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In this paper we examine �-derivable approximations in QED. General theorems tell us that the
gauge dependence of the n-loop �-derivable approximation shows up at order g2n where g is the
coupling constant. We consider the gauge dependence of the two-loop �-derivable approximation to the
Debye mass and show that it is of order e4 as expected. We solve the three-loop �-derivable
approximation in QED by expanding sum-integrals in powers of e2 and m=T, where m is the Debye
mass which satisfies a variational gap equation. The results for the pressure and the Debye mass are
accurate to order e5.
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FIG. 1. Weak-coupling expansion for the pressure to orders e2
I. INTRODUCTION

The thermodynamic functions for hot field theories can
be calculated as a power series in the coupling constant g
at weak ccoupling. The free energy has been calculated
through to order g4 in [1,2] for scalar�4 theory, in [3] for
QED and in [2] for nonabelian gauge theories. The cor-
responding calculations to order g5 were carried out in
Refs. [4,5], Refs. [6,7] and Refs. [8,9], respectively. In
Fig. 1, we show the successive perturbative approxima-
tions to P=P ideal as a function of e�2�T�.To obtain the
band for the e5 approximation, we have varied the renor-
malization scale 	 by a factor of two around the central
value of 	 � 2�T. To express e�	� in terms of e�2�T�,
we use the solution to the one-loop renormalization group
equation in QED. The figure shows that the weak-
coupling expansion is poorly convergent unless the cou-
pling constant is small and that it is very sensitive to the
renormalization scale 	. The lack of convergence seems
to be related with screening and quasiparticles which is
associated with the soft momentum scale of order eT. The
instability of the weak-coupling expansion is a generic
problem in hot field theories and makes it essentially
useless for quantitative predictions.

There are several ways of systematically reorganizing
the perturbative expansion to improve its convergence
properties and various approaches have been discussed
in detail in the review papers, Refs. [10–12]. One of these
methods is screened perturbation theory (SPT) which in
the context of thermal field theory was introduced by
Karsch, Patkós and Petreczky. [13] (See also Refs. [14–
16]). In this approach, one introduces a single variational
parameter which has a simple interpretation as a thermal
mass. In SPTa mass term is added to and subtracted from
the scalar Lagrangian with the added piece kept as part of
the free Lagrangian and the subtracted piece associated
ress: jensoa@nordita.dk
ress: mike@hep.itp.tuwien.ac.at

05=71(2)=025011(11)$23.00 025011
with the interactions. The mass parameter satisfies a
variational equation which is obtained by the principle
of minimal sensitivity.

In gauge theories, one cannot simply add and subtract a
local mass term as this would violate gauge invariance.
Instead one adds and subtracts to the Lagrangian a hard
thermal loop (HTL) improvement term. The free part of
the Lagrangian then includes the HTL self-energies and
the remaining terms are treated as perturbations. Hard
thermal loop perturbation theory is a manifestly gauge
invariant approach that can be applied to static as well as
dynamic quantities. SPT and HTL perturbation theory
have been applied to three and two loops [17–22], re-
spectively, and the convergence properties are improved
dramatically compared to the weak-coupling expansion.

The 2PI (two-particle irreducible) effective action for-
malism is another way of reorganizing the perturbative
expansion which is variational of nature. In this approach,
(dotted curve), e3 (dashed curve), e4 (long-dashed curve), and
e5 (solid lines+band) normalized to that of an ideal gas as a
function of e�2�T�.
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one uses the exact propagator as a variational function. Its
formulation was first constructed by Luttinger and Ward
[23] and by Baym [24]. Later it was generalized to
relativistic field theories by Cornwall, Jackiw and
Tomboulis [25]. The approach is based on the fact that
the thermodynamic potential can be expressed in terms of
the 2PI effective action which has a diagrammatic ex-
pansion involving the 2PI skeleton graphs. Although here
we focus on equilbrium physics we note that the 2PI
formalism and its generalizations are also very useful
when studying nonequilibrium real-time physics [26–
28].

The 2PI effective action formalism has several attrac-
tive features. One is that it respects the global symmetries
of the theory. Thus it is consistent with the conservation
laws that follow from the Noether’s theorem. The n-loop
�-derivable approximation, which is defined as the trun-
cation of the action functional after n loop, however,
violates Ward-Takahashi beyond the order of truncation,
and only expectation values of the Noether currents are
exactly conserved. Second, when evaluated at the sta-
tionary point, one is guaranteed thermodynamic consis-
tency [24]. Finally, it turns out that the two-loop
�-derivable approximation has an additional property.
The entropy reduces to the one-loop expression at the
variational point. This property was first shown for QED
by Vanderheyden and Baym [29] and later generalized to
QCD by Blaizot, Iancu and Rebhan [30–32].

Applying the 2PI effective action formalism to quan-
tum field theories, one is facing two nontrivial issues. The
first issue is the question of renormalization. The three-
loop calculations by Braaten and Petitgirard [33] for a
massless scalar field theory indicate that there are ultra-
violet divergences at order g6 that cannot be eliminated
by any renormalization of the coupling constant. These
calculations seem to contradict the results from the papers
by van Hees and Knoll [34], and by Blaizot, Iancu and
Reinosa [35], which show that the 2PI effective action can
be systematically renormalized.

The second issue is that of gauge-fixing dependence.
While the exact 2PI effective action is gauge independent
at the stationary point, this property is often lost in
approximations. The problem has recently been examined
by Arrizabalaga and Smit [36], who showed that the
n-loop �-derivable approximation �n has a gauge depen-
dence that shows up at order g2n. Furthermore, if the nth
order solution to the gap equation is used to evaluate the
complete effective action, the gauge dependence first
shows up at order g4n. For a general proof of the gauge
invariance of the exact 2PI effective action we refer the
reader to Ref. [37].

In gauge theories, approximate solutions to the gap
equations in two-loop �-derivable approximation in
terms of HTL self-energies have been obtained by
Blaizot, Iancu and Rebhan [30–32], and by Peshier
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[38]. For hard external momentum, these solutions are
obtained by evaluating the one-loop self-energy dia-
grams with bare propagators. For soft external momen-
tum, the solution is simply the HTL self-energies, which
in the imaginary-time formalism reduces to the Debye
mass. The resulting approximation reproduces the pres-
sure to order g3.

Finally, we mention that a dimensionally reduced ver-
sion of the three-loop �-derivable approximation was
solved in the case of scalar field theory [12]. This was
done by treating the contribution to the pressure from the
nonzero Matsubara modes in strict perturbation theory
and applying �-derivable approximations to an effective
three-dimensional field theory for the zero-frequency
mode that has been obtained by dimensional reduction.
The results are comparable to those obtained in SPT [17]
and the �-derivable approximation in 3� 1 dimensions
[33].

In this paper, we solve the three-loop �-derivable
approximation for QED. This is done by applying the
strategy developed in Ref. [33]. It consists of expanding
the sum-integrals systematically in powers of e and m=T
where m is a variational mass parameter of order eT. Our
result for the pressure reproduces the weak-coupling ex-
pansion to order g5 and is gauge invariant.

The paper is organized as follows. In Sec. II, we briefly
discuss the application of the two-particle irreducible
effective action formalism to QED and the general frame-
work developed in Ref. [33] to solve it systematically. In
Sec. III, we solve the two-loop �-derivable approxima-
tion and discuss the issue of gauge dependence. In Sec. IV,
we solve the three-loop �-derivable approximation. We
summarize and draw some conclusions in Sec. V. There
are two appendices where our notation and conventions
are given and where we list the sum-integrals and inte-
grals that are needed.
II. �-DERIVABLE APPROXIMATIONS

In this section, we briefly discuss the 2PI effective
action formalism and �-derivable approximations.

The Euclidean Lagrangian of massless QED is

L �
1

4
F2
	� �  	D	 �Lgf ; (1)

where F	� � @	A� � @�A	 is the field strength tensor,
D	 � @	 � ieA	 is the covariant derivative, and e is the
electric coupling. Lgf is the gauge-fixing part of the
Lagrangian. In general covariant gauge, the gauge-fixing
part of the Lagrangian is

L gf �
1

2�
�@	A	�2: (2)

In the remainder of this section and in Sec. III, we keep �
general in order to discuss the problem of gauge depen-
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FIG. 2. �-derivable two- and three-loop skeleton graphs.
FIG. 3. One- and two-loop photon self-energy graphs.
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dence. In Sec. IV, we specialize to Feynman gauge (� �
1), which by far is the easiest gauge for practical
calculations.

The thermodynamic potential � of QED is

���; S� �
1

2
Tr log��1 � Tr logS�1 � Tr log��1

gh

�
1

2
Tr��� Tr�S� Tr�gh�gh

����; S�; (3)

where �	��P� and S�P� is the exact photon and electron
propagator, respectively, and �gh�P� is the propagator for
the ghost. �	��P� is the polarization tensor and ��P� is
the electron self-energy. We can then write

��1
	��P� � ��0

	��P���1 ��	��P�; (4)

S�1�P� � 6P���P�; (5)

where �0
	��P� is the free propagator in covariant gauge:

�0
	��P� �

�	�
P2 � �1� ��

P	P�
P4 : (6)

The trace in Eq. (3) is over Dirac and Lorentz indices as
well as space-time. In covariant gauges, the ghost field
decouples from the other fields and so the ghost self-
energy �gh�P� vanishes identically1. The functional
���; S� is the sum of all two-particle irreducible vacuum
diagrams. We define the n-loop �-derivable approxima-
tion �n to the thermodynamic potential � as the trunca-
tion of the action functional after n loops. The two-
particle irreducible vacuum diagrams are shown dia-
grammatically in Fig. 2 up to three-loop order. The
corresponding self-energies that are obtained by cutting
a line, are shown in Figs. 3 and 4.

The exact propagators satisfy the variational equations

����; S�
��

� 0; (7)

����; S�
�S

� 0: (8)
1In nonabelian gauge theories, the ghost does not decouple in
covariant gauges which makes the calculation significantly
more involved. In Ref. [32] the authors are employing the
temporal axial gauge in which the ghost does decouple.
However, there are other problems with this gauge at finite
temperature [39,40].
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Using Eq. (3), the variational Eqs. (7) and (8) can be
written as

�	��P� � 2
����; S�
��	��P�

; (9)

��P� � �
����; S�
�S�P�

: (10)

In QED, we know that thermal fluctuations generate a
mass m for the zeroth component of the gauge field A0

which is of order eT and screens the interactions. The
strategy for solving the n-loop �-derivable approxima-
tion is to introduce a mass variable which is of order eT
and then calculate the sum-integrals as double expansions
in e2 andm=T. This strategy was developed in Ref. [33] in
order to solve the three-loop �-derivable approximation
in scalar field theory. It turns out that the gap Eqs. (9) and
(10) have a recursive structure that allows us to solve for
their dependence of the external momentum P. We follow
Braaten and Petitgirard and choose the Debye mass as the
mass parameter. The Debye mass is the solution to the
equation

p2 ��00�0;p� � 0; p2 � �m2: (11)

In the variational Eqs. (9) and (10), there are two impor-
tant mass scales. One is soft and is of order eT. This scale
is set by the Debye mass m. The other is the hard scale of
order 2�T and is set by the nonzero Matsubara modes.We
will assume the coupling is sufficently small so that the
scales m and 2�T are well separated. This allows one to
expand the sum-integrals in powers of e2 and m=T. The
gap equations will then be solved in the two momentum
regions separately. For hard momentum P, we expand the
polarization tensor as follows:

�	��P� � e2�2;0
	��P� � e4��4;0

	��P� ��4;1
	��P� � . . .�

� . . . ; (12)

where �n;k
	��P� is of order T2�m=T�k. Similarly, the elec-

tron propagator is expanded as
FIG. 4. One- and two-loop electron self-energy graphs.
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��P� � e2��2;0�P� � �2;1�P� � . . .� � e4��4;0�P�

� �4;1�P� � . . .� � . . . ; (13)

where �n;k�P� is of order T2�m=T�k. For soft momentum
P � �0;p�, we expand the longitudinal part of polariza-
tion tensor as follows 2:

�00�0;p� � m2 � e2��2;0�p� � �2;2�p� � . . .�

� e4��4;0�p� � . . .� � . . . ; (14)

where �n;k�p� is of order m2�m=T�k.
For hard momentum, we can expand 1

2 Tr log�
�1 about

the free propagator, since the self-energy is perturbative
corrections starting at order e2. This yields

1

2
Tr log��1 �

1

2
�d� 1�

ZX
P
logP2 �

1

2
e2
ZX

P

�2;0
		�P�

P2

�
1

2
e4
ZX

P

�
�4;0
		�P�

P2 �
1

2

�2;0
	��P��2;0

	��P�

P4

�
� . . . : (15)

The gauge-dependent terms in Eq. (15) drop out since the
photon self-energy in QED is transverse to all orders:

P	�	��P� � 0: (16)

For soft momentum, the expansion is

1

2
Tr log��1 �

1

2
T
Z
p
log�p2 �m2 � e2�2;0�p� � . . .�

�
1

2
T
Z
p
log�p2 �m2� �

1

2
e2T

Z
p

�2;0�p�

p2 �m2

� . . . ; (17)

Again we have used the transversality of the photon
propagator to eliminate the gauge-dependent terms. We
do not need the expansion of Tr�D since we will use the
gap equation to eliminate this term.

We also need the expansions for Tr logS�1 and Tr�S.
Since the electron momentum is always hard, we can
expand about the free propagator and obtain

Tr logS�1 � 2
ZX

fPg
logP2 � e2

ZX
fPg
Tr
�
�2;0�P�6P

P2

�
�2;1�P�6P

P2 � . . .
�

�
1

2
e4
ZX

fPg

�
�2;0�P�P6 �2;0�P�P6

P4 � . . .
�

� . . . ; (18)
2Since the infrared limit of the other components of
�	��0;p� vanishes, the corresponding contribution to the
free energy also vanishes.
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Tr�S� e2
ZX

fPg
Tr
�
�2;0�P�6P

P2 �
�2;1�P�6P

P2 � . . .
�

� e4
ZX

fPg

�
�2;0�P�6P�2;0�P�6P

P4 � . . .
�
� . . . ; (19)

where the trace on the right-hand side is only over Dirac
indices.

The contribution from the ghost field is as usual

T r log��1
gh �

ZX
P
logP2: (20)

By inserting the expansions for the self-energies into
the gap equations and expanding systematically in powers
of e and m=T, we obtain expressions for �n;k

	��P�, �n;k�P�
and �n;k	��p�. We then match coefficients of en on both
sides and solve the equations simultaneously and
recursively.
III. TWO LOOPS

In the two-loop �-derivable approximation, there is
only a single diagram contributing to ��D; S� which is
the left diagram in Fig. 2. The two-loop thermodynamic
potential �2 is

�2��; S� �
1

2
Tr log��1 � Tr logS�1 � Tr log��1

gh

�
1

2
Tr��� Tr�S�

1

2
e2
ZX

PfQg

� Tr�S�Q�	S�P�Q���	��P��: (21)

The gap equations are obtained by varying the thermo-
dynamic potential �2 with respect to �	��P� and ��P�:

�	��P� � e2
ZX

fQg
Tr�S�Q�	S�P�Q���; (22)

��P� � e2
ZX

Q
	S�P�Q���	��Q�: (23)

It follows from the coupled gap equations that both
�	��P� and ��P� are nontrivial functions of the external
momentum P.

The gap Eq. (22) can be used to simplify Eq. (21) for
�2:

�2 �
1

2
Tr log��1 � Tr log��1

gh � Tr logS�1 � Tr�S:

(24)

Substituting the expansions for the various terms into
(24) and truncating at the appropriate order, we obtain
-4



3Only in Feynman gauge is the polarization tensor finite
after wave-function renormalization.
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�2 �
1

2
�d� 1�

ZX
P
logP2 �

1

2
T
Z
p
log�p2 �m2�

� 2
ZX

fPg
logP2 �

1

2
e2
ZX

P

�2;0
		�P�

P2 : (25)

We note that the function �2;0�P� drops out. In the two-
loop �-derivable approximation, we only need the trace
of �2;0

	��P�, while in the three-loop �-derivable approxi-
mation, we need the function itself.

The solution to the gap equations for hard momentum
to order e2 are obtained by using bare propagators in the
loops. In this manner, we find

�2;0
	��P� �

ZX
fQg

�
8Q	Q�

Q2�P�Q�2
�

4�	�
Q2

�
2P2�	�

Q2�P�Q�2
�

4P	Q� � 4P�Q	

Q2�P�Q�2

�
: (26)

We also need to solve the gap equation for soft mo-
mentum in order to determine the Debye mass. Through
order e3, the longitudinal part of polarization tensor at
zero-frequency reads

�00�0;p� � m2; (27)

where the Debye mass is

m2 � �4�d� 1�e2
ZX

fQg

1

Q2 �
16�2

3
�T2; (28)

where � � e2=�4��2. The thermodynamic potential
through order e3 then reduces to

�2 �
1

2
�d� 1�

ZX
P
logP2 �

1

2
T
Z
p
log�p2 �m2�

� 2
ZX

fPg
logP2 � �d� 1�e2

�

"ZX
PfQg

2

P2Q2 �
ZX

fPQg

1

P2Q2

#
: (29)

Using the expressions for the integrals and sum-integrals
in the appendices, this reduces to

�2 � �
11�2T4

180

�
1�

50

11
��

320
���
3

p

33
�3=2

�
: (30)

Equation (30) agrees with the weak-coupling result
through order e3 [6]. Thus the two-loop �-derivable
approximation sums up the leading contribution from
the plasmon diagrams.

We close this section by discussing the problem of
gauge dependence that arises when going beyond order
e3. For example, to calculate the Debye mass to order e4,
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we need to include the function �2;0�P� in the dressed
electron propagator on the right-hand side of the gap
Eq. (22). This function is

�2;0�P� � �1� d�
ZX

Q

�6P� 6Q�

Q2�P�Q�2
� �1� ��

�
ZX

Q

�
6Q

Q4 �
6P

Q2�P�Q�2
�

P2 6Q

Q4�P�Q�2

�
:

(31)
The function �2;0�P� arises from hard photon momenta in
the self-energy graph in Fig. 4. We note that it is gauge-
dependent and this is due the photon line in the one-loop
self-energy graph shown in Fig. 4. Since �2;0�P� is gauge-
dependent, this introduces a gauge dependence at order e4

in the longitudinal part of polarization tensor. At zero-
frequency, one finds:

�00�0;p� ��4�d� 1�e2
ZX

fQg

1

Q2

�
2

3
�d� 1�e2p2

ZX
fQg

1

Q4

�
8

3
�d� 1��d� 3�e4

ZX
fQg

1

Q4

�

"ZX
R

1

R2 �
ZX

fRg

1

R2

#

� 8�1���e4
ZX

fPgQ

�
P2
0

P2Q4�P�Q�2
�

2P2
0

P4Q4

�
:

(32)
The equation for �00�0;p� is ultraviolet divergent and
requires renormalization. The divergence proportional to
p2 is removed by wave-function renormalization in the
usual manner (see also Sec. IV). The other divergence
which arises from the last line in Eq. (32) can only be
removed by a gauge-dependent renormalization of the
coupling constant 3. This would lead to a gauge-dependent
gap equation and Debye mass. Equation (32) depends on
the gauge-fixing parameter, but this is not in contradiction
with the fact that the photon self-energy is manifestly
gauge invariant. The point is that in the two-loop
�-derivable approximation, we are not including all con-
tributions to �	��P� of order e4. This is done when one
considers the three-loop approximation and we have ex-
plicitly checked that the gauge dependence cancels alge-
braically as we include the two-loop self-energy graph in
Fig. 3.

IV. THREE-LOOPS

The three-loop �-derivable approximation to the free
energy is
-5
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�3��; S� �
1

2
Tr log��1 � Tr logS�1 � Tr log��1

gh �
1

2
Tr��� Tr�S�

1

2
e2
ZX

PfQg
Tr�S�Q�	S�P�Q���	��P��

�
1

4
e4
ZX

PfQRg
Tr�S�Q�	S�R��S�R� P��S�Q� P���	��P�����Q� R��: (33)

The gap equations are again obtained by varying (33) with respect to the photon and electron self-energies:

�	��P� � e2
ZX

fQg
Tr�S�Q�	S�P�Q���;�e4

ZX
fQRg

Tr�S�Q�	S�R��S�R� P��S�Q� P�������Q� R�; (34)

��P� � e2
ZX

Q
	S�P�Q���	��Q� � e4

ZX
QfRg

	S�R��S�R�Q��S�P�Q������Q��	��R� P�: (35)

The gap equation for �	��P� can be used to simplify the expression for the thermodynamic potential:

�3��; S� �
1

2
Tr log��1 � Tr logS�1 � Tr log��1

gh � Tr�S�
1

4
e4
ZX

PfQRg
Tr�S�Q�	S�R��S�R� P�

� �S�Q� P���	��P�����Q� R��: (36)

Substituting the expansions (15)–(19) into (36), we obtain

�3 �
1

2
�d� 1�

ZX
P
logP2 �

1

2
T
Z
p
log�p2 �m2� �

1

2
e2T

Z
p

�2;0�p�

p2 �m2 � 2
ZX

fPg
logP2 �

1

2
e2
ZX

P

�2;0
		�P�

P2

�
1

2
e4
ZX

P

"
�4;0
		�P�

P2 �
�4;1
		�P�

P2 �
1

2

ZX
P

�2;0
	��P��

2;0
	��P�

P4

#

�
1

2
e4
ZX

fPg
Tr
�
�2;0�P�6P�2;0�P�6P

P4 � 2
�2;0�P�6P�2;1�P�6P

P4 �
�2;1�P�6P�2;1�P�6P

P4

�

�
1

2
�d� 1��5� d�e4

ZX
fPQRg

1

P2Q2R2�P�Q� R�2
� �d� 1��d� 3�e4

ZX
PQfRg

1

P2Q2R2�P�Q� R�2

� 8�d� 1�e4
ZX

fQgR

Q0R0

Q4R2�Q� R�2

 
T
Z
p

1

p2 �m2

!
: (37)

In the three-loop �-derivable approximation, we only need the trace of the functions �4;0
	��P� and �4;1

	��P�. These traces
are significantly simpler to calculate than the functions themselves. Furthermore, it turns out that the order-e4 term in
Eq. (35) for the electron self-energy first contributes to the pressure at order e7 and so it is not needed. In addition to the
functions listed in Sec. III, we need the following functions for hard P

�2;1�P� �
2p00 � 6P

P2 T
Z
q

1

q2 �m2 ; (38)

�4;0
		�P� � �4�d� 1�2

ZX
fQgR

�
1

Q4R2 �
P2

Q4R2�Q� R�2
�

1

R2�P�Q�2�Q� R�2
�

2P  R

Q2R2�P�Q�2�Q� R�2

�

� 4�d� 1�2
ZX

fQRg

�
P2

Q4R2�P�Q�2
�

1

Q4R2

�
� 4�d� 1�

ZX
fQRg

�
4�Q  R�2

Q2R2�R� P�2�Q� P�2�Q� R�2

�
P4

Q2R2�R� P�2�Q� P�2�Q� R�2
�

4P2

Q2R2�Q� P�2�Q� R�2
�
d� 7

2

P2

Q2R2�R� P�2�Q� P�2

� �d� 3�
1

R2�Q� P�2�Q� R�2
�

2Q2

R2�R� P�2�Q� P�2�Q� R�2
�

2

R2�R� P�2�Q� R�2

�
; (39)
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�4;1
		�P� � 2�d� 1�

ZX
fQg

�
2P2

Q4�P�Q�2
�

2

Q4 �
8q20
Q6

�
8P2q20

Q6�P�Q�2
�

4p0q0P2

Q4�P�Q�4
�

4P2q20
Q4�P�Q�4

� 
T
Z
r

1

r2 �m2

!
:

(40)

The functions �2;1�P� and �4;1
	��P� arise when the photon momentum in the relevant Feynman diagram is soft, while

�4;0
	��P� is when the photon momentum is hard.
Through order e5, the longitudinal part of polarization tensor at zero frequency can be written as

�00�0;p� � �4�d� 1�e2
ZX

fQg

1

Q2 �
2

3
�d� 1�e2p2

ZX
fQg

1

Q4 � 4�d� 1��d� 3�e4
ZX

fQg

1

Q4

"ZX
fRg

1

R2 �
ZX

fRg

1

R2

#

� 4�d� 1��d� 3�e4
ZX

fPg

1

P4

 
T
Z
r

1

r2 �m2

!
: (41)

We have explicitly checked that (41) is independent of the gauge-fixing parameter � in contrast to the gauge-
dependent expression (32). Equation (41) can be rewritten as

�00�0;p� � m2 � e2�2;0�p�; (42)
where the Debye mass satisfies

m2 � �4�d� 1�e2
ZX

fQg

1

Q2 �
2

3
�d� 1�e2p2

ZX
fQg

1

Q4









p2��m2
�4�d� 1��d� 3�e4

ZX
fQg

1

Q4

"ZX
R

1

R2 �
ZX

fRg

1

R2

#

� 4�d� 1��d� 3�e4
ZX

fPg

1

P4

 
T
Z
r

1

r2 �m2

!
; (43)

and

�2;0�p� �
2

3
�d� 1�e2�p2 �m2�

ZX
fQg

1

Q4 : (44)

The gap Eq. (43) is ultraviolet divergent and requires renormalization. The divergence is proportional to p2 and is
removed by wave-function renormalization:

ZA � 1�
e2

12�2#
: (45)

After having renormalized the static polarization tensor �00�0;p�, the gap Eq. (11) reduces to

m2 �
16�2

3
T2�

�
1�

8

3

�
log

	
4�T

� � 2 log2�
7

4
� 18

�
m

4�T

�
�
�
: (46)

The result for the Debye mass (46) agrees with the weak-coupling result [41,7] through order e5.
Inserting the expressions (38)–(40) and (44) into (37), the three-loop �-derivable approximation then becomes

�3 �
1

2
�d� 1�

ZX
P
logP2 �

1

2
T
Z
p
log�p2 �m2� � 2

ZX
fPg

logP2 � e2�d� 1�

�

"ZX
PfQg

2

P2Q2 �
ZX

fPQg

1

P2Q2

#
� �d� 1�2e4

ZX
fPg

1

P4

"ZX
fQg

1

Q2 �
ZX

Q

1

Q2

#
2

� 4�d� 3�e4
ZX

PfQRg

1

P4Q2R2

� 2�d� 1�e4
ZX

PQfRg

1

P2Q2R2�P�Q� R�2
�

1

2
�d2 � 8d� 11�e4

ZX
fPQRg

1

P2Q2R2�P�Q� R�2

� 2�d� 1�2e4
ZX

fPgQR

QR

P2Q2R2�P�Q�2�P� R�2
� 16e4

ZX
PfQRg

�QR�2

P4Q2R2�P�Q�2�P� R�2

� �d� 1��d� 3�e4
ZX

fPg

1

P4

 
T
Z
q

1

q2 �m2

!
2

: (47)
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FIG. 5. Two- and three-loop �-derivable approximations to
the pressure normalized to that of an ideal gas as a function of
e�2�T� shown as dashed and solid lines, respectively. The
three-loop band is obtained by varying the renormalization
scale, 	, by a factor of 2 around the central value 	 � 2�T.
Note that the scale is different than in Fig. 1.
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Note that we have kept a term that is proportional to e4m2

and first contributes at order e6. This term arises from
three-loop diagrams where both photons are soft 4. This
contribution is manifestly gauge invariant and we include
this selective resummation in our final result. It is inter-
esting to note that the only contribution at order e5 comes
from the Debye mass; all the other contributions cancel
algebraically

The expression for �3 is ultraviolet divergent. The
divergences can be eliminated by renormalizing the cou-
pling constant. This is done by the substitution e2 ! Z2

ee2,
where

Z2
e � 1�

e2

12�2#
: (48)

Using the expressions for the sum-integrals and integrals
listed in the appendices, we obtain

�3 � �
11�2T4

180

�
1�

50

11
��

960

11

�
m

4�T


3

�

�
400

33

�
log

	
4�T

�
3

5
�

2

5

$ 0��3�

$��3�

�
4

5

$ 0��1�

$��1�
�

319

80
�

156

25
log2



�
11520

11

�
m

4�T


2
�
�2

�
: (49)

Using the expression for the Debye mass in Eq. (46), one
can show that the three-loop �-derivable approximation
agrees with the weak-coupling expansion through order
e5 [6,7].

The renormalization group equation that follows from
(48) is

	
de2

d	
�

e4

6�2 ; (50)

which coincides with the standard one-loop running of
the coupling.

In Fig. 5, we show the two and three-loop �-derivable
approximations to the pressure normalized to that of an
ideal gas shown as dashed and solid lines, respectively. In
the three-loop approximation, the band is obtained in the
usual manner by varying the renormalization scale 	.
The three-loop band is slightly narrower when compared
to the e5-band in Fig. 1. The approximations also seem to
be slightly more stable than the successive weak-coupling
approximations. However, the final result does not seem
to be a dramatic improvement over the e5 result.
4The complete e4m2 contribution can also be obtained in a
two-loop calculation using the dimensionally reduced theory
of QED (electrostatic QED) derived in [7,42] .

025011
V. SUMMARY

In this paper we have solved the three-loop �-derivable
approximation for the Debye mass and the free energy in
QED by systematically expanding the sum-integrals in
powers of e2 and m=T. The results are accurate to order
e5. In the two-loop �-derivable approximation, both the
thermodynamic potential and gap equation are finite, and
so there is no running of the coupling. The solution to the
gap equation is trivial; the Debye mass is given by its
weak-coupling expression. This was also the case in the
two-loop calculation of Blaizot, Iancu and Rebhan in the
case of QCD [30–32]. In scalar field theory, the coupling
is running incorrectly by a factor of 3 [30–33]. In the
three-loop �-derivable approximation, the expressions
for the Debye mass and the free energy require wave-
function renormalization and renormalization of the cou-
pling constant, respectively. The running of the resulting
renormalized coupling agrees with the standard one-loop
running in QED.

We have also considered the problem of gauge depen-
dence within the 2PI effective action formalism. We gave
an explicit example of how gauge dependence arises in
the one-loop gap equation for the photon propagator when
one truncates the gap equations at order e4. Our calcu-
lation is in agreement with general results on the gauge
dependence of �-derivable approximations [36].

The method could also be used to solve the three-loop
�-derivable approximation in QCD with an accuracy of
order g5. Although the �-derivable results in QED do not
seem to dramatically improve the stability of successive
approximations, this may not be the case in QCD since
there resummation effects enter already at order g3.
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Going beyond three-loops in scalar theory as well as
gauge theories would be very difficult. One problem is that
there are new four-loop sum-integrals of order g6 that
have not yet been evaluated. In nonabelian gauge theories,
there is the additional problem that the free energy at this
order is sensitive to the nonperturbative momentum scale
g2T which is associated with screening of static magnetic
fields. This may cause the expansion of the three-loop
�-derivable approximation to break down beyond order
g5.
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APPENDIX A: SUM-INTEGRALS

In the imaginary-time formalism for thermal field
theory, the 4-momentum P � �P0;p� is Euclidean with
P2 � P2

0 � p2. The Euclidean energy p0 has discrete
values: P0 � 2n�T for bosons and P0 � �2n� 1��T
for fermions, where n is an integer. Loop diagrams in-
volve sums over P0 and integrals over p. With dimen-
sional regularization, the integral is generalized to
d � 3� 2# spatial dimensions. We define the dimension-
ally regularized sum-integral byZX

P
�

�
e	2

4�


#
T

X
P0�2n�T

Z d3�2#p

�2��3�2# ; (A1)

ZX
fPg

�

�
e	2

4�


#
T

X
P0��2n�1��T

Z d3�2#p

�2��3�2# ; (A2)

where 	 is an arbitrary momentum scale. The factor
�e=4��# is introduced so that, after minimal subtraction
of the poles in # due to ultraviolet divergences, 	 coin-
cides with the renormalization scale of the MS renormal-
ization scheme.

1. One-loop sum-integrals

The specific one-loop sum-integrals needed areZX
P
log P2 � �

�2T4

45
; (A3)
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ZX
P

1

P2 �
T2

12

�
	

4�T


2#
�
1�

�
2� 2

$ 0��1�

$��1�


#
�
; (A4)

ZX
P

1

�P2�2
�

1

�4��2

�
	

4�T


2#
�
1

#
� 2

�
; (A5)

ZX
fPg

logP2 �
7�2T4

360
; (A6)

ZX
fPg

1

P2 � �
T2

24

�
	

4�T


2#
�
1�

�
2� 2 log2

� 2
$ 0��1�

$��1�


#
�
; (A7)

ZX
fPg

1

�P2�2
�

1

�4��2

�
	

4�T


2#
�
1

#
� 2� 4 log2

�
: (A8)

The errors are all one order higher in # than the small-
est term shown. The calculations of these sum-integral is
standard.

2. Two-loop sum-integrals

The two-loop sum-integrals that are needed both van-
ish:

ZX
fPQg

1

P2Q2�P�Q�2
� 0; (A9)

ZX
PQ

1

P2Q2�P�Q�2
� 0; (A10)

The errors are all of order #. Details of the calculation
of these two-loop sum-integrals can be found in, e.g.,
Ref. [2].

3. Three-loop sum-integrals

The three-loop diagrams needed are
ZX
PQR

1

P2Q2R2�P�Q� R�2
�

1

�4��2

�
T2

12


2
�
	

4�T


6#
�
6

#
�

182

5
� 12

$ 0��3�

$��3�
� 48

$ 0��1�

$��1�

�
; (A11)
ZX
fPQRg

1

P2Q2R2�P�Q�R�2
�

1

�4��2

�
T2

12


2
�
	

4�T


6#
�
3

2#
�
173

20
�
63

5
log2� 3

$ 0��3�

$��3�
� 12

$ 0��1�

$��1�

�
; (A12)
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ZX
PQfRg

1

P2Q2R2�P�Q�R�2
�

1

�4��2

�
T2

12


2
�
	

4�T


6#
�
�

3

4#
�
179

40
�

51

10
log2�

3

2

$ 0��3�

$��3�
� 6

$ 0��1�

$��1�

�
; (A13)

ZX
fPgQR

QR

P2Q2R2�P�Q�2�P� R�2
�

1

�4��2

�
T2

12


2
�
	

4�T


6#
�
3

8#
�

9

4
�

361

160
�

57

10
log2�

3

2

$ 0��3�

$��3�
�

3

2

$ 0��1�

$��1�

�
; (A14)

ZX
PfQRg

�QR�2

P4Q2R2�P�Q�2�P�R�2
�

1

�4��2

�
T2

12


2
�
	

4�T


6#
�

5

24#
�

1

4
�

23

24
�
8

5
log2�

1

6

$ 0��3�

$��3�
�
7

6

$ 0��1�

$��1�

�
: (A15)

The errors are all of order #. The calculation of these three-loop sum-integrals was done in Ref. [2] and details can be
found there.

APPENDIX B: INTEGRALS

Dimensional regularization can be used to regularize both the ultraviolet divergences and infrared divergences in 3-
dimensional integrals over momenta. The spatial dimension is generalized to d � 3� 2# dimensions. Integrals are
evaluated at a value of d for which they converge and then analytically continued to d � 3. We use the integration
measure Z

p
�

�
e	2

4�


# Z d3�2#p

�2��3�2# : (B1)

We require a few integrals that appear in the soft sector. The momentum scale in these integrals is set by the Debye
mass m. The one-loop integrals needed are: Z

p
log�p2 �m2� � �

m3

6�
; (B2)

Z
p

1

p2 �m2 � �
m
4�

: (B3)

The errors are all of order #. The calculation of these integrals is standard.
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