries. Further, in accordance with the equivalent N � 2,
D � 3 centrally extended SUSY algebra, it is shown that
-1  2005 The American Physical Society
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the R symmetry current, the supersymmetry currents, the
energy-momentum tensor and the scalar central charge
current are components of a supercurrent. That is a
SUSY multiplet of currents. The primary current in this
multiplet is the R current, the remaining derived currents
can be obtained from it by SUSY transformations. Hence,
since the R current is conserved, the conservation of the
derived component SUSY currents, energy-momentum
tensor and the central charge current is guaranteed.
Besides the spontaneously broken super-Poincaré currents,
the centrally extended superconformal currents are con-
structed. These also form supersymmetry multiplets. Since
the scale symmetries are explicitly broken, the supercon-
formal current nonconservation terms are similarly related
by the SUSY multiplet structure of the currents. It is further
shown that all superconformal as well as super-Poincaré
currents are obtained as SUSY variations of the primary
D � 3 conformal central charge current and the primary
D � 3 special conformal current (both formerly comprise
the D � 4 special conformal symmetry current).

In Sec. II, Noether’s theorem is stated and the Noether
currents along with the variations of the Lagrangian (1.1)
for the nonlinearly realized N � 1, D � 4 super-Poincaré
symmetries are obtained. Since the unbroken symmetries
are those of the D � 3 Poincaré group, it is useful to
express the D � 4 charges in terms of their D � 3
Lorentz group transformation properties. Appendix A
summarizes the N � 1, D � 4 superconformal algebra
expressed as the corresponding centrally extended N �
2, D � 3 superconformal algebra. In Appendix B the
derivation of the nonlinear realization of this algebra on
the world-volume Nambu-Goldstone boson field, �, and
Goldstino fields, � and �, is given for the case that the N �
1, D � 4 superconformal SU�2; 2 j 1� group is spontane-
ously broken to the D � 3 SO�3; 2� conformal group and
U(1) R symmetry (for fixedD � 4 realizatons see [10,11]).
The underlying short distance models [12–14] that give
rise to the non-BPS domain wall formation should also
explicitly break the scale symmetries both radiatively
and by the dimensionful brane tension parameter in the
models. Hence physically no additional conformal Nambu-
Goldstone modes occur. However, the superconformal al-
gebra, as discussed in Appendix B, requires the conformal
central charge symmetry (the spatial component normal to
the brane of the D � 4 special conformal transformations)
and the conformal SUSY transformations to have a sponta-
neously broken component. Derivatives of the brane oscil-
lation Nambu-Goldstone fields provide the required
ground state expectation values for these broken symme-
tries and no additional fields are required in order to non-
linearly realize the above spontaneously broken symmetry
transformations. In Sec. III, Noether’s theorem is again
utilized in order to construct the remainder of the super-
conformal Noether currents. Consistent with the charge
algebra, these currents form SUSY multiplets of currents.
025017
Since the superconformal currents are not conserved their
explicit symmetry breaking terms also form SUSY multip-
lets. As in the case of all superconformal currents, all
superconformal symmetry breaking terms are shown to
be given by SUSY transformations of theD � 3 conformal
central charge-current nonconservation terms and the D �
3 special conformal symmetry current nonconservation
terms, the two independent primary component currents
of the supermultiplets containing all currents. Finally, four
tables are included at the end of Sec. III which summarize
the symmetry charges and Noether currents associated
with the Nambu-Goto-Akulov-Volkov action. Also the
SUSY variations of the currents and their (non)conserva-
tion equations are recapitulated.

II. SUSY AND THE SUPERCURRENT

Noether’s theorem provides a relation between the di-
vergence of a symmetry current and the associated varia-
tion of the Lagrangian for a given transformation of the
fields. For a (Lie derivative) intrinsic symmetry transfor-
mation of the fields, denoted by ��, �� and �� and such
that ��@m’I� � @m��’I� where ’I stands for any of the
fields ’ � ��; �; ��, the variation of the Lagrangian yields

�L � @mjm � w�: (2.1)

The symmetry current jm �
P
I�@L=@@m’

I��’I and the
local Ward-Takahashi functional differential operator for
the symmetry transformation (often referred to as Euler-
Lagrange terms when acting on the action) is w �P
I�’

I��=�’I� with � the action, in this case, Eq. (1.1).
The intrinsic variation, �’ � ’0�x� � ’�x�, is related to
the total variation �’ � ’0�x0� � ’�x�, by the subtraction
of the first Taylor expansion term for the space-time coor-
dinate variation; for the Lagrangian, this yields �L �
�L� �xm@mL. Using the chain rule for the Taylor
term, the final form of Noether’s theorem is obtained

@mJ
m � ��L� �@m�x

m�L	 � w�; (2.2)

where the Noether current, Jm, is defined as

Jm � jm � �xmL �
X
I

@L
@@m’I

�’I � �xmL: (2.3)

Substituting the Lagrangian derivatives associated with
Eq. (1.1), the Noether current is obtained

Jm � �i�� 
��a�� � 
��a�	
�
ê�1m
a �

r̂a�r̂
b�ê�1m

b

�detN�2

�
L

�
Lr̂a�ê�1m

a

�detN�2
���� � 
��� � 
��	: (2.4)

The non-BPS p � 2 brane action is world-volume
space-time translationally invariant: �p�a�L � 0.
Recalling the space-time translations of the fields from
Appendix B, �p�a�xm � am and �p�a�’ � �am@m’, the
Noether energy-momentum tensor is secured
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Tma � �Lê�1m
a �

L

�detN�2
r̂b�ê�1m

b r̂a�: (2.5)

Conservation of brane energy momentum yields @mTma �
wpa�x��, with the space-time translation Ward identity
operator wpa �x� � �

P
I@a’

I�x���=�’I�x�	. [Integration
over the world volume leads to the global space-time trans-
lation Ward identity for the (tree level) one-particle irre-
ducible generating functional, �, that is the effective
action.] Likewise, the spontaneously broken D � 4 space
translation symmetry normal to the brane, now expressed
as the D � 3 spontaneously broken scalar central charge,
Z, symmetry, is conserved. Its Noether current divergence
is given simply by the � field equation, hence

Zm � �
L

�detN�2
r̂a�ê�1m

a : (2.6)

Since only � transforms under Z, �Z�z�� � z, Noether’s
theorem yields @mZm � �wZ�x�� with wZ�x� � �

���x� .
All other currents, including those of the superconformal

symmetries, can be expressed in terms of the D � 3
energy-momentum tensor and the D � 3 central charge
symmetry current. The general form of the Noether cur-
rent, Eq. (2.4), becomes

Jm � �Tma��x
a � i�� 
��a�� � 
��a��	

� Zm����� 
��� 
���	: (2.7)

Similarly, using these currents, the variation of the
Lagrangian takes on a simplified form

�L � �Tma��ê
a
m	 � Zm��êamr̂a�	: (2.8)

Applying this to the case of space-time translations, for
instance, yields the simple derivative formula for the
Lagrangian

@nL � �Tma@n�êam	 � Zm@n�êamr̂a�	: (2.9)

The brane Lagrangian is manifestly R invariant resulting
in the R symmetry Noether current

Rm � �2Tma� 
��
a�� � iZm� 
��� 
���; (2.10)

with the conservation equation @mRm � �wR�x��, where
wR�x� � �i���x� �

���x� � ��x� �
���x�	. Introducing q- and

s-SUSY transformation parameters " and �, respectively,
that are Grassmann D � 3 Majorana spinors, the SUSY
variations become

�q;s�"; ��xm � �i� 
"�m�� 
��m�� � ��m�"; ��;

�q;s�"; ���i � "i; �q;s�"; ���i � �i;

�q;s�"; ��� � �� 
"�� 
���:

(2.11)

[Recall that �q;s�"; �� � 
"i�
q
i � 
�i�

s
i , and so on.] As

usual for SUSY the Lagrangian has a total derivative
intrinsic variation, �q;s�"; ��L � @m��m�"; ��L	. The
SUSY Noether currents are
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Qm�"� � 
"iQ
m
i �x� � �2iTma� 
"�

a�� � 2Zm� 
"��;

Sm��� � 
�iS
m
i �x� � �2iTma� 
��a�� � 2Zm� 
���:

(2.12)

Noether’s theorem yields the SUSY Ward identities

@m�Qm�"� � Sm���	 � �wq;s�x��; (2.13)

with the SUSY Ward identity operator given as wq;s�x� �P
I�

q;s�"; ��’I�x���=�’I�x�	.
The remaining super-Poincaré transformations are the

unbroken world-volume Lorentz transformations with an-
gular momentum tensor Mm

ab � &abcMmc and the sponta-
neously broken D � 4 Lorentz transformations with
D � 3 current Nm

a. The Lagrangian is invariant under
D � 3 Lorentz transformations yielding a conserved
Noether current, @mMm

ab�x� � �wMab�x��, with

Mm
ab � Tmaxb � Tmbxa �

1
2T

m
c� 
��ab�

c�� 
��ab�
c�	

� iZm� 
��ab��: (2.14)

Under spontaneously broken D � 4 Lorentz transforma-
tions the Lagrangian transforms into a total divergence
�N�b�L � @m�bm�L� resulting in a conserved Noether
current @mNm

a�x� � �wna�x��, with

Nm
a � Tma�� iTmb� 
��a

b�� � Zmxa: (2.15)

For models in N � 1, D � 4 superspace with linearly
represented SUSY transformations, the R symmetry cur-
rent, the SUSY currents and the energy-momentum tensor
are components of a supercurrent superfield [15]. In addi-
tion all other superconformal currents are capable of being
written in terms of space-time moments and SUSY cova-
riant derivatives of this supercurrent. The explicit and
anomalous breaking terms of the R and conformal symme-
tries also follow from space-time moments and SUSY
covariant derivatives of the generalized trace of the super-
current [16–18]. (For an analysis of the superconformal
charges and the supercharge in supersymmetric quantum
mechanics see Ref. [19].) In models with nonlinearly
realized SUSY in D � 4, the R symmetry current, the
SUSY currents and the energy-momentum tensor still
form a SUSY multiplet [20] with the superconformal
currents being given by space-time moments and field
monomials times the components of this supercurrent (ex-
plicitly the R current and energy-momentum tensor) [11].
As shown below, in brane models these currents along with
the central charge symmetry current form a SUSY multi-
plet. As well, all superconformal currents are shown to be
world-volume coordinate moments and field monomials
times the components of the supercurrent [explicitly the
energy-momentum tensor and the central charge current as
in Eq. (2.7)]. In general starting with a current Jm, its q-
and s-SUSY transformations yield a relation of the form

�q;s�"; ��Jm � @n�J
m�n�"; �� � Jn�m�"; ��	

��m�"; ��@nJ
n � Jm�"; ��; (2.16)
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where Jm�"; �� is another of the super-Poincaré or super-
conformal currents or zero. If zero, then that Jm is the last
(or highest weight) component in a supermultiplet. The
first set of terms on the right-hand side are current improve-
ment terms since they are algebraically divergenceless.
They can be added to Jm�"; �� to define an improved
and still conserved current

Jm
Imp�"; �� � Jm�"; �� � @n�J

m�n�"; �� � Jn�m�"; ��	;

(2.17)

and @mJm
Imp�"; �� � @mJm�"; ��. The improvement terms

will be kept explicit in what follows. The set of currents
which begins with some primary current Jm and continues
upon SUSY variation to yield other currents until the last
component current is reached comprise a supermultiplet of
currents. Every superconformal current will form such a
multiplet, even if the primary current is the sole member.
Since differentiation commutes with intrinsic variation, the
(non)conservation of the primary current implies the (pos-
sible non)conservation of the higher component currents.
The second term on the right-hand side of Eq. (2.16) along
with the relation between intrinsic and total variation re-
sults in the higher component conservation equation

@mJ
m�"; �� � �q;s�"; ���@mJ

m�

� �@n�
q;s�"; ��xn	�@mJ

m�: (2.18)

So the currents in any multiplet can be obtained from the
primary current by SUSY variation. Likewise, the breaking
of any symmetry in a multiplet can be obtained from the
primary current symmetry breaking by SUSY variation.

The Rm, Qm
i , Smi , Tma and Zm currents form the super-

current multiplet with the R current as the primary com-
ponent. Since Rm is conserved, so too are the other currents
in this supercurrent as verified from their explicit construc-
tion. The SUSY variations are found to be (using  i as a
Grassmann, D � 3 Majorana spinor parameter)

�q;s�"; ��Rm � @n�Rm�n�"; �� � Rn�m�"; ��	

��m�"; ��@nRn � iQm��� � iSm�"�;

�q;s�"; ��Qm� � � @n�Qm� ��n�"; �� �Qn� ��m�"; ��	

��m�"; ��@nQn� � � 2iTma� 
 �a"�

� 2Zm� 
 ��;

�q;s�"; ��Sm� � � @n�Sm� ��n�"; �� � Sn� ��m�"; ��	

��m�"; ��@nSn� � � 2iTma� 
 �a��

� 2Zm� 
 "�;

�q;s�"; ��Tma � @n�T
m
a�

n�"; �� � Tna�
m�"; ��	

��m�"; ��@nT
n
a;

�q;s�"; ��Zm � @n�Z
m�n�"; �� � Zn�m�"; ��	

��m�"; ��@nZ
n: (2.19)
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From the super-Poincaré symmetry group perspective, the
angular momentum tensor and the broken Lorentz trans-
formation current are primary currents whose SUSY mul-
tiplets involve the SUSY currents, the energy-momentum
tensor and the central charge current

�q;s�"; ��Mm
ab � @n�M

m
ab�

n�"; �� �Mn
ab�

m�"; ��	

��m�"; ��@nM
n
ab � i� 
"�abQ

m�

� i� 
��abS
m�;

�q;s�"; ��Nm
a � @n�N

m
a�

n�"; �� � Nn
a�

m�"; ��	

��m�"; ��@nNn
a � i� 
"�aSm�

� i� 
��aQm�:

(2.20)
III. SUPERCONFORMAL CURRENTS AND SUSY
MULTIPLETS

Noether’s theorem applies to the construction of the
superconformal currents and their (non)conservation equa-
tions as well. Utilizing Eq. (2.8), the Lagrangian varies
under scale transformations as �D�&�L � �&xm@mL �
3&L� @m�&xmL�. This results in a dilatation Noether
current

Dm � �Tmaxa � Zm�: (3.1)

The scale symmetry is explicitly violated so that the di-
vergence of the dilatation current obeys the broken Ward
identity

@mD
m � �Tmaê

a
m � Zmêamr̂a�� wD�

� 3

@
@


L� wD�; (3.2)

where as usual the local Ward identity dilatation operator is
wD�x� �

P
I�

D’I�x���=�’I�.
The D � 4 special conformal transformations lead to

the D � 3 special conformal transformations and the con-
formal central charge symmetry. The Noether current for
the latter is secured as

Ym � �2Tma�xa�� i&abcxb� 
��c��	

� Zm�x2 ��2 � � 
���� 
���	: (3.3)

Noether’s theorem yields the explicitly broken (but real-
ized as spontaneously broken, as discussed in Appendix B)
Y symmetry Ward identity

@mYm � ��YL� �@m�Yxm�L	 � wY�; (3.4)

where wY �
P
I�

Y’I��=�’I�. The breaking terms are
obtained from Eq. (2.8)

�YL � 2xm@m��L� � Tma�2x
a�êbmr̂b�� � 2i&m

ab� 
��b��

� 2i� 
��� 
���� 
��a@
$

m��	 � 2Zmêamxa: (3.5)

Applying this to the divergence equation, the nonconser-
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vation of the Y current is found

��YL� �@m�Yxm�L	 � �6�L� Tma�2xa�êbmr̂b��

� 2i&mab� 
��b��

� 2i� 
��� 
���� 
��a@
$

m��	

� 2Zmêamxa: (3.6)

The special conformal current Km
a is determined to be

Km
a � �Tmb�2x

bxa � x2�ba ��2�ba � � 
��� 
����ba

� 2i&abc�� 
��c�� � &abcxc� 
��� 
���	

� Zm�2xa�� 2i&a
bcxb� 
��c��	: (3.7)
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The special conformal current is explicitly not conserved,
obeying the divergence equation
@mKm
a � ��k

aL� �@m�kaxm�L	 � wka�; (3.8)
where the Ward identity term wka�x� �
P
I�

k
a’I��=�’I�.

The special conformal variation, with transformation pa-
rameter &a, of the Lagrangian is determined directly using
the field variations found in Appendix B. This yields the
total variation of the Lagrangian, �k�&�L � �k�&�L�
��k�&�xm	@mL, and from this the current breaking terms
are found
f�k�&�L� �@m�k�&�xm	Lg � 6&mxmL� Tmaf2&a��êbmr̂b�� � 2�&bxa � &axb�êbm � &a@m�� 
���� 
���	

� � 
��� 
���&abc&
c�êbm � 2�bm� � 4� 
��a��@m� 
�&6 �� � 2i&abc&c� 
��b���ê

d
mr̂d��g

� Zm�2&a�ê
a
m � 2i&mab&

b� 
��a�� � 2i� 
��� 
���� 
�&6 @
$

m��	: (3.9)
Finally the ui- and vi-conformal SUSY spinor currents are
obtained using Eq. (2.7) (with the explicitly broken con-
formal SUSY realized as a spontaneously broken symme-
try, as discussed in Appendix B)

Um
i � 2Tma�xb��

b�a��i � i���a��i � i� 
�����a��i	

� 2Zm�i�x6 ��i ���i � � 
����i	;

Vmi � �2Tma�xb��
b�a��i � i���a��i � i� 
�����a��i	

� 2Zm�i�x6 ��i ���i � � 
����i	: (3.10)

The nonconservation equations have the form

@mU
m
i � ��u

iL� �@m�
u
i x
m�L	 � wui �;

@mV
m
i � ��v

iL� �@m�
v
i x

m�L	 � wvi �;
(3.11)

where the Ward identity operators are wu;vi �x� �P
I�

u;v
i ’I��=�’I�. The superconformal symmetry break-

ing terms can be determined directly, however, as shown
below, the Um

i and Vmi currents are components of a
conformal current SUSY multiplet and so the breaking
can be found from the SUSY variation of the primary
current’s breaking terms.

As in the case of the super-Poincaré symmetry currents,
the superconformal currents belong to q- and s-SUSY
multiplets consistent with the superconformal algebra.
The SUSY variations of the currents are just parts of the
superconformal charge-current algebra. In the supercon-
formal case, the conformal central charge current, Ym, and
the special conformal current, Km

a, act as independent
primary currents from which the remainder of the super-
conformal and even the super-Poincaré currents can be
obtained. The q- and s-SUSY variations of the Ym and
Km

a currents are
�q;s�"; ��Ym � @n�Ym�n�"; �� � Yn�m�"; ��	

��m�"; ��@nYn � � 
�Um� � � 
"Vm�;

�q;s�"; ��Km
a � @n�Km

a�
n�"; �� � Kn

a�
m�"; ��	

��m�"; ��@nKn
a � i� 
"�aUm�

� i� 
��aVm�: (3.12)

The SUSY variations of the conformal SUSY currents lead
to the dilatation current and the super-Poincaré Lorentz
and R currents, introducing the D � 3 Majorana spinor
parameter  i,

�q;s�"; ��Um� � � @n�Um� ��n�"; �� �Un� ��m�"; ��	

��m�"; ��@nUn� � � 2i� 
��a �Nm
a

� 3i� 
� �Rm � 2i� 
"�a �Mm
a

� 2� 
" �Dm;

�q;s�"; ��Vm� � � @n�V
m� ��n�"; �� � Vn� ��m�"; ��	

��m�"; ��@nV
n� � � 2i� 
"�a �Nm

a

� 3i� 
" �Rm � 2i� 
��a �Mm
a

� 2� 
� �Dm: (3.13)

Completing the multiplet, the SUSY variation of the dila-
tation current yields the q- and s-SUSY currents

�q;s�"; ��Dm � @n�D
m�n�"; �� �Dn�m�"; ��	

��m�"; ��@nD
n � 1

2�

"Qm� � 1

2� 
�S
m�:

(3.14)

From the conformal central charge symmetry breaking
terms, Eq. (3.6), or the special conformal symmetry break-
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TABLE I. Symmetries, charges and currents.

D � 4 symmetry and charge D � 3 symmetry and charge World-volume
Noether current

Target space translations P1 World-volume translations pa � P1�a Tma
Central charge Z � P1�3 Zm

Lorentz transformations M12 World-volume Lorentz transformations Mab � M1�a2�b Mm
ab

Broken Lorentz automorphisms Na � �M1�a2�3 Nm
a

N � 1, D � 4 SUSY N � 2, D � 3 SUSY Qm
i

Q3, 
Q _3

�
qi
si

	
� 1

2 e
i�4=4�

�

 i

z

�i
 �

z

	�
Q3

Q _3

	
Smi

R-transformation R R-transformation R � R Rm

Dilatation D Dilatation D � D Dm

Special conformal K1 Special conformal ka � K1�a Km
a

Conformal central charge Y � K1�3 Ym

N � 1, D � 4 superconformal N � 2, D � 3 superconformal Um
i

S3, 
S _3

�
ui
vi

	
� 1

2 e
i�4=4�

�

 i

z

�i
 �

z

	�
S3

S _3

	
Vmi
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ing terms, Eq. (3.9), the remainder of the superconformal
symmetry breaking terms can be obtained by means of
SUSY variations of the primary current’s breaking terms as
per Eq. (2.18).

The Noether currents associated with the nonlinearly
realized super-Poincaré symmetries of the Nambu-Goto-
Akulov-Volkov action, Eq. (1.1), for a non-BPS p � 2
brane embedded in a N � 1, D � 4 target superspace are
summarized in Table I. The target space symmetry trans-
formation generators are given with their D � 3 Lorentz
group decomposition and the related Noether currents are
TABLE II. Noe

Noether current
Jm Jm � �Tma��x

a �

Tma Tma �

Zm

Mm
ab Mm

ab � Tmaxb � T

Nm
a Nm

Qm
i Qm�"� �

Smi Sm��� �

Rm Rm

Dm

Km
a Km

a � �Tmb�2x
bxa � x2�ba �

Ym Ym � �2Tma�x
a

Um
i Um

i � 2Tma�xb��
b�a��i �

Vmi Vmi � �2Tma�xb��
b�a��i
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listed. In Table II the forms of these Noether currents are
specified for the effective action given in Eq. (1.1). The
SUSY variations of the Noether currents are listed in
Table III. The R symmetry current is the primary current
for the supercurrent multiplet of centrally extended super-
translation Noether currents. The R symmetry current, the
q-SUSY and s-SUSY currents, the energy-momentum
tensor and the scalar central charge current are the compo-
nents of this supercurrent. Because the R current is con-
served, the conservation of the derived component SUSY
currents, energy-momentum tensor and central charge cur-
ther currents.

Form of Noether current
i�� 
��a��� 
��a��	 � Zm����� 
��� 
���	

�Lê�1m
a � �L=�detN�2	r̂b�ê�1m

b r̂a�

Zm � ��L=�detN�2	r̂a�ê�1m
a

m
bxa �

1
2T

m
c� 
��ab�

c�� 
��ab�
c�	 � iZm� 
��ab��

a � Tma�� iTmb� 
��a
b�� � Zmxa


"iQ
m
i �x� � �2iTma� 
"�

a�� � 2Zm� 
"��


�iS
m
i �x� � �2iTma� 
��

a�� � 2Zm� 
���

� �2Tma� 
��
a�� � iZm� 
��� 
���

Dm � �Tmax
a � Zm�

�2�ba � � 
��� 
����ba � 2i&a
bc�� 
��c�� � &a

bcxc� 
��� 
���	

�Zm�2xa�� 2i&a
bcxb� 
��c��	

�� i&abcxb� 
��c��	 � Zm�x2 ��2 � � 
���� 
���	

i���a��i � i� 
�����a��i	 � 2Zm�i�x6 ��i ���i � � 
����i	

� i���a��i � i� 
�����a��i	 � 2Zm�i�x6 ��i ���i � � 
����i	
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TABLE III. SUSY multiplets of Noether currents.

Noether current SUSY transformation of Noether current
Jm �q;s�"; ��Jm � @n�J

m�n�"; �� � Jn�m�"; ��	 ��m�"; ��@nJ
n � Jm�"; ��

Tma �q;s�"; ��Tma � @n�T
m
a�

n�"; �� � Tna�
m�"; ��	 ��m�"; ��@nT

n
a

Zm �q;s�"; ��Zm � @n�Z
m�n�"; �� � Zn�m�"; ��	 ��m�"; ��@nZ

n

Mm
ab �q;s�"; ��Mm

ab � @n�M
m
ab�

n�"; �� �Mn
ab�

m�"; ��	 ��m�"; ��@nM
n
ab � i� 
"�abQ

m� � i� 
��abS
m�

Nm
a �q;s�"; ��Nm

a � @n�N
m
a�

n�"; �� � Nn
a�

m�"; ��	 ��m�"; ��@nN
n
a � i� 
"�aS

m� � i� 
��aQ
m�

Qm
i �q;s�"; ��Qm� � � @n�Q

m� ��n�"; �� �Qn� ��m�"; ��	 ��m�"; ��@nQ
n� � � 2iTma� 
 �

a"� � 2Zm� 
 ��

Smi �q;s�"; ��Sm� � � @n�Sm� ��n�"; �� � Sn� ��m�"; ��	 ��m�"; ��@nSn� � � 2iTma� 
 �a�� � 2Zm� 
 "�

Rm �q;s�"; ��Rm � @n�R
m�n�"; �� � Rn�m�"; ��	 ��m�"; ��@nR

n � iQm��� � iSm�"�

Dm �q;s�"; ��Dm � @n�D
m�n�"; �� �Dn�m�"; ��	 ��m�"; ��@nD

n � 1
2 �


"Qm� � 1
2 � 
�S

m�

Km
a �q;s�"; ��Km

a � @n�K
m
a�

n�"; �� � Kn
a�

m�"; ��	 ��m�"; ��@nK
n
a � i� 
"�aU

m� � i� 
��aV
m�

Ym �q;s�"; ��Ym � @n�Y
m�n�"; �� � Yn�m�"; ��	 ��m�"; ��@nY

n � � 
�Um� � � 
"Vm�

Um
i �q;s�"; ��Um� � � @n�U

m� ��n�"; �� �Un� ��m�"; ��	 ��m�"; ��@nU
n� � � 2i� 
��a �Nm

a

�3i� 
� �Rm � 2i� 
"�a �Mm
a � 2� 
" �Dm

Vmi �q;s�"; ��Vm� � � @n�V
m� ��n�"; �� � Vn� ��m�"; ��	 ��m�"; ��@nV

n� � � 2i� 
"�a �Nm
a

�3i� 
" �Rm � 2i� 
��a �Mm
a � 2� 
� �Dm
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rent is guaranteed. This, as well as the (non)conservation
equations of the remaining super-Poincaré and centrally
extended superconformal currents are listed in Table IV.
The superconformal currents also form supersymmetry
multiplets. Since the scale symmetries are explicitly bro-
ken, the superconformal current nonconservation terms are
similarly related by the SUSY multiplet structure of the
currents. It was further shown that all superconformal, as
TABLE IV. Current

Noether current Curren
Jm @mJ

m � ��

Tma @m

Zm @m

Mm
ab @mM

Nm
a @mN

Qm
i @m

Smi @m

Rm @m

Dm @mD
m � �Tmaê

a
m � Z

Km
a @mK

m
a � 6&mxmL� Tma�2&

a��êbmr̂b�	 � 2�&bx

�4� 
��a��@m� 
�&6 �� � 2i&abc&c� 
��

�2i� 
���
Ym @mY

m � �6�L� Tma�2x
a�êbmr̂b�� � 2i&

Um
i @mU

m
i � ��u

iL�

Vmi @mV
m
i � ��v

iL�

025017
well as super-Poincaré, currents are obtained as SUSY
variations of the primary D � 3 conformal central charge
current and the primary D � 3 special conformal current.
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t (non)conservation
L� �@m�x

m�L	 � w�

Tma � wpa �x��

Zm � �wZ�x��
m
ab�x� � �wMab�x��
m
a�x� � �wna�x��

Qm
i � �wqi �x��

Smi � �wsi �x��

Rm � �wR�x��
mêamr̂a�� wD� � 3
 @

@
L� wD�
a � &axb�ê

b
m � &a@m�� 
���� 
���� � � 
��� 
���&abc&

c�êbm � 2�bm�

b���ê
d
mr̂d��	 � Zm�2&a�ê

a
m � 2i&mab&

b� 
��a��

���� 
�&6 @

$

m��	 � wka�

m
ab� 
��b�� � 2i� 
��� 
���� 
��a@

$

m��	 � 2Zmêamxa � wY�

�@m�
u
i x

m�L	 � wui � (see text)

�@m�
v
i x

m�L	 � wvi � (see text)
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APPENDIX A: CENTRALLY EXTENDED
SUPERCONFORMAL ALGEBRA

The N � 1, D � 4 space-time translation generator P1,
1 � 0; 1; 2; 3, consists of a D � 3 Lorentz group vector,
pm � Pm, with m � 0; 1; 2, and a D � 3 scalar central
charge, Z � P3. Likewise, the Lorentz transformation
charges M12 consist of two D � 3 vector representation
charges: Mmn � &mnrMr and Nm � Mm3. The R charge is
a singlet from both points of view. Finally the D � 4
SUSY �12 ; 0� spinor Q3 and the �0; 12� spinor 
Q _3 consist of
two D � 3 two-component Majorana spinors: qi and si,
with i � 1; 2. These are the charges that comprise the
(centrally extended) N � 2, D � 3 SUSY algebra. The
spinor charges are given as linear combinations of Q3
and 
Q _3 according to�

qi
si

	
�

1

2
ei�4=4�

�

 i

z

�i
 �

z

	�
Q3

Q _3

	
; (A1)

where �
x; 
y; 
z� are the Pauli matrices and


 �

�
1 �1
�i �i

	
: (A2)

The N � 1, D � 4 super-Poincaré algebra can be written
in terms of theD � 3 Lorentz representation charges of the
centrally extended N � 2, D � 3 SUSY algebra as

�pm; pn	 � 0 �Mm;Mn	 � �i&mnrMr

�pm; Z	 � 0 �Mm;Nn	 � �i&mnrNr
�Nm;Nn	 � �i&mnrMr

�Mm; pn	 � �i&mnrpr �Nm; pn	 � �i�mnZ

�Mm; Z	 � 0 �Nm; Z	 � �ipm

�Mmn; qi	 � �1
2�

mn
ij qj �Nm; qi	 � �1

2�
m
ijsj

�Mmn; si	 � �1
2�

mn
ij sj �Nm; si	 � �1

2�
m
ijqj

�R; qi	 � �isi fqi; qjg � �2��mC�ijpm

�R; si	 � �iqi fsi; sjg � �2��mC�ijpm

fqi; sjg � �2iCijZ:

(A3)

Note, the notation used in this paper is that of Ref. [2], in
particular, the charge conjugation matrix and the 2� 1
(D � 3) dimensional gamma matrices in the appropriate
associated representation are given there.

The N � 1, D � 4 superconformal [SU�2; 2 j 1�] alge-
bra [21,22] includes the additional charges: the dilatation
charge D, a scalar from both points of view, the special
conformal charge K1 which consists of a D � 3 Lorentz
group vector, km � Km, with m � 0; 1; 2, and a D � 3
025017
scalar conformal central charge, Y � K3. The D � 4 con-
formal SUSY �12 ; 0� spinor S3 and the �0; 12� spinor 
S _3

consist of two D � 3 two-component Majorana spinors:
ui and vi, with i � 1; 2. These are the additional charges
that comprise the centrally extended N � 2, D � 3 super-
conformal algebra. The spinor charges are given as linear
combinations of S3 and 
S _3 according to

�
ui
vi

	
�

1

2
ei�4=4�

�

 i

z

�i
 �

z

	�
S3

S _3

	
: (A4)

The remaining nonzero (anti)commutators for the N � 2,
D � 3 centrally extended superconformal algebra are

�Mm; kn	 � �i&mnrkr �Nm; kn	 � �i�mnY

�Mm; Y	 � 0 �Nm; Y	 � �ikm

�Mmn; ui	 � �1
2�

mn
ij uj �Nm; ui	 � �1

2�
m
ijvj

�Mmn; vi	 � �1
2�

mn
ij vj �Nm; vi	 � �1

2�
m
ijuj

�R; ui	 � �ivi fui; ujg � �2��mC�ijkm

�R; vi	 � �iui fvi; vjg � �2��mC�ijkm

fui; vjg � �2iCijY:

fqi; ujg � �2��mC�ijMm � 2iCijD

fqi; vjg � �2��mC�ijNm � 3iCijR

fsi; ujg � �2��mC�ijNm � 3iCijR

fsi; vjg � �2��mC�ijMm � 2iCijD

�km; qi	 � �mijuj �pm; ui	 � �mijqj

�km; si	 � ��mijvj �pm; vi	 � ��mijsj

�Y; qi	 � �ivi �Z; ui	 � �isi
�Y; si	 � �iui �Z; vi	 � �iqi

�D; qi	 � � i
2qi �D; ui	 � � i

2ui

�D; si	 � � i
2 si �D;vi	 � � i

2vi

�D;pm	 � �ipm �D; km	 � �ikm

�D;Z	 � �iZ �D; Y	 � �iY

�pm; kn	 � 2i��mnD� &mnrMr� �Z; Y	 � �2iD

�pm; Y	 � �2iNm �km; Z	 � �2iNm:

(A5)
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APPENDIX B: SUPERCONFORMAL
TRANSFORMATIONS

The presence of the non-BPS brane in N � 1, D � 4
superspace spontaneously breaks the super-Poincaré group
to the D � 3 Poincaré symmetry and R symmetry groups.
Commensurate with this is the appearance of the broken
target space translation symmetry Nambu-Goldstone bo-
son � and the broken SUSY Goldstino D � 3 Majorana
spinor fields �i and �i, i � 1; 2. Recalling the coset method
of construction for the realization of this spontaneously
broken super-Poincaré group on these fields from Ref. [2],
the world-volume coordinate variation and the linearly
represented total variations of the fields were found to be
025017
x0m � xm � am � i� 
"�m�� 
��m�� ��bm � &mnr3nxr;

�0 � �� z� �"�0�� ��0�� � bmxm;

�0i � �i � "i �
i
2
bm��m��i � i8�i �

i
2
3m��m��i;

�0i � �i � �i �
i
2
bm��

m��i � i8�i �
i
2
3m��

m��i:

(B1)
Thus, applying the relation between total and intrinsic
variations of a field, �’ � �’� �xm@m’, the nonlinear
realization of the N � 2, D � 3 super-Poincaré algebra,
given in Eq. (A3), on the �, � and � fields is
�p�a�� � �am@m� �Z�z�� � z

�p�a�� � �am@m� �Z�z�� � 0

�p�a�� � �am@m� �Z�z�� � 0

�q�"�� � � 
"�� i 
"�m�@m� �s���� � � 
��� i 
��m�@m�

�q�"��i � "i � i 
"�m�@m�i �s����i � �i 
��m�@m�i
�q�"��i � �i 
"�m�@m�i �s����i � �i � i 
��m�@m�i

�M�3�� � �&mnr3nxr@m� �N�b�� � �bmxm ��bm@m�

�M�3��i � �i
23m��

m��i � &mnr3nxr@m�i �N�b��i � �i
2bm��

m��i ��bm@m�i

�M�3��i � �i
23m��

m��i � &mnr3nxr@m�i �N�b��i � �i
2bm��

m��i ��bm@m�i

�R�8�� � 0

�R�8��i � �i8�i
�R�8��i � �i8�i:

(B2)
The brane tension explicitly breaks the superconformal
symmetries at low energies (not to mention the hard super-
conformal symmetry breaking by radiative corrections at
all scales). Hence, no new Nambu-Goldstone fields are
expected to arise from the spontaneously broken compo-
nent of these hard broken superconformal symmetries. Yet,
in addition to the explicit hard breaking, the Y, ui and
vi conformal symmetries have a spontaneously broken
component as required by the superconformal algebra.
Consider the ground state, j0i, expectation value of the
Jacobi identity involving pm, Y and @n� along with the fact
that the brane is D � 3 translation invariant, pmj0i � 0,
and the superconformal algebra contains the commutator
�pm; Y	 � 2iNm while the D � 3 translations are rep-
resented by world-volume derivatives, �pm; @n�	 �
i@m@n�, to obtain

h0j�Y; @m@n�	j0i � �2h0j�Nm; @n�	j0i: (B3)

On the other hand, the Jacobi identity involving pn,Nm and
� along with the algebraic relation �Nm; pn	 � i�mnZ
implies that
h0j�Nm; i@n�	j0i � �i�mn h0j�Z;�	j0i � �mn � 0; (B4)

the right-hand side being nonzero since � is the Z sym-
metry Nambu-Goldstone boson which transforms into a
constant. Hence, the Nm symmetry has a spontaneously
broken component with @m� acting as the corresponding
Nambu-Goldstone boson. Further, from Eq. (B3), it is
found that the Y symmetry is spontaneously broken with
@2� acting as the corresponding Nambu-Goldstone boson.
Likewise, the conformal SUSY symmetries are spontane-
ously broken with derivatives of � and � acting as their
Goldstino modes. Even though the conformal central
charge symmetry Y, the broken Lorentz symmetry genera-
tor Nm as well as the conformal SUSY charges u and v all
have a spontaneously broken symmetry component, no
new Nambu-Goldstone modes are required to realize these
spontaneously broken symmetry transformations.

Thus the remaining superconformal transformations are
to be realized on the �, � and � Nambu-Goldstone fields.
These transformations can be most easily found by using
the coset construction with a considerable simplification.
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Consider the coset element � 2 G=H with G � SU�2; 2 j
1�, the superconformal group, and H generated by the set
of unbroken charges fMmn; R;D; kmg. � can be written as
the product � � �o�̂ where

�o � eix
mpmei��Z� 
�q� 
�s� � eix

1P1ei��Q� 
� 
Q� (B5)

and

�̂ � eiv
mNmei�fY� 
=u� 
 v�: (B6)

g 2 G acts on � to yield g� � �0
oĥ �̂ � �0

o�̂
0h

with h 2 H while ĥ is generated by
fMmn;Nm; R;D; km; Y; u; vg. The simplification in finding
the superconformal transformations of �, � and � comes
from the observation

ĥ �̂ � �̂0h; (B7)

that is ĥ acting on �̂ does not feedback to a change in �0
o.

Hence, as far as the superconformal transformations of �,
� and � are concerned, only the action of g�o needs to be
considered. With g a superconformal transformation gen-
erated by fD;K1; S3; 
S _3g the transformation has the form

g�o � eix
01P1ei��

0Q� 
�0 
Q�ĥ: (B8)

This is just the usual linear representation of a supercon-
formal motion in N � 1, D � 4 superspace. For the trans-
formations

g � ei�&D�&
1K1��S� 
� 
S� (B9)

the superspace motion is given by [16,17]

x01 � �1� &�x1 � 2&8x8x1 � x2&1 � �2 
�2&1 � ix1��

� x8��
18�� � �2��
1 
�� � ix1 
� 
��x8� 
� 

81 
��

� 
�2� 
� 

1��;

�0@ � �1� 1
2&��

@ � &8x8�@ � i&1x8��
18�@

� 2i��&6 
���@ � 2i�2�@ � �x6 
��@ � 2i� 
� 
���@;


�0 _@ � �1� 1
2&�


� _@ � &8x8 
�
_@ � i&1x8� 
� 

18�

_@

� 2i��&6 
�� 
� _@ � 2i 
�2 
� _@ � ��x6 � _@ � 2i���� 
� _@:

(B10)

Recalling that x3 � �, P3 � Z, K3 � Y, etc., while the
N � 1, D � 4 superspace Grassmann coordinates �3 and

� _3 are related to the N � 2, D � 3 Goldstinos �i and �i
according to�

�3

� _3

	
�

1

2
ei�4=4�

�

z


T��� i��
i
T��� i��

�
; (B11)

and the conformal SUSY charges obey the inverse relation
to Eq. (A4)�

S3

S _3

	
�

1

2
ei�4=4�

�
�i
T
z�u� iv�
�i
T
x�u� iv�

�
; (B12)

the variousN � 2,D � 3 superconformal variations of the
025017
Nambu-Goldstone fields are determined. Isolating the di-
latations with parameter &, the world-volume coordinate
transformation and total variation of the fields are found

�D�&�xm � &xm; �D�&�� � &�;

�D�&��i �
1
2&�i; �D�&��i �

1
2&�i:

(B13)

In general the (Lie) intrinsic variation of a field ’ is related
to the total variation of the field according to �’ � �’�
�xm@m’. Hence the intrinsic dilatation transformation has
the linear representation

�D�&�� � &�1� xm@m��;

�D�&��i � &�12 � xm@m��i;

�D�&��i � &�12 � xm@m��i:

(B14)

The special conformal transformations with generators
km and conformal central charge transformations with
charge Y are obtained from Eq. (B10) by means of the
identification &1 � �&m; y� and &1K1 � &mkm � yY

�Y�y�xm � �2y�xm;

�Y�y�� � �y�x2 ��2 � � 
���� 
���	;

�Y�y�� � y�i�x6 �� ���� � 
����	;

�Y�y�� � y��i�x6 �� ���� � 
����	;

�k�&�xm � 2&nxnxm � x2&m ��2&m � � 
���� 
���&m;

�k�&�� � 2&nxn�;

�k�&�� � &nxn�� 2i� 
�&6 ���� i��&6 ��

� i&mnr&mxn��r��;

�k�&�� � &nxn�� 2i� 
�&6 ���� i��&6 ��

� i&mnr&mxn��r��:

(B15)

Finally the conformal SUSY transformations with
charges ui and vi are determined to be, using explicit
indices,

�ui x
m � �xm�i � i� 
�����m��i � i���m��i

� i&mnrxn��r��i;

�u
i � � �i�x6 ��i ���i � � 
����i;

�u
i �j � �i�x6 C�ij �

1
2�

���Cij �

3
2�

���Cij;

�u
i �j � ��Cij � 2� 
���Cij � ��i�j � �i�j	;

�vi x
m � �xm�i � i� 
�����m��i � i���m��i

� i&mnrxn��r��i;

�v
i � � �i�x6 ��i ���i � � 
����i;

�v
i �j � ��Cij � 2� 
���Cij � ��i�j � �i�j	;

�v
i �j � �i�x6 C�ij �

3
2�

���Cij �

1
2�

���Cij:

(B16)
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As usual, the intrinsic variations can be found according
to �’ � �’� �xm@m’ for each field ’. Note that Y, km,
ui and vi variations are all nonlinearly realized, however
the special conformal symmetry generated by km is not
025017
spontaneously broken while the Y, ui and vi generated
symmetries are spontaneously broken due to the field
independent but world-volume coordinate dependent terms
in their transformation equations as discussed above.
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(Birkhäuser, Boston, 1986), and references therein.

[18] T. E. Clark and S. T. Love, Int. J. Mod. Phys. A 11,
2807 (1996); Phys. Rev. D 40, 4117 (1989); 44, 3978
(1991).

[19] T. E. Clark, S. T. Love, and S. R. Nowling, Nucl. Phys.
B632, 3 (2002).

[20] T. E. Clark and S. T. Love, Phys. Rev. D 39, 2391 (1989);
54, 5723 (1996); 63, 065012 (2001); 57, 5912 (1998).

[21] J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974).
[22] S. Ferrara, Nucl. Phys. B77, 73 (1974).
-11


