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New methods of testing Lorentz violation in electrodynamics
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We investigate experiments that are sensitive to the scalar and parity-odd coefficients for Lorentz
violation in the photon sector of the standard model extension (SME). We show that of the classic tests of
special relativity, Ives-Stilwell (IS) experiments are sensitive to the scalar coefficient, but at only parts in
105 for the state-of-the-art experiment. We then propose asymmetric Mach-Zehnder interferometers with
different electromagnetic properties in the two arms, including recycling techniques based on travelling
wave resonators to improve the sensitivity. With present technology we estimate that the scalar and parity-
odd coefficients may be measured with a sensitivity better than parts in 1011 and 1015 respectively.
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I. INTRODUCTION

The postulate of Lorentz invariance (LI) is at the heart of
special and general relativity and therefore one of the
cornerstones of modern physics. The central importance
of this postulate has motivated tremendous work to experi-
mentally test LI with ever increasing precision [1].
Additionally, many unification theories (e.g., string theory
or loop gravity) are expected to violate LI at some level,
[2–4] which further motivates experimental searches for
such violations.

Numerous test theories that allow the modelling and
interpretation of experiments that test LI have been devel-
oped. Kinematical frameworks [5,6] postulate a simple
parameterization of the Lorentz transformations with ex-
periments setting limits on the deviation of those parame-
ters from their values in special relativity. A more
fundamental approach is offered by theories that parame-
terize the coupling between gravitational and nongravita-
tional fields (e.g., TH�� formalisms [1,7]). Formalisms
based on string theory [2,3] have the advantage of being
well motivated by theories of physics that are at present
good candidates for a unification of gravity and the other
fundamental forces of nature. Fairly recently a general
Lorentz violating extension of the standard model of par-
ticle physics (standard model extension, SME) has been
developed [8–10] whose Lagrangian includes all parame-
terized Lorentz violating terms that can be formed from
known fields. Many of the theories mentioned above are
included as special cases of the SME [11,12]. In this paper
we restrict our attention to the photon sector of the SME.
Within this framework we analyze past experiments that
can be shown to set limits on SME parameters that have not
been determined previously, and propose new experiments
that could significantly improve those limits.

As shown in [11] the photon sector of the SME can be
expressed in the form of modified source free Maxwell
address: mike@physics.uwa.edu.au
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equations, which take their familiar form

r:D � 0; (1a)

r:B � 0; (1b)

r�E� @tB � 0; (1c)

r�H� @tD � 0; (1d)

but with modified definitions of D and H
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Here �DE, �DB, �HE and �HB are all 3� 3 matrices,
which parameterize possible Lorentz violating terms as
described in [11]. If we suppose the medium of interest
has general magnetic or dielectric properties, then e�r ande�r are also 3� 3 matrices. In vacuum e�r and e�r are
identity matrices. For experimental tests it is convenient
to further define linear combinations of the � coefficients
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1
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(3)

The first four of these equations define traceless 3� 3
matrices, while the last defines a single coefficient. All e�
matrices are symmetric except e�o� which is antisymmetric
(odd parity). There are 19 independent coefficients of the �
tensors, which are generally used to quote and compare
experimental results [11–15].

The � tensors in (2) and (3) are frame dependent and
consequently vary as a function of the coordinate system
chosen to analyze a given experiment. In principle they
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FIG. 1 (color online). Principle of the Ives-Stilwell experi-
ment. The Doppler shifted resonant frequencies of a moving
atom are measured in the parallel �p, and antiparallel �a direc-
tions.
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may be constant and nonzero in any frame (e.g., the lab
frame). However, any nonzero values are expected to arise
from Planck-scale effects in the early Universe. Therefore
the components of � should be constant in a cosmological
frame (e.g., the one defined by the CMB radiation) or any
frame that moves with a constant velocity and shows no
rotation with respect to the cosmological one.
Consequently the conventionally chosen frame to analyze
and compare experiments in the SME is a sun-centered,
nonrotating frame as defined in [11]. The general proce-
dure is to express the experimental observable in terms of
the � tensors in a suitably chosen experimental frame (e.g.,
the lab frame) and then to transform the � tensors to the
conventional sun-centered frame. This transformation will
introduce a time variation of the observable related to the
movement of the experiment with respect to the sun-
centered frame (typically introducing time variations of
sidereal and semisidereal periods for an Earth fixed
experiment).

So far two types of experiments have been used to set
limits on 17 of the 19 independent components of e�.
Polarization measurements of light from distant astrophys-
ical sources have been used to constrain all ten independent
components of e�e� and e�o� to less than 2� 10�32 [11,12].
Modern versions of classical tests of special relativity
(Michelson-Morley and Kennedy-Thorndike experiments)
using optical [16] or microwave [13,15,17] cavities have
recently constrained four components of e�e� to a few parts
in 10�15 and all three independent components of e�o� to a
few parts in 10�11 [15]. For the time being, this leaves two
parameters undetermined, e�zz

e� and e�tr.
So far all cavity experiments analyzed in the SME

[13,15,16] have been fixed in the laboratory, and therefore
their orientation in the sun-centered frame varied only with
the rotation of the Earth. This induces symmetry with
respect to the Earth’s rotation axis, which makes these
experiments insensitive to e�zz

e�. New cavity experiments
that rotate in the lab are under way [18] and are expected to
measure all five independent components of e�e� (includ-
ing e�zz

e�) with an uncertainty of 10�16 or less. This will then
leave only e�tr undetermined. Experiments that are sensitive
to that parameter are inherently difficult as e�tr character-
izes the isotropic part of �DE and �HB in the sun-centered
frame, so any change in orientation of the experiment does
not affect the e�tr dependence of the observable. Therefore,
modulation of the e�tr dependence arises only from first or
second order boost (depending on the experiment), i.e.,
from terms that contribute to e�tr via the velocity of the
experiment in the sun-centered frame. In this paper we
examine existing experiments showing that such a mecha-
nism can indeed lead to sensitivity to e�tr, and propose new
experiments that could determine e�tr at a level of better
than 10�11.

Throughout this paper we concentrate only on e�tr, and
where appropriate the components of the odd parity tensore�o�. Consequently, we assume that the matter sector of the
025004
SME conforms to Lorentz symmetry. Also, we will discuss
sensitivities to e�tr, which are of order 10�5 to 10�11, and
sensitivities to e�o� of order 10�15. In some instances the
sensitivity is several orders of magnitude worse than the
best present limits for the other photon parameters (see
above), and therefore, we will set all other photon parame-
ters to zero. In other instances we just set the ten polariza-
tion dependent components to zero as they have been
measured to parts in 1032. In all cases these substitutions
simplify the resulting expressions without affecting our
conclusions.

In Sec. II we analyze existing Lorentz invariance tests
and identify a class of experiments that turn out to be
sensitive to e�tr. We explicitly model the most sensitive
one in the SME and derive an order of magnitude estimate
for the limit that it sets on e�tr. In Sec. III we propose new
interferometric experiments and estimate their sensitivity
to e�tr and e�o�. We show that such experiments should
improve on current limits by several orders of magnitude.
In Sec. IV we discuss the possibility of further improving
the sensitivity using asymmetric high-Q resonators. We
summarize our results and conclude in Sec. V.
II. LIMITS ON e�tr FROM
PREVIOUS EXPERIMENTS

Classical tests of special relativity (or Lorentz invari-
ance) are usually grouped into three classes: Michelson-
Morley (MM) [19], Kennedy-Thorndike (KT) [20] and
Ives-Stilwell (IS) experiments [21]. The latter are some-
times referred to as Doppler, clock comparison or ‘‘oneway
speed of light experiments.’’ As mentioned above, MM,
and KT experiments have already been used to set stringent
limits on a number of SME parameters, in the photon
sector. In this section we analyze IS experiments in the
photon sector of the SME and derive the limit on e�tr

obtained from the most sensitive of such experiments to
date [22].

In the original IS experiment [21] hydrogen atoms were
moving at vat=c � 0:005 �c � 299 792 458 m=s� with re-
spect to the laboratory. The Doppler shifted frequencies of
the H� line were measured in parallel (�p) and antiparallel
(�a) to the direction of motion of the atom (see Fig. 1). The
results are then used to determine whether the combination
�p�a=�2

o � 1 as required in special relativity (where �o is
the frequency for vat � 0).
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Modern experiments of this type include Mössbauer
rotor experiments [23], two photon and saturation spec-
troscopy experiments on atoms or ions [22,24,25], or ex-
periments that compare atomic clocks over large distances
[26–28]. Broadly speaking, all such experiments search
for an anisotropy of the first order Doppler shift (or the
‘‘oneway’’ phase velocity of light) although some caution
is required when physically interpreting such statements
(in particular one needs to unambiguously define the mean-
ing of ‘‘oneway light velocity’’). More rigorously, all such
experiments have been interpreted in the theoretical frame-
work of Robertson, Mansouri, and Sexl (RMS) [5,6] in
which they set limits on the parameter �RMS (one of the
three fundamental RMS parameters, the other two being
determined by MM and KT experiments). Limits on �RMS

are obtained from [25,27] that limit j�RMS � 1=2j 

8� 10�7 and, more recently, by [22] which provides the
best limit to date j�RMS � 1=2j 
 2:2� 10�7.

As shown in [9,11] (see also below) the modified
Maxwell Eqs. (1) and (2) of the SME lead to effects on
light propagation, in particular, dependence of the phase
velocity of the light on polarization and direction of propa-
gation. This suggests that IS experiments are sensitive to
the SME. It turns out that they are, in fact, sensitive to the at
present undetermined parameter e�tr via the difference of
the phase velocities of the signals travelling in opposite
directions in a lab frame moving with respect to the sun
centered frame. In contrast, MM and KT experiments al-
ways measure or compare return travel times of light
signals, hence the phase velocity difference between the
opposing directions cancels in the observables of those
experiments, which makes them insensitive to e�tr. In the
next subsections we explicitly derive the sensitivity to e�tr

for the most accurate IS experiment to date [22].

A. Vacuum light propagation in the SME

Here we consider solutions to Eqs. (1) and (2) in vac-
uum, i.e., with the tensors e�r and e�r in (2) being identity
matrices. The more general case of magnetic and/or di-
electric materials in the SME is treated in Sec. III. Detailed
calculations deriving the plane wave solutions in vacuum
in the SME can be found in [9,11]. Here we recall only the
principles and results of those calculations that are relevant
to our purpose.

We start with the standard ansatz

E � E0ei��z�!t�; B � B0ei��z�!t�; (4)

for a plane wave propagating in the positive z direction
with frequency ! and wave number �. Substituting (4) into
(1c), solving for B, then substituting the result into (2) and
(1d) results in a set of three linear coupled equations that
can be solved for E [9,11]. A nontrivial solution is found
only under the condition
025004
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to first order in �. The dispersion relation (5) characterizes
the propagation of two fundamental modes with the gen-
eral solution for arbitrary polarization being a superposi-
tion of those two modes. By finding the explicit solutions
for the two modes [9,11] it can be shown that, to first order
in �, the fields E� are perpendicular to each other and also
perpendicular to the direction of propagation. In the ab-
sence of Lorentz violation all � components vanish, � �
� � 0, and (5) reduces to the usual dispersion relation in
vacuum.

B. The Ives-Stilwell experiment in
the photon sector of the SME

The most recent version [22] of the IS experiment is
similar to the original experiment (c.f. Fig. 1). It uses
collinear saturation spectroscopy on 7Li� ions moving at
vat=c � 0:064 in the heavy-ion storage ring TSR
in Heidelberg. A closed two level transition at �o �
5:46� 1014 Hz is excited by two iodine stabilized lasers,
which are tuned to the Doppler shifted transition frequen-
cies (�p and �a). The observed fluorescence signal of the
ions shows a Lamb dip characteristic of saturation spec-
troscopy when both lasers are resonant with the respective
Doppler shifted frequencies. Combining the two frequen-
cies the experiment then determines

�p�a

�o
� 1� �LV�t�; (7)

where �LV�t�, is a term, in general time varying, that
characterizes possible Lorentz violation in a given theo-
retical framework. In special relativity �LV � 0, and the
experiment by Saathoff et al. [22] sets a limit of �LV <
1:8� 10�9. They interpret their result in the theoretical
framework of RMS [5,6] in which �LV � 2��RMS �
1=2��v2

at � 2vlab:vat�=c
2 where vlab is the velocity vector

of the laboratory in the preferred frame (generally taken as
the rest frame of the cosmic microwave background). They
obtain a limit of ��RMS � 1=2�< 2:2� 10�7 under the
assumption that vat � vlab.
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To interpret the experiment in the SME we first work in
an ‘‘experiment’’ frame which is at rest in the laboratory
with the atoms moving along its positive z axis (see Fig. 1).
In this frame the two laser frequencies are �p and �a

respectively. Using (5) we define the phase velocities of
the parallel and antiparallel laser beams

cp �
!p

�p
� c�1� �p � �p�;

ca �
!a

�a
� c�1� �a � �a�;

(8)

with �p and �p given by (6) and �a and �a obtained from
(6) by changing the sign of all �DB and �HE terms. The �
sign again refers to the two fundamental modes, and all
quantities (in particular the � tensors) are defined in the
experiment frame.

We then calculate the time interval (in the experiment
frame) between two successive maxima of the parallel and
antiparallel beams encountered by an atom. These are
equal to the Doppler shifted periods in the experiment
frame (1=�0

p and 1=�0
a) of the light encountered by the

atom, where vat is the atomic velocity in the experiment
frame.

�0
p � �p�1� vat=cp�; �0

a � �a�1� vat=ca�; (9)

To obtain the frequencies (�00
p and �00

a) as seen by the
atom (the frequencies absorbed by the atom) we need to
transform to the ‘‘atom’’ frame, comoving with the atom.
Using a standard Lorentz transformation (justified below)
and imposing that the light absorbed by the atom be
resonant with the chosen transition (i.e., setting �00

p � �00
a �

�o) we obtain

�p � �o

����������������������
1� v2

at=c
2

p
1� vat=cp

; �a � �o

����������������������
1� v2

at=c
2

p
1� vat=ca

; (10)

which relates the rest frequency �o of the atomic transition
to the measured frequencies of the two lasers on resonance
(�p and �a).

To obtain expression (10) we have used a standard
Lorentz transformation to transform the atomic transition
frequency from the atom to the experiment frame, because
we assume throughout this work that the matter sector is
Lorentz invariant. Under this assumption the atomic tran-
sition frequency is only affected by a violation of the
photon sector, via radiative corrections (e.g., Lamb shift
for optical transitions in Hydrogen). However, such cor-
rections only amount to parts in 106 of the transition
frequency [29,30], hence a Lorentz violating modification
of those corrections would lead to a negligible effect when
compared to the leading-order Lorentz violating terms in
vat=cp=a in (10) (vat=c � 0:06).

Combining (10) and (8) and keeping only first order
terms in vat=c we obtain an expression for the observable
025004
given in Eq. (11). Here the Lorentz violating terms are
contained in �a, �p, �p, and �a, and expressed using (6) in
the experiment frame (i.e., with all � tensors defined in the
experiment frame).

�a�p

�2
o

� 1�
vat

c

�
1

1� �p � �p
�

1

1� �a � �a

�
: (11)

Next we use the relationship �DE � ��T
HE and trans-

form the � tensors to the lab frame as defined in [11] (x axis
pointing south, z axis vertically upwards) by a simple
rotation, and to the conventional sun-centered frame by a
rotation and a boost [Eqs. (30) and (31) from [11], see also
appendix A]. As mentioned above, the sensitivities to e�tr

discussed here are orders of magnitude worse than the best
present limits on all other � components. We therefore set
them to zero in our final expression, which leaves, after
some calculation,

�a�p

�2
0

� 1� 4e�tr
vat

c

�
cos#

v�

c
�cos�!�T��sin$ sin%

� cos% cos$ sin�!�T���

� sin�!�T� cos% cos�!�T���

� sin#

vr

c
�

v�

c
�cos�!�T� cos$

� cos�!�T�� � sin�!�T� sin�!�T���

��
: (12)

For the derivation of (12) we have assumed that the atoms
move horizontally with a velocity vat in the lab frame and
at an angle # with respect to local south. The other
symbols follow the definitions in [11]: $ is the declination
of the Earth’s orbital plane ($ � 23:4�), % is the colatitude
of the laboratory, !�, v� are the angular velocity and
speed of the Earth’s orbital motion, !� is the angular
velocity of the Earth’s rotation, and vr � r�!� sin% is
the velocity of the lab due to rotation of the Earth (with
r� the Earth radius). The times T and T� respectively are
the time since a spring equinox and the time since the lab
frame y axis pointed towards 90� right ascension.

The experiment by Saathoff et al. [22] sets an upper
limit of 1:8� 10�9 on the deviation of �p�a=�2

o from
unity. Using (12) that result implies a limit on e�tr of the
order 10�5, with the exact value depending on the angle #
and the times (T and T�) at which the experiment was
carried out. This is, to our knowledge, the only quoted limit
on e�tr to date. However, the cavity experiments that are
directly sensitive to the even parity coefficients could
possibly be sensitive to second order in velocity to e�tr

[31]. Since the value of the Earth’s orbital velocity is of
order 10�4 (with respect to c), and the best cavity experi-
ments have a sensitivity of order 10�15 to the even parity
coefficients, the possible sensitivity to e�tr would be of
order 10�7. Detailed second order perturbation analysis
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would be necessary to calculate and verify the exact sensi-
tivity to the coefficient, and has not been achieved to date.

III. INTERFEROMETER TESTS USING
MAGNETIC MATERIALS

In the previous section we have shown that the e�tr scalar
may be measured by IS experiments, and set a constraint
on its value of parts in 105. In general, experiments that are
sensitive to the e�tr scalar, but suppressed by the boost, are
also directly sensitive to the coefficients of the odd paritye�o� tensor (see Appendix A, and a recent publication that
proposes a static electromagnetic test [32]). For the IS
experiment analysed in the previous section, the sensitivity
to the e�o� coefficients is only of parts in 109 or less, and
was not presented since cavity resonator experiments have
constrained these parameters to parts in 1011 indirectly
through the boost dependence [14,15]. In contrast, the
same experiments have measured the parity even parame-
ters directly at parts in 1015. The boost dependence sup-
presses the sensitivity by the ratio of the Earth’s orbital
speed to the speed of light, which is of order 10�4.

In this section we consider the possibility of measuring
the odd parity and scalar parameters of the SME with a
much higher sensitivity than the IS experiments using a
Mach-Zehnder (MZ) interferometer. Interferometers offer
the possibility of very sensitive tests at microwave [33,34]
and optical frequencies [35,36]. For this concept to work,
each arm of the interferometer must have a different phase
dependence on e�tr and e�o�. In this section we show that
this is possible if one arm of the interferometer is filled
with a magnetic medium. Also, we introduce resonant and
power-recycling techniques based on travelling wave res-
onators, and show that a sensitivity of better than 10�15 toe�o� and 10�11 to e�tr is possible.

The description of electrodynamics in the photon sector
of the SME is essentially an extension of Maxwell equa-
tions, where similar SME equations can be written as
shown in Eq. (1). However, the Lagrangian of the SME
in the photon sector necessitates that the constitutive rela-
tions, given by Eq. (2), are more general. For the purpose of
this work it is sufficient if we assume that the permeability
025004
and permittivity are isotropic. This means that the e�r ande�r tensors are diagonal with all three components equal to
the scalar permittivity and permeability given by �r and �r
respectively. It is implicit in the form of the SME Eq. (2)
that the matter sector does not contribute to the Lorentz
violating parameters, as they are not altered in any way by
the magnetization or polarization of the material.

A. Plane wave solution in an isotropic medium

Using the SME equations given in (1) and (2), the simple
problem of uniform plane wave propagation in an infinite
isotropic medium is considered. Since an interferometer
measures phase, the idea here is to calculate the effects of
the odd parity and scalar Lorentz violating parameters on
the propagation constant of the plane wave in isotropic
media in a similar way to (5) in vacuum. In general � � 0
but for the purposes of the work we assume � � 0 (since
the magnitude of � as been shown to be less than parts in
1032) [11,12] and in this case it is not necessary to consider
birefringent effects as polarized waves do not change
polarization with propagation. From this assumption,
(which is equivalent to setting 10 of the 19 possible
Lorentz violating parameters to zero) we proceed to cal-
culate the effect of the remaining Lorentz violating pa-
rameters on the propagation of plane and guided waves in
isotropic media.

First, in the laboratory frame it is assumed that the plane
wave is propagating in the z direction at a frequency ! and
propagation constant �, and thus the electric and magnetic
fields have the form

E � �Exx̂� Eyŷ� Ezẑ�e
i�!t��z�; (13)

H � �Hx
^̂x�Hyŷ�Hzẑ�ei�!t��z�: (14)

Then, by substituting (13) and (14) into (2) the flux den-
sities D and B may be calculated in terms of the ampli-
tudes of E and H. Then by substituting E and B into (1c)
and H and D into (1d), to leading order in the Lorentz
violating terms, one can show that Ez � 0 and Hz � 0, and
one is left to solve the following leading-order equation
��r � ��DE�
xx
lab 0 0 &��r��DB�

xy
lab

0 ��r � ��DE�
yy
lab �&��r��DB�

yx
lab 0

0 &��r��HE�
xy
lab �r ��2

r��HB�
xx
lab 0

�&��r��HE�
yx
lab 0 0 �r ��2

r��HB�
yy
lab

0BBB@
1CCCA

Ex

Ey�����
�0

�0

q
Hx�����

�0

�0

q
Hy

0BBBBB@
1CCCCCA � 0 (15)

Here all � matrices are written in the laboratory frame and & � �c=! or �=ko, where ko � 2'=(V , is the propagation
constant as calculated in vacuum with no Lorentz violating terms and (V is the wavelength in vacuum.

Nontrivial solutions are obtained when the determinant of the four by four matrix of (15) is set to zero. There are four
solutions relating to two linear polarizations travelling positively and negatively along the z direction. To leading order, the
propagation constants are calculated to be
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lab �
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��HB�
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lab; (16c)
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��DB�

yx
lab �

1

2�r
��DE�

yy
lab �

�r

2
��HB�

xx
lab: (16d)
The superscript refers to the direction of propagation along
the z axis ( " positive and # negative), the subscripts label
the directions of the E and H field polarizations, respec-
tively, and k �

�����������
�r�r

p
ko is the propagation constant of the

plane wave in the medium. Because we have selected � �
0, solutions in the SME are not birefringent, and when we
transform (16) to the sun-centered frame we recover solu-
tions that are independent of polarization for the leading
order e�o� and e�tr terms (see Appendix A). Thus, it is
irrelevant what polarization we choose for the following
theoretical analysis. Also, any linear combinations of (16)
are also solutions of (15), and to maintain consistency with
the vacuum Eq. (5), the following linear combinations of
(16) are considered

�"

k
�

�"
xy

2k
�

�"
yx

2k
; (17a)

�#

k
�

�#
xy

2k
�

�#
yx

2k
: (17b)

Substituting equation (16) into (17) gives a consistent
result with (5) by just making the following substitutions,
ko ! k, �DB !

�����
�r
�r

q
�DB, �DE ! 1

�r
�DE, and �HB !

�r�HB, and referring the propagation with respect to the
laboratory frame. This linear combination describes a wave
travelling in the z direction with equal amounts of polar-
ization in the x and y direction.

Now we consider the phase shift recorded by a MZ
interferometer with two arms containing different media
and with plane waves travelling in the positive z direction
as shown in Fig. 2.
FIG. 2. Mach-Zehnder (MZ) interferometer of length L, with
two arms of permittivity �ra and �rb, and permeability of �ra
and �rb respectively.
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For a MZ interferometer of length L, the phase shift,
$+", at the output is given by the difference of phase gained
along the arms a and b, and is given by $+" � L��"

a �

�"
b�, so that

$+" �
2'L
(V

"� ���������������
�ra�ra

p
�

���������������
�rb�rb

p
�
�
��ra��rb�

2
���DB�

xy
lab

���DB�
yx
lab��

1

4

 ��������
�ra

�ra

s
�

��������
�rb

�rb

s !
���DE�

xx
lab���DE�

yy
lab�

�
1

4

� ���������������
�3

ra�ra
q

�
���������������
�3

rb�rb
q �

���HB�
xx
lab���HB�

yy
lab�

#
:

(18)

In general there is a phase difference between the two
arms, and a modified sensitivity to the Lorentz violating
coefficients depending on the permittivity and permeabil-
ity of each arm. When transformed to the sun-centered
frame, only the ��DB�

jk
lab terms in the laboratory give rise to

nonzero time varying e�o� and e�tr terms of leading and first
order, respectively, (i.e. see Appendix A), and from (18) it
is evident that the coefficients of ��DB�

xy
lab and ��DB�

yx
lab only

depend on the magnetic properties of the two arms and not
the dielectric. The reason is because of two competing
effects. First, the sensitivity is reduced by the square root
of the permittivity due to the nature of the SME solution
from (1) and (2). This is compensated by an increase in
phase sensitivity due to the phase length of the interfer-
ometer arm being enhanced by the same amount, so the
phase shift becomes independent of permittivity.
Conversely, for the permeability the two effects combine
rather than cancel, so the phase shift becomes proportional
to permeability.

The sensitivity of this experiment is proportional to the
interferometer arm length divided by the wavelength,
which is equal to the number of wavelengths along the
arm of the interferometer. Thus, the sensitivity may be
increased with long arms and short wavelengths. A further
method to improve the sensitivity is through resonant
recycling techniques, which have been developed for other
applications at both microwave and optical frequencies.
These techniques typically improve phase sensitive mea-
surements by up to 3 orders of magnitude [33–36]. Two
different types of recycling are shown in Fig. 3 and 4. First,
-6



FIG. 3. Resonant recycling technique with travelling wave
resonators in each arm of the interferometer.
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we consider the equivalent of resonant cavities in each arm
of the interferometer (Fig. 3), then we consider a power-
recycling technique (Fig. 4). In this example we only keep
the desired response to the ��DB�

jk
lab coefficients, and set the

others to zero.
If we define N and M as the number of recycles in each

arm, then the phase shift at the output becomes;

$+ � ��N � 1�+"a � N+#b� � ��M� 1�+"b �M+#b�

� �N � 1���ra ��rb�
2'L
(V

�
��DB�

xy
lab � ��DB�

yx
lab

2

�
:

(19)

Note, the phase shift turns out to be independent of the
number of M recycles but proportional to N. This is
because the arm with N recycles has the symmetry broken
by the dissimilar forward and return paths, which permits
an enhancement in sensitivity directly to the parity-odd
coefficients. Conversely, the other arm does not, however,
M may be required to be nonzero so the dispersion in both
arms will be similar, and the phase noise of the oscillator
driving the interferometer will be suppressed (if neces-
sary). The parity-odd resonant recycling arm is essentially
an asymmetric travelling wave resonator. The same prin-
FIG. 4. Power-recycling technique where the output power at
the bright port (BP) of the interferometer is fed back and added
to the input. The dark port (DP) is the phase sensitive output.
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ciple may be used to make the frequency of a resonant
cavity directly sensitive to the odd parity coefficients, this
is illustrated in Sec. IV.

Another way to increase the sensitivity is through power
recycling. The equivalent configuration for this type of
interferometer is shown in Fig. 4. In this case the phase
shift at the output becomes

$+ � �R� 1���ra ��rb�
2'L
(V


��DB�

xy
lab � ��DB�

yx
lab

2

�
;

(20)

where R is the power-recycling factor, which may be as
large as 1000. This is a common technique used to enhance
the sensitivity of a gravitational wave interferometer, and it
is possible to implement both power and resonant recycling
simultaneously [35].

B. Perturbation equation for waveguides in the SME

It is more practical to use transmission lines and wave-
guides to propagate waves in an interferometer at micro-
wave frequencies, while at optical frequencies the plane
wave solution may be kept, unless optical fibers are used as
a means of transmission. In this section we derive a tech-
nique to calculate the effects of the guiding medium in the
SME as long as � � 0 in (5). The difficulties encountered
in solving boundary-valued problems in the SME are
greater than with Maxwell equations or for the leading-
order plane wave SME solution given in (16a)–(16d). In
this section we aim for a more general solution that imple-
ments perturbation analysis so the leading-order solution
may be calculated from fields derived from Maxwell equa-
tions. This is similar to previous analysis [11], which
calculates the leading-order perturbation in frequency for
a resonant cavity [11]. The analysis starts with the qua-
dratic lemma for two electromagnetic processes
(E0;H0;D0;B0:) and (E;H;D;B) at different oscillation
frequencies, !0 and !;
FIG. 5. Cross section of the transmission medium.
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r:�E�H�
0 �E�

0 �H� � i!H�
0:B� i!0B

�
0:H�

i!E�
0:D� i!0D

�
0:E � 0:

(21)

We base our analysis on the perturbation method, which
has been used by Gurevich [37] for computing perturbed
propagation constants of modes in waveguides due to a
025004
small object. In this case we use a similar technique, but
regard the SME fields as perturbations of the Maxwell
fields. Here we assume that the fields (E0;H0;D0;B0)
are the Maxwell fields given by (2) when the � matrices
are set to zero, and that (E;H;D;B) are the SME fields
given by (2) when the � matrices are nonzero. Thus, by
substituting (2) into (21) we can derive the fundamental
Lemma of the SME in the photon sector
r:�E�H�
0 �E�

0 �H� � i
!0

�0
B�

0: e�r
�1:B� i

!
�0

� e�r
�1�B�

0�:B� i!0�0�e��rE�
0�:E� i!�0E

�
0:e�r:E

� i!0

 
1

�0
B�

0:�HB:B�

������
�0
�0

s
B�

0:�HE:E

!
� i!

 
�0E�

0:�DE:E�

������
�0
�0

s
E�

0:�DB:B

!
: (22)

This Lemma can be used to calculate the frequency perturbation in the SME of a resonator [11]. For our case we use the
Lemma to calculate the perturbation of the propagation constant for the transmission of a guided wave as shown in Fig. 5.
Here, we assume the frequency in the SME is the same for a propagating mode as calculated by Maxwell equations, so that
! � !0. Finally, if the permittivity and permeability tensors are Hermitian (as is the case for isotropic to gyrotropic media)
then the first four terms on the right-hand side of Eq. (22) cancel, and it becomes

r:�E�H�
0 �E�

0 �H� � i!0

 
��0E

�
0:�DE:E�

1

�0
B�

0:�HB:B�

������
�0
�0

s
E�

0:�DB:B�

������
�0
�0

s
B�

0:�HE:E

!
: (23)

The solutions will be travelling waves so we may assume they are of the form

E � Ece
�i�z; H � Hce

�i�z;

E0 � E0ce
�i�0z; H0 � H0ce

�i�0z:
(24)

Here �0 is the propagation constant calculated by Maxwell equations, � is the propagation constant in the SME,
(E0c;H0c;D0c;B0c) and (Ec;Hc;Dc;Bc) are the respective vector phasor amplitudes of the electromagnetic field for
Maxwell equations and in the SME. Substituting (24) into (23) and then integrating over the cross section surface, S, of the
waveguide shown in Fig. 5, (23) becomes

Z
L
�Ec �H�

0c �E�
0c �Hc�:n0dL� i��� �0�

Z
S
�Ec �H�

0c �E�
0c �Hc�:z 0dS

� i!0

Z
S

 
��0E

�
0c:�DE:Ec �

1

�0
B�

0c:�HB:Bc �

������
�0
�0

s
E�

0c:�DB:Bc �

������
�0
�0

s
B�

0c:�HE:Ec

!
dS: (25)

Here n0 is a unit vector along the normal to the curve L, which lies in the plane of the waveguide cross section and z 0 is a
unit vector along the waveguide axis. Assuming no Lorentz violation in the matter sector, the boundary conditions of the
tangential electric field in the photon sector of the SME have been shown to be equal to zero, equivalent to the Maxwell
case [11]. Thus, the first term in (25) is zero, and to calculate the leading-order effects on the propagation constant we
replace the perturbed SME fields with the unperturbed Maxwell fields, equate imaginary parts on both sides of Eq. (25),
and apply the relationship �DB � ��T

HE, to give

�� �0 � ck0

R
S

�
�0E

�
0c :�DE:E0c �

1
�0

B�
0c:�HB:B0c � 2Re

 �����
�0
�0

q
E�

0c:�DB:B0c

��
dSR

S�E0c �H�
0c �E�

0c �H0c�:z0dS
: (26)

However, the observable, O, for a MZ interferometer is the phase difference between the two arms $+. Thus, in the
laboratory frame we may rewrite (26) in terms of phase shift induced by Lorentz violation for a single mode propagating
along a single waveguide as
-8



. PHYSICAL REVIEW D 71, 025004 (2005)
O � ��� �0�L

� �MDE�
jk
lab��DE�

jk
lab � �MHB�

jk
lab��HB�

jk
lab

� �MDB�
jk
lab��DB�

jk
lab; (27)

where L is the length of propagation along the z axis and,

Mjk
DE �

2'L
(V

R
S�

�����
�0
�0

q
E�j

0c:E
k
0c�dSR

S�E0c �H�
0c �E�

0c �H0c�:z0 dS
;(28a)

Mjk
HB � �

2'L
(V

R
S�

1��������
�0�

3
0

p B�j
0c:B

k
0c�dSR

S�E0c �H�
0c �E�

0c �H0c�:z0dS
;(28b)

Mjk
DB �

2'L
(V

2Re�
R
S�

1
�0

E�j
0c:B

k
0c�dS�R

S�E0c �H�
0c �E�

0c �H0c�:z0dS
:(28c)

Thus, if the Maxwell fields are known for the propagating
solution, the phase shift due to a leading-order Lorentz
violating terms in the SME may be calculated. It is easily
shown that Eq. (27) is consistent with the plane wave
solution calculated previously.

For the general guided wave, the sensitivity to odd parity
and scalar coefficients is proportional to the difference
between the two coefficients �MDB�

jk
lab � �MDB�

kj
lab �j �

k�, which is 2'L
(V

�r for the propagating plane wave inde-
pendent of polarization. We have also undertaken this
calculation for many different modes in many types of
waveguides (but not presented here), including cylindrical,
coaxial and helical guiding structures. In all cases the
�MDB�

jk
lab � �MDB�

kj
lab coefficient was the same as the

plane wave case (for example, the calculation for TE
modes in a rectangular waveguide is given in
Appendix B). For the interferometer experiment the ob-
servable is phase difference between two guided waves.
The equivalent M matrices for this case are then given by
the phase difference between the two arms, which will be
nonzero when the permeability is different.

In general the wave need not be propagating along the z
direction of the laboratory frame. To calculate the M
tensors for a wave propagating along another arbitrary
direction, the tensor must undergo a rotation. To detect
the signal, we rely on the time dependence to modulate the
phase, which can be determined in the standard way as
described in Kostelecky and Mewes [11] by transforming
from the lab (rotating or nonrotating) to the sun centered
celestial frame, as given in Appendix A.

NEW METHODS OF TESTING LORENTZ VIOLATION IN . .
025004
C. Proposed interferometer experiment

Sensitive interferometers have been developed at optical
[35] and microwave frequencies [3,33,38]. However this
experiment requires the availability of low loss magnetic
material at the respective frequency. Low loss materials are
only possible at microwave frequencies with a relative
permeability less than unity, above the magnetic spin reso-
nance of the material. For example, one could use YIG
(yttrium iron garnet), which has a permeability of about 0.9
and loss tangent of 10�4 at 10 GHz [39]. Alternatively, at
optical frequencies magnetic effects may be induced using
magnetic polaritons, [40–42] and if the ratio of length to
wavelength can be increased a more sensitive measurement
may be viable. The sensitivity of this type of experiment
will be dependent on a host of other technical factors, like
the available power from the frequency source, the phase
balance between the interferometer arms, etc., These de-
pendencies have been largely discussed in the papers that
implement low noise interferometers, and we leave out the
details here. For a thermal noise limited microwave inter-
ferometer with no recycling, the typical square root spec-
tral density of phase noise

������
S#

p
is conservatively of order

10�9rads=
�������
Hz

p
[33,34]. Chopping techniques to lock the

interferometer output to the DP (null measurement) can
further reduce the flicker noise corner [35], and rotation of
the experiment can ensure that the thermal noise limit is
reached. In this case the sensitivity of the phase measure-
ment is dependent on the observation time, 3obs, and given
by

�+noise �

������
S#

p��������������
Nc3obs

p ; (29)

where Nc is the number (or fraction) of cycles in 1 s. If the
interferometer arms labeled b, as shown in Fig. 2– 4 con-
tain vacuum, then the signal due to the Lorentz violation
with power and resonant recycling will be

$+ � �N � 1��R� 1�
2'L
(V

��ra � 1�

�


��DB�

xy
lab � ��DB�

yx
lab

2

�
: (30)

This means the sensitivity of the measurement may be
given with a signal to noise ratio (SNR) of one (or signifi-
cance of 1 standard deviation) by equating (29) and (30).

��DB�

xy
lab � ��DB�

yx
lab

2

�
SNR�1

�
(V

2'L�R� 1��N � 1���ra � 1�

��������������
S#

Nc3obs

s
: (31)
For a rotating 10 GHz interferometer of order 1 m long
with a recycling factor of N � 1 � 100 and R� 1 � 100,
the estimated sensitivity of (31) is of the order
2� 10�14=

��������
3obs

p
for Nc � 0:05 (20 s rotation period).
Thus, a sensitivity of order 10�15 is possible with only
450 seconds of data. For a nonrotating experiment Nc �
1:157� 10�5 (1 day rotation period), and a sensitivity of
order 10�15 is possible with 22.5 days of data. This trans-
-9
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lates to sensitivity to e�tr of order 10�11 and e�o� of order
10�15. A further benefit from rotation over nonrotating
experiments is direct sensitivity to all three independent
coefficients of e�o� since nonrotating experiments only
allow two of the three coefficients to be tested directly
(see Appendix A).

IV. POSSIBLE RESONATOR EXPERIMENTS

The fact that resonant and power recycling enhances the
phase sensitivity to Lorentz violations suggests that the
frequency of an asymmetric travelling wave resonator will
also be a sensitive observable. A generic resonator of this
type is shown in Fig. 6.

To calculate the fractional frequency shift, ��=� of such
a resonator we use the same equation as derived by
Kostelecky and Mewes [11]

��=� � �
1

4hUi

Z
V

 
�0E�

0c:�DE:E0c �
1

�0
B�

0c:�HB:B0c

� 2Re

" ������
�0
�0

s
E�

0c:�DB:B0c

#!
dV

hUi �
1

4

Z
V
�E0c:D�

0c � B0c:H�
0c�dV:

(32)

Thus, for the observable, ��=�, the M matrices become

�MDE�
jk
lab � �

�0
4hUi

Z
V
�E�j

0cE
k
0c�dV; (33a)

�MHB�
jk
lab �

1

4hUi�0

Z
V
�B�j

0cB
k
0c�dV; (33b)

�MDB�
jk
lab � Re

"
�

1

2hUi

������
�0
�0

s Z
V
�E�j

0cB
k
0c�dV

#
: (33c)

In this example we only need to consider the coefficients of
��DB�

jk
lab, which give rise to nonzero and time varying e�o�

and e�tr. Here we assume the wave travels along a wave-
guide and is returned along a second piece of waveguide of
different cross section, permittivity and permeability (but
same length L) as shown in Fig. 6. The integrals over the
FIG. 6. Schematic of a travelling wave resonator with electro-
magnetic asymmetry on the forward and reverse path of the
resonator.
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forward and reverse paths must be undertaken separately,
and the fraction of energy in the forward and return path is
in general not equal. Without Lorentz violation, resonance
occurs when an integer number of half wavelengths fit into
2L, so that the wave undergoes constructive interference.
In practice, such a loop will contain isolators, couplers all
contributing to the frequency shift in the SME. However, if
long enough most of the energy will be in the two pieces of
waveguide, and we can ignore any other component in this
example. Also, we assume that the wave propagates as a
plane wave along the z direction, with equal amounts of
polarization in the x and y direction. In this case the non-
zero components of (33c) are

�MDB�
xy
lab � �MDB�

yx
lab � �

���������������
�ra�ra

p
�

���������������
�rb�rb

p

2��ra � �rb�
: (34)

Hence if the phase velocity, vph � c=
�����������
�r�r

p
, in medium a

is different to medium b, the resonator is sensitive to odd
parity coefficients, i.e., the frequency shift will be sensitive
to ��DB�

jk
lab coefficients. Unlike the interferometer, the ex-

periment does not necessarily require magnetic materials,
as the loop could be made of a free space and dielectric
arms for (34) to be nonzero. This is due to the different
nature of the frequency and phase observables. For the MZ
interferometer the effect of the dielectric constant was
cancelled by the effective increase in the electrical phase
length of the interferometer arm [see Eq. (18)]. This is not
the case for the resonator in Fig. 6 when frequency shift is
the observable, as any putative frequency shift due to
Lorentz violation is not directly dependent on the length.

Next, we calculate the �MDB�
jk
lab matricies for arms a

and b made from rectangle waveguide and operating in TE
mode. Substituting the fields from Appendix B, and inte-
grating over the two paths gives the following.

�MDB�
xy
lab � �MDB�

yx
lab � �

1

1� hUbi
hUai

c
vpha�ra

�
1

1� hUai
hUbi

c
vphb�rb

where
hUai

hUbi
�

�ra
�rb

Aa

Ab

1� c2

v2
phb

1� c2

v2
pha

:

(35)

Here, hUi � hUai � hUbi, and hUai and hUbi are the aver-
age energies in arm a and b of the resonator, respectively.
Also, vpha and vphb are the magnitude of the phase veloc-
ities from z � 0 to L along arm a and z � L to 0 along arm
b respectively, and Aa and Ab are the areas of cross section
of the two waveguides. Equation (35) is a more general
solution of (34), and in the limit that both cross sections
approach infinity, we regain the plane wave solution of
(34), independent of polarization.

Now we study the plane wave case when arm a is a low
loss dielectric and arm b is vacuum, then
-10



FIG. 8. Two possible resonant structures, which exhibit asym-
metry around the x axis of a cylinder. The mode of propagation
would be a travelling WG mode around the perimeter of the
cylinder [44].
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�MDB�
xy
lab � �MDB�

yx
lab � �

�������
�ra

p
� 1

2��ra � 1�
: (36)

A plot of this function is shown in Fig. 7.
In this case there is a maximum value of the magnitude,

when �ra � 5:83 and the coefficient is equal to �0:207.
Sapphire with the propagation direction along the c axis of
the crystal is a good choice, because it has a lower loss
tangent at microwave frequencies than any other material.
For this configuration the mode only samples the perpen-
dicular permittivity of sapphire (�r � 9:3), and in this case
the magnitude of the coefficient is only slightly smaller
than the maximum and equal to 0.20.

In principle (35) may still give a nonzero result when the
forward and return paths of the resonator are the same
material, but have different phase velocities. This in gen-
eral can be achieved if the two halves have different cross-
sectional dimensions. For this idea to be transformed to a
sensitive experiment, a high-Q travelling wave resonator
that exhibits asymmetry (as described above) must be
developed. High-Q sapphire whispering gallery (WG) res-
onators have been used to do the best Lorentz invariance
tests of the polarization independent coefficients to date
[15,17,43] and it is possible to excite them as travelling
waves [44]. One way to make a resonator sensitive to this
type of measurement is to excite WG travelling wave
modes in an asymmetric resonator; some possible configu-
rations are shown in Fig. 8.

The only way to accurately calculate the sensitivity of
such experiments is through numerical simulation, and we
will pursue this path in the future. Another possibility is to
dope the sapphire crystal with a paramagnetic impurity by
an uneven amount along the y axis of the resonator.
Paramagnetic impurities, such as Cr3� add an extra sus-
ceptibility due to the electron spin resonance (ESR) [45].
In this case the travelling wave would experience a differ-
ent permeability around the path of resonance, which
would break the symmetry. These experiments will also
FIG. 7 (color online). Sensitivity coefficient versus relative
permittivity of Eq. (36).
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benefit from a further increase in sensitivity with rotation,
as has been proposed for the standard cavity experiments
[18].
V. CONCLUSION

In the photon sector of the SME numerous experiments
have already set limits on 17 of the 19 possible Lorentz
violating coefficients. Of these, the ten coefficients that
depend on the polarization have had upper limits set at
parts in 1032 by astrophysical tests [11,12]. While cavity
experiments [13–15] have set upper limits on four of the
five polarization independent even parity coefficients at
parts in 1015, and the three polarization independent odd
parity coefficients at parts in 1011 (with boost suppression).
This work has focused on improving the limits of the odd
parity coefficients by investigating experiments that have
direct sensitivity and are not suppressed by the boost
dependence. Also, we have shown that the same experi-
ments allow the first upper limit of the scalar coefficient to
be determined through the boost dependence. Of the ex-
periments undertaken to date, we have shown that IS
experiments have the required properties, and by analyzing
the best experiment [22] we have provided a first upper
limit of parts in 105 of the scalar coefficient. Furthermore,
we have shown that a magnetically asymmetric Mach-
Zehnder interferometer (microwave or optical) may pro-
vide a null experiment that is sensitive to the same SME
parameters as the IS experiment. We have proposed recy-
cling techniques to further enhance the sensitivity and have
shown that the respective sensitivity to the odd parity and
scalar coefficients are possible at parts in 1015 and 1011

with current technology. The ideas were then extended to
asymmetric resonant structures and possible resonator de-
signs were proposed. Future work will concentrate on
studying the detailed experimental feasabilities of the in-
terferometer and resonator proposals, with the aim of real-
izing such an experiment within the next years.
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TABLE I. Sensitivity coefficients of �v�=c�=e�tr at the relevant
modulation frequencies (stationary experiment).

Modulation Coefficient

cos�!�T� �!�T� ��1� cos$��

��MDB�
XZ
lab � �MDB�

ZX
lab �

sin�!�T� �!�T� �1� cos$��

�cos%��MDB�
YZ
lab � �MDB�

ZY
lab�

� sin%��MDB�
XY
lab � �MDB�

YX
lab ��

cos�!�T� �!�T� �1� cos$��

��MDB�
XZ
lab � �MDB�

ZX
lab �

sin�!�T� �!�T� ��1� cos$��

�cos%��MDB�
YZ
lab � �MDB�

ZY
lab�

� sin%��MDB�
XY
lab � �MDB�

YX
lab ��
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APPENDIX A: TRANSFORMATION OF PARITY-
ODD AND SCALAR COEFFICIENTS TO THE SUN-
CENTERED CELESTIAL EQUATORIAL FRAME

In this appendix we undertake to calculate the time
dependence of a general experiment sensitive to e�tr ande�o� coefficients with respect to the inertial sun centered
celestial frame, in which the Lorentz violating coefficients
are constant. To do this we set all terms with respect to the
sun centered celestial frame to zero except for the e�tr ande�o� terms, as stringent limits by astrophysical and cavity
experiments have already been set. We transform the labo-
ratory � tensors to the sun centered frame using rotations R
and boosts v as given in Ref. [11].

��DE�
jk
lab � TjkJK

0 �JK
DE � TkjJK

1 �JK
DB � TjkJK

1 �JK
DB; (A1)

��HB�
jk
lab � TjkJK

0 �JK
HB � TkjKJ

1 �JK
DB � TjkKJ

1 �JK
DB; (A2)

��HB�
jk
lab � TjkJK

0 �JK
DB � TkjJK

1 �JK
DE � TjkJK

1 �JK
HB: (A3)

Here TjkJK
0 � RjJRkK and TjkJK

1 � RjPRkJ�KPQvQ=c, and
we only list e�o� coefficients that are directly sensitive to
TABLE II. Sensitivity coefficients of e�XZ
o� at the relevant

modulation frequencies (stationary experiment).

Modulation Coefficient

cos�!�T�� ��MDB�
XZ
lab � �MDB�

ZX
lab �

sin�!�T�� � cos%��MDB�
YZ
lab � �MDB�

ZY
lab�

� sin%��MDB�
XY
lab � �MDB�

YX
lab �
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the measurement and not suppressed by the boost term, and
we do not list the constant terms only the time varying
ones. Setting all components to zero except for e�tr and e�o�
means that the time varying parts of (A1) and (A2) become
zero. Then we are just left with the time dependence of
(A3), which will modulate the laboratory observable at
specific frequencies relating to both the boosts and rota-
tions and we calculate these modulations for stationary and
rotating experiments in the following sections. Also, it is
noted that all modulations occur around the spin and
Earth’s rotation frequency, and that modulations around
twice these values are zero. This is not the case for the
established resonator experiments that have put limits on
the other parameters [15,43].

1. Stationary laboratory experiments

Substituting (A3) into (27) or (32) (depending on the
observable), the nonzero coefficients of modulation are
given in Tables I, II, and III. Note that there are no
modulation frequencies that directly vary the e�XY

o� coeffi-
cient. This is because the orientation in the sun-centered
frame varies only with the rotation of the Earth, and it is
this symmetry with respect to the rotation axis, which
makes these experiments insensitive to e�XY

o�. Here % is
the angle of the colatitude of the experiment from the
North Pole of the Earth, $ is the angle between the celestial
equatorial plane and the ecliptic ( � 23:40�), !� and v�

are the angular frequency and speed of the Earth’s orbital
motion, !� is the angular frequency of the Earth’s rotation,
T is the time since a spring equinox, and T� is the time
since the laboratory frame y axis pointed towards 90 right
ascension.

2. Rotating laboratory experiments

To calculate the dependence of a rotating laboratory
experiment, we assume rotation is about the z axis of the
laboratory frame at a spin frequency of !s. As suggested in
Kostelecky and Mewes [11], we transform the M matrices
using standard tensor rotations in the laboratory frame, so
that the components of the M matrices become time
dependent at the spin frequency and twice the spin fre-
quency. Of course the Mzz components are the only ones
to remain unaffected. Also, it should be noted that through
the rotation the e�XY

o� can be directly measured without the
boost term suppression. Here we define vequ=c as the speed
TABLE III. Sensitivity coefficients of e�YZ
o� at the relevant

modulation frequencies (stationary experiment).

Modulation Coefficient

cos�!�T�� cos%��MDB�
YZ
lab � �MDB�

ZY
lab�

� sin%��MDB�
XY
lab � �MDB�

YX
lab �

sin�!�T�� ��MDB�
XZ
lab � �MDB�

ZX
lab �
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TABLE IV. Sensitivity coefficients of �v�=c�=e�tr at the rele-
vant modulation frequencies (rotating experiment).

Modulation Coefficient

cos�!sTs� �2
vequ

v�
sin%�

��MDB�
XZ
lab � �MDB�

ZX
lab �

sin�!sTs� �2
vequ

v�
sin%�

��MDB�
YZ
lab � �MDB�

ZY
lab�

cos�!sTs �!�T� sin$ sin%�

��MDB�
YZ
lab � �MDB�

ZY
lab�

sin�!sTs �!�T� � sin$ sin%�

��MDB�
XZ
lab � �MDB�

ZX
lab �

cos�!sTs �!�T� sin$ sin%�

��MDB�
YZ
lab � �MDB�

ZY
lab�

sin�!sTs �!�T� � sin$ sin%�

��MDB�
XZ
lab � �MDB�

ZX
lab �

cos�!sTs �!�T� �!�T� � 1
2 �1� cos$��1� cos%��

��MDB�
XZ
lab � �MDB�

ZX
lab �

sin�!sTs �!�T� �!�T� � 1
2 �1� cos$��1� cos%��

��MDB�
YZ
lab � �MDB�

ZY
lab�

cos�!sTs �!�T� �!�T�
1
2 �1� cos$��1� cos%��

��MDB�
XZ
lab � �MDB�

ZX
lab �

sin�!sTs �!�T� �!�T�
1
2 �1� cos$��1� cos%��

��MDB�
YZ
lab � �MDB�

ZY
lab�

cos�!sTs �!�T� �!�T�
1
2 �1� cos$��1� cos%��

��MDB�
XZ
lab � �MDB�

ZX
lab �

sin�!sTs �!�T� �!�T�
1
2 �1� cos$��1� cos%��

��MDB�
YZ
lab � �MDB�

ZY
lab�

cos�!sTs �!�T� �!�T� � 1
2 �1� cos$��1� cos%��

��MDB�
XZ
lab � �MDB�

ZX
lab �

sin�!sTs �!�T� �!�T� � 1
2 �1� cos$��1� cos%��

��MDB�
YZ
lab � �MDB�

ZY
lab�

TABLE VII. Sensitivity coefficients of e�YZ
o� at the relevant

modulation frequencies (rotating experiment).

Modulation Coefficient
cos�!sTs �!�T� ��1� cos%���MDB�

YZ
lab � �MDB�

ZY
lab�

sin�!sTs �!�T� �1� cos%���MDB�
XZ
lab � �MDB�

ZX
lab �

cos�!sTs �!�T� �1� cos%���MDB�
YZ
lab � �MDB�

ZY
lab�

sin�!sTs �!�T� ��1� cos%���MDB�
XZ
lab � �MDB�

ZX
lab �
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of the Earth’s rotation at the equator expressed as a fraction
of the speed of light, which is 1:5� 10�6, and the time TS
is the time since the rotating experiment’s y axis pointed
towards 90� right ascension. Sensitivity coefficients are
shown in Tables IV, V, VI, and VII
TABLE V. Sensitivity coefficients of e�XY
o� at the relevant

modulation frequencies (rotating experiment).

Modulation Coefficient

cos�!sTs� � sin%��MDB�
YZ
lab � �MDB�

ZY
lab�

sin�!sTs� sin%��MDB�
XZ
lab � �MDB�

ZX
lab �
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APPENDIX B. RECTANGULAR WAVEGUIDE
IN THE SME

In this appendix we consider a perfectly conducting
rectangular waveguide, filled with isotropic material of
relative permittivity and permeability �r and �r respec-
tively and with height a and width b. The form of the
propagating wave is given by (13) and (14), and is assumed
to be travelling along the z axis in the laboratory frame.
The solution of Maxwell equations for transverse electric
(TE) modes using separation of variable gives the follow-
ing well-known fields where k � !

���������������������
�0�0�r�r

p
, is the

plane wave propagation constant, kx � m'=a and ky �
n'=b, where n and m are integers greater or equal to zero.

Bz � B0 cos�kxx� cos�kyy�;

Bx � B0
i�kx

k2 � �2 sin�kxx� cos�kyy�;

By � B0

i�ky
k2 � �2 cos�kxx� sin�kyy�;

Ex � B0

i!ky
k2 � �2 cos�kxx� sin�kyy�;

Ey � B0
�i!kx
k2 � �2 sin�kxx� cos�kyy�:

(B1)

To find the phase shift over length L due to leading-order
Lorentz violating terms in the SME we compute the M
matrices given by (28), and find the following nonzero
components
TABLE VI. Sensitivity coefficients of e�XZ
o� at the relevant

modulation frequencies (rotating experiment).

Modulation Coefficient

cos�!sTs �!�T� �1� cos%���MDB�
XZ
lab � �MDB�

ZX
lab �

sin�!sTs �!�T� �1� cos%���MDB�
YZ
lab � �MDB�

ZY
lab�

cos�!sTs �!�T� �1� cos%���MDB�
XZ
lab � �MDB�

ZX
lab �

sin�!sTs �!�T� �1� cos%���MDB�
YZ
lab � �MDB�

ZY
lab�
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�MDE�
xx
lab �

'L
(V

� k2y
k2x � k2y

�vph�r

c
; �MDE�

yy
lab �

'L
(V

�
k2x

k2x � k2y

�vph�r

c
;

�MHB�
xx
lab � �

'L
(V

�
k2x

k2x � k2y

�
c
vph

�r; �MHB�
yy
lab � �

'L
(V

� k2y
k2x � k2y

�
c
vph

�r;

�MHB�
zz
lab � �

'L
(V

�
k2x � k2y

k2o
�
vph

c
�r; �MDB�

xy
lab �

2'L
(V

� k2y
k2x � k2y

�
�r;

�MDB�
yx
lab � �

2'L
(

�
k2x

k2x � k2y
��r; vph �

!���������������������������
k2 � k2x � k2y

q :

(B2)

Here, vph is the phase velocity of the mode inside the waveguide. These values reduce to those calculated for the plane
wave in the appropriate limits. By letting a and then b tend to infinity we recover the (x, y) polarization and vice versa for
the (y, x) polarization. It should be noted that

�MDB�
xy
lab � �MDB�

yx
lab �

2'L
(V

�r (B3)

is independent of kx and ky, and is the same as the plane wave case. Because Eq. (B3) is nonzero, the propagation of the
mode will depend on the e�tr and e�o� coefficients in the sun-centered celestial equatorial frame as shown in Appendix A.
Furthermore, the sensitivity is independent of mode of propagation in the waveguide.
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116002 (1998).
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