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Multigluon amplitudes, N � 4 constraints, and the Wess-Zumino-Witten model
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Classical N � 4 Yang-Mills theory is defined by the superspace constraints. We obtain a solution of a
subset of these constraints and show that it leads to the maximally helicity violating amplitudes. The
action which leads to the solvable part of the constraints is a Wess-Zumino-Witten action on a suitably
extended superspace. The non-maximally helicity violating tree amplitudes can also be expressed in
terms of this action.
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I. INTRODUCTION

The construction of multigluon scattering amplitudes in
the N � 4 super Yang-Mills theory has attracted a lot of
attention recently. The calculation of some of these ampli-
tudes, particularly the so-called maximally helicity violat-
ing (MHV) ones, was carried out quite some time ago [1].
Although the intermediate steps of the calculation were
algebraically very complex, the final results were surpris-
ingly simple. It was pointed out shortly afterward that the
MHV amplitudes could be obtained in terms of the current
correlators of a Wess-Zumino-Witten (WZW) theory and
that there was a natural interpretation of this in super-
twistor space [2]. (For some further developments along
this direction, see [3]. For a discussion of twistor space, see
[4]; for supertwistor space, see [5].) Recently, Witten
showed that there is a deep connection of these results to
string theory [6]. First of all, the supertwistor space CP3j4,
as a supermanifold, is a Calabi-Yau space, so that it is
possible to have a string theory with this target space. A
topological version of such a string theory, the so-called
topological B-model, can be constructed. The MHV am-
plitude is the restriction of a holomorphic function in CP3j4

to a complex line. This complex line can be interpreted as a
D-instanton in the string theory. The correlators of the
B-model on this line become WZW correlators, reproduc-
ing the MHV amplitudes. One of the key observations in
[6] was that the non-MHV amplitudes can be obtained as
the correlators of the B-model restricted to algebraic
curves of higher degree in CP3j4. This seems to be true
by direct verification of many amplitudes [7]. Later, it was
realized that one could perhaps simplify even more [8].
The amplitudes can be constructed by considering the
MHV amplitudes, with a suitable off shell continuation,
as the basic vertices. By connecting such vertices via
propagators, one can obtain all the gauge theory ampli-
tudes. This too seems to be born out by explicit calcula-
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tions carried out so far [9]. It is a remarkable result, with all
the tree amplitudes of the gauge theory obtained by a
simple set of rules in twistor language.

An alternative string theory which leads to the same
amplitudes has been proposed by Berkovits [10]. A number
of other related works, including ramifications of these
results in string theory are given in [11].

While these are remarkable developments, in this paper,
we go back to the well-known formulation of supersym-
metric gauge theories in terms of gauge potentials in super-
space. Generally, such gauge potentials contain too many
degrees of freedom, more than what is needed for the
physical fields. One can then impose a set of constraints
obeyed by the field strengths in superspace; these con-
straints can be solved in terms of some unconstrained fields
and the latter can be used for the construction of the action
for the theory. However, in the case of the N � 4 Yang-
Mills theory, the constraints are too stringent and, in fact,
imply the equations of motion via the Bianchi identities
[12]. For the purpose of constructing an action with mani-
fest N � 4 supersymmetry, this is bad news since we do
not have fields which are off the mass shell. However, the
good news is that this property shows that the classical
equations of motion are equivalent to a set of first order
equations in the appropriate superspace. One could then
hope, in a way similar to the strategy for solving the first
order self-duality (instanton) equations, that the constraints
of the N � 4 can be solved. This is precisely what we
attempt to do in this paper. Our approach has similarities to
the use of the holomorphic Chern-Simons theory [6,13].
We introduce auxiliary bosonic variables to enlarge the
space on which the constraints are written. A ‘‘gauge
transformation’’ in this enlarged space is then made to
eliminate some of the gauge potentials. The version of
the constraints in the new gauge are then solved with one
additional simplifying assumption. This leads to the for-
mula for the MHV amplitudes. The suggestion made in [8]
can be incorporated in this language rather neatly.

In the next section, we set up the connection between the
MHV amplitudes and the WZW action. Section III is
devoted to the solution of the constraints of the N � 4
-1  2005 The American Physical Society
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theory and the resulting S matrix. In Sec. IV we show how
the non-MHV amplitudes, along the lines of [8], can be
phrased in our language.
II. MULTIGLUON AMPLITUDES

We start our discussion by writing the WZW action in a
form suitable for our purpose [14]. As is well known, the
WZW action is related to the chiral Dirac determinant and
so, taking A�z�z; �z�’s in the fundamental representation of
SU�N�, we can write

S WZW�My� � Tr logD�z�Tr log@�z

� Tr log�1��@�z�
�1A�z	

�
X1
n�2

��1�n�1

n

�
Z d2z1

�
� � �
d2zn
�

Tr
�
A�z�1�A�z�2� � � �A�z�n�

z12z23 � � �zn1

�
;

(1)

where A�z � My�1@�zM
y, D�z is the covariant derivative

@ �z � A�z, and we have used the fact that the inverse of @�z
is given by ���z� z0�	�1 and zmn � zm � zn. Also A�z�n�
denotes A�z�zn; �zn� and d2z is the real two-dimensional
volume element, equal to dzd�z=��2i�, in the complex
coordinates z; �z for the Riemann surface.

The derivative of the action with respect to A�z defines the
expectation value of the fermion current J which mini-
mally couples to A�z; we can, therefore, express the above
equation as a series of current correlators,

hJa1�1�Ja2�2� � � � Jan�n�i �
��1�n�1

n�n

�
Tr�ta1ta2 � � � tan�
z12z23 � � � zn1

� permutations
�
: (2)

We now introduce a spinor variable uA, A � 1; 2,

u �
�
�

� �
: (3)

The complex projective space CP1 is defined by making
the identification u� �u, for any complex number �
which is not zero, � 2 C� f0g. This reduces the space
to one complex dimension. Utilizing this identification, we
can take �=� � z as the local complex coordinate of CP1

except in the neighborhood of � � 0; a convenient nor-
malization is to take ��� � �1� z�z��1. (Near � � 0, we
can use �=� as the local coordinate.)

There is a natural SL�2;C� action on u given by u! gu,
g 2 SL�2;C�. The scalar product of two u’s by �u1u2� �
�ABu

A
1u

B
2 , where u1 � �; u2 � �. (The lower index num-

bers represent the numberings of u’s and the upper ones
represent their components.) This scalar product is invari-
ant under the SL�2;C� action. The current correlators (2)
may be written for CP1 by writing z12 � ���1�2 �
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�2�1�=�1�2 � ��u1u2�=�1�2. Introducing J by �2J �
J, we find

hJ a1�1� � � �J an�n�i � �
1

n�n

�
Tr�ta1 � � � tan�

�u1u2��u2u3� � � � �unu1�

� permutations
�
: (4)

We can take this expression as something globally valid on
CP1, (2) being the local version valid in a neighborhood
which does not include � � 0.

We also note that the variation of the WZW action can be
written as

�SWZW � �
1

�

Z
d2zTr�My�1@�zMy@�My�1�My�	

�
1

�

Z
Tr�D�zAzM

y�1�My�

� �
1

�

Z
Tr�AzD�z�My�1�My�	

� �
1

�

Z
Tr�Az�A �z�; (5)

where D�z is the covariant derivative in the adjoint repre-
sentation, D�zAz � @�zAz � �A�z;Az	. Az is defined by

A z � My�1@zMy: (6)

Notice that this obeys the equation

@zA�z � @�zAz � �Az; A�z	 � 0: (7)

Putting these considerations aside for the moment and
turning to the Yang-Mills theory, the maximally helicity
violating tree amplitudes correspond to the scattering of
n� 2 gluons of negative helicity and two gluons of posi-
tive helicity (or the other way) and are given by [1]

A �� ��� � � ��� � ign�2�uIuJ�
4

�
Tr�ta1ta2 � � � tan�

�u1u2��u2u3� � � � �unu1�
; (8)

where g is the coupling constant. The gluons are all mass-
less described by null momenta p� with p2 � 0. u’s are the
spinor momenta of particles given by pA _A � p�� 

��A _A �

uA �u _A, where  � � �1;  � and  are Pauli matrices. The
labels I and J refer to the positive helicity gluons. For
simplicity of presentation, all gluons are taken as incom-
ing. The expression A in (8) is actually a subamplitude;
the full amplitude is obtained by summing over such sub-
amplitudes with all noncyclic permutations. This subam-
plitude has cyclic symmetry, so we also can sum over all
permutations and divide by n. There is also a momentum
conservation �-function which we have not displayed.

The MHV amplitude (8), (with momentum conservation
inserted), can now be written as
-2
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but the MHV amplitude is more naturally expressed for N � 4.
See the paper of Rosly and Selivanov [3] for a comparison.
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A�u; �u� �
Z Y

n

d2vne
�i=2�vn� �un ~A�u; v�;

~A�u; v� �
Z
d4x

Y
n

��v _An � xA _Au
A
n �ign�2�uIuJ�4

�
Tr�ta1ta2 � � � tan�

�u1u2��u2u3� � � � �unu1�
:

(9)

The Fourier-transformed amplitude ~A is holomorphic in
the twistor variable Z� � �v _A; uA�. The �-functions in ~A
show that it has support at various points uAn (and corre-
sponding v’s) on a line v _A � xA _Au

A. This is a complex line
in the space of Z’s, xA _A specifying the choice of this line.
Equation (9) was the form used in [6] to relate these
amplitudes to the topological B-model.

The generator of Lorentz transformations for the u’s is
given by

JAB �
1

2

�
uA

@
@uB

� uB
@

@uA

�
; (10)

where uA � �ABuB. The spin operator is given by S� �

� 1
2 ��#��J

#�p�, where J�# is the full Lorentz generator.
This works out to SA _A � JABuB �u _A � spA _A identifying the
helicity as

s �
1

2
uA

@

@uA
: (11)

Thus s is half the degree of homogeneity in the u’s.
One of the basic observations made in [2] was that the

subamplitude could be written as

A�1; 2; � � � ; n� � ign�2
Z
d4xd2%1d2%2d2%3d2%4

�
Y
i

eipi�xhAa1�p1�Aa2�p2� � � �Aan�pn�i:

(12)

In this formula

Aa�p� � J a&�u; �u�; (13)

where J a is the current of a WZW theory on CP1, which
satisfies the current correlators (4) and hence has degree of
homogeneity in u equals �2, and &�u; �u� is the N � 4
superfield

&�u; �u� � a� � 'iai �
1

2
'i'jaij �

1

3!
'i'j'k�ijkl �a

l

� '1'2'3'4a�; (14)

where 'i � �u%�i � �ABu
A%Bi (i; j � 1; 2; � � �N are the

supersymmetry indices). We can interpret a� as the clas-
sical value of the annihilation operator for a positive he-
licity gluon and a� as the annihilation operator for a
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negative helicity gluon. The components ai; �ai correspond
to four spin- 12 particles and aij correspond to six spin-zero
particles—in agreement with the particle content of N �
4 theory.1 Notice that the assignment of helicity is consis-
tent with Eq. (11). The expectation value in (12) is taken as
in the WZW theory, which means that we can use (4).
Formula (12) also includes the momentum conservation
�-function; it is generated by the x-integration. Further, it
includes similar amplitudes for the superpartners, namely,
the fermions and the scalars, though these do not contribute
to the classical scattering of gluons.

We now want to carry out one more step of consolidation
by defining an action for these amplitudes. The WZW
action is defined in two dimensions. There are three inde-
pendent components for a null momentum vector; there-
fore, a slight generalization is needed. The Lorentz-
invariant volume element in momentum space can be
written as

d��p� �
d3p
2p0

� �
1

4i
��udu�d2 �u� � �ud �u�d2u	

�
1

2
� ����d� ����

dzd�z
��2i�

: (15)

In terms of the spinor u, we have still kept the identification
of the local CP1 coordinate, in the coordinate patch we are
working with, as z � �=�.

Let SWZW be the action for the WZW theory defined in
(1). But, one can easily embed it on a more general space
by generalizing A�z�z; �z� to A�z�z; �z; � � �� in some proper way.
We now use a specific form for A�z given by

A�z�z; �z; x�; %Ai� � �
Z
d� ����

��
2�

eA: (16)

The WZW action is expressed in terms of this potential as

[eA�n� denotes eA�un; �un; x�; %Ai�]
S�eA	 � �

X1
n�2

1

n

Z
d��p1� � � � d��pn�

� Tr
� eA�1� � � � eA�n�
�u1u2��u2u3� � � � �unu1�

�
: (17)

We choose eA to be given by

eA�un; �un; x�; %Ai� � ta
�
aa� � 'iaai �

1

2
'i'jaaij

�
1

3!
'i'j'k�ijkl �aal

� '1'2'3'4aa�

�
eip�x: (18)
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Notice that a part of this field is the same as the superfield
& of (14) except for the extra color index we added. The
scattering amplitude can now be written as

A �

��
�

�aa1�p1�

�
� � �

�
�

�aan�pn�

�
exp�i�� ~A	�

�
eA�0
;

�� ~A	 �
Z
d4xd2%1d2%2d2%3d2%4

1

g2
S�g ~A	:

(19)

If we consider n external gluons one must consider two
positive helicity and n� 2 negative gluons in order to
saturate the Grassmann integration; in this construction,
N � 4 is crucial to get the right MHV amplitude (8), and
moreover the vanishing of amplitudes A�� � � � ��� �
0, A�� ��� � ��� � 0 is automatically satisfied.

Let us now recall that the S matrix can be expressed in
terms of the action as follows. Let ��’� denote the effec-
tive quantum action of a set of fields, generically denoted
by ’. The quantum equations of motion are the critical
points of � defined by

��
�’

� 0: (20)

The functional which gives the S matrix is then given by

F � �exp�i��	���=�’��0: (21)

The solutions of the equations of motion depend on a
number of free parameters, which define the phase space
of the theory; the Smatrix is a functional of this free data in
the solutions. Thus, for example, in perturbation theory, the
solution is obtained as an expansion around the free field
’ �

P
kakuk�x� � a�ku

�
k�x�, where uk�x� are plane wave

modes. The free data are the mode coefficients ak; a�k.
The amplitude for a process k1; k2; � � � ! p1; p2; � � � is
given by

A �

�
�
�ak1

�
�ak1

� � �
�
�a�p1

�
�a�p2

� � �F

�
ak�a�k�0

: (22)

In the classical theory, we can use the classical action Scl in
place of �.

Notice that the expression (19) is very similar to (22). In

fact, if we identify
R
d4xd8%S�eA	 in (19) as some sort of

classical action for the theory, this is exactly the expected
expression. We shall see below how this can emerge from
the constraints of N � 4 Yang-Mills theory.
III. A SOLUTION TO THE CONSTRAINTS
OF N � 4 YANG-MILLS THEORY

In the N � 4 super Yang-Mills theory, superspace is
described by �x�; %Ai; �% _A

i � and we introduce the standard
spinorial derivatives
025002
DAi �
@

@%Ai
� i� ��A _A

�% _A
i
@
@x�

;

Di_A � �
@

@ �% _A
i

� i%Ai� ��A _A
@
@x�

:
(23)

We also have the usual derivative @=@x�. We then intro-
duce gauge potentials AAi; �Ai_A; A�, which are functions of
x�; %Ai; �% _A

i , corresponding to these derivatives. Generally
speaking this will give too many degrees of freedom and
one has to impose constraints which reduce them to the
required number of fields for the chosen value of N . For
N � 4, the constraints are

FAiBj � FBiAj � 0; Fij_A _B
� Fij_B _A

� 0; Fj
Ai _B

� 0;

(24)

along with a subsidiary condition

Wij �
1

2
�ijklW

kl; (25)

where FAiBj � �ABWij, F
ij
_A _B

� � _A _BW
ij. These constraints

have long been known to be rather stringent and lead to the
equations of motion via the Bianchi identity [12]. This
property shows that the second order classical equations
of motion of the theory are equivalent to a set of first order
equations in an appropriate superspace, suggesting a cer-
tain integrability for the N � 4 Yang-Mills theory [15].

We have seen that the MHV amplitudes have a natural
interpetation in twistor space where there are additional
bosonic variables. This leads to a possible strategy for
solving the constraints. We will first write them in a larger
space which is, more or less, a variant of supertwistor
space. We will then do a gauge transformation (depending
on the additional variables) to eliminate some of the usual
gauge potentials. In the new gauge, the solution to the
constraints is simpler. Such a method has been used to
construct superfields for N � 2 Yang-Mills theory; that
construction was based on harmonic superspace, which is a
close relative of twistor space [16].

We start by introducing a complex spinor uA. (This time
we are not thinking of it as a spinor momentum—not yet.)
The complex conjugate of uA transforms as a dotted spinor
�u _A � �uA��. So, to get something that transforms in a
similar way to uA, we introduce a vector KA _A and write
�wA � KA _A �u _A. Thus for a fixed choice of K, �wA has the
same information as the conjugate of uA. Using these
variables, we can take combinations of the derivatives on
superspace for the undotted-sector as

D�
i � uADAi; D�

i � � �wADAi: (26)

[We will take K such that the scalar product � �wu� is not
zero.] We also have similar combinations for the gauge
potentials. The constraints of the N � 4 theory can now
be written as
-4
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F��
ij � F��

ij � F��
ij � F��

ij � 0;

Fij_A _B
� Fij_B _A

� 0; F�j
i _B

� 0:
(27)

The components which are not zero are F��
ij � �u �w�Wij,

Fij_A _B
� � _A _BW

ij.
Let D�

i , D�
i , Di

_A
denote the gauged versions of the

spinorial derivatives D � D� Awith the gauge potentials
A�
i � uAAAi; A�

i � � �wAAAi and A _Ai, respectively. We
also introduce the additional derivatives

D�� � uA
@

@ �wA
; D�� � � �wA

@

@uA
;

D0 �

�
uA

@

@uA
� �wA

@

@ �wA

�
:

(28)

Notice thatD0 is a charge operator, assigning �1 charge to
uA and �1 charge to �wA. The superscripts in (26) and (28)
indicate the value of this charge for each of the derivatives.

The constraints of the theory can now be displayed as

fD�
i ;D

�
j g � 0; (29)

�D��;D�
i 	 � 0; (30)

�D��;D�
i 	 � D�

i ; (31)

�D��;D��	 � �D0; (32)

fD�
i ;D

�
j g � fD�

i ;D
�
j g � 0; fD�

i ;D
�
j g � 0;

�D��;D�
i 	 � �D�

i ; �D��;D�
i 	 � 0;

(33)

�D��;Di
_A
	 � 0; �D��;Di

_A
	 � 0; (34)

fD�
i ; D

j
_A
g � �jiu

ADA _A; fD�
i ; D

j
_A
g � ��ji �w

ADA _A;

(35)

fDi
_A
;Dj

_B
g � fDi

_B;D
j
_A
g � 0: (36)

Even though we have written the gauged versions D��,
the gauge potentials A��; A�� are zero at this stage; these
constraints are thus equivalent to the previous constraints
(27). Further, even though we introduced uA, �wA, the
constraints do not depend on all components of these
spinors. The constraints are homogeneous (of different
degrees) and so, one of the components, say � (and ��)
can be factored out.

So far, the introduction of the additional variables and
the potentials is really a meaningless redundancy since
their potentials are zero. However, we now notice that,
because of the constraints (29), A�

i is of the form
�D�

i gg
�1, for some matrix g (which is generally not

unitary). The matrix g is in general a function of
x�; %Ai; �% _A

i and the new coordinates uA; �wA. (If it did not
depend on uA; �wA,Wij would be zero.) This property of A�

i

025002
suggests that we can make a gauge transformation using g
and eliminate it. When this is done, the potentials A�� are
no longer zero; rather A�� � g�1D��g. In this new gauge
A�
i � 0, the constraints (29) to (33) become

D�
i A

�� � 0; (37)

A�
i � �D�

i A
��; (38)

D��A�� �D��A�� � �A��; A��	 � 0; (39)

D�
i A

�
j �D�

j A
�
i � 0;

D�
i A

�
j �D�

j A
�
i � fA�

i ; A
�
j g � 0;

D��A�
i �D�

i A
�� � �A��; A�

i 	 � 0;

D��A�
i �D�

i A
�� � �A��; A�

i 	 � 0:

(40)

In addition to these, we still have the constraints (34) and
(35) as well as (36) or Fij_A _B

� � _A$ _B� � 0 in (27).
These equations show how we can obtain a solution to

the theory. We can start with A�� as the given quantity. It
must be chosen such that it satisfies an analyticity condi-
tion (37).2 Equation (39) then defines A��. Given A�� we
can use (38) to obtain A�

i � �D�
i A

��. This will give us
both A�

i (which is zero) and A�
i ; one can even transform

back to the original gauge, if it is convenient. To show that
this is indeed a solution, we must also check the constraints
(40) using A�

i � �D�
i A

��. This can be done in a straight-
forward way.

We have thus solved half of the constraints; we must
now consider the dotted-sector and the mixed constraints
(34). Having obtained A�

i , we can, in principle, transform
them back to the original gauge and take conjugates to get
Ai_A. This will take care of the constraints Fij_A _B

� � _A$
_B� � 0. The constraints (35) can be taken as the definition

of AA _A. The only difficulty is with the constraints (34). This
constraint reads

D��Ai _A �Di_AA
�� � �A��; Ai _A	 � 0: (41)

We do not have a way to deal with this in generality, but we
notice that a particular solution may be obtained by setting
Di_AA

�� or Di _AA
�� to zero. This imposes a chirality con-

dition on A�� [and via (39) on A��]. Thus for our special
solution we have

Di _AA
�� � 0: (42)

What we have shown is that if we find an A�� obeying the
analyticity condition (37) and the chirality condition (42),
then we can find a solution to the constraints of the N � 4
theory. The only nontrivial condition is Eq. (39).
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We now turn to the solution of (37), (42), and (39). The
solution to the chirality condition (42) is well known: A��

must depend on �% _A
i only through the combination

y� � x� � i �% _A
i %

Ai� ��A _A.3 We will look for solutions of
the form A�� � Ap exp�ip � y�; the analyticity condition
(37) then tells us that�

uA
@Ap
@%Ai

� 2uA� � p�A _A
�% _A
i Ap

�
� 0: (43)

Since the first term does not have a factor of �% _A
i , we get a

nonzero solution only if

uA
@Ap
@%Ai

� 0; uA� � p�A _A � 0: (44)

The first equation tells us that Ap must depend on %Ai only
through 'i � uA%

Ai, so that we can write

Ap � ta
�
aa� � 'iaai �

1

2
'i'jaaij �

1

3!
'i'j'k�ijkl �aal

� '1'2'3'4aa�

�
; (45)

where the coefficients aa�; a
a
i ; a

a
ij; �a

al are arbitrary func-
tions of p.4 Notice that we have essentially recovered the
superfield of (18) from the (special) solution of the con-
straints of the N � 4 theory, except for the appearance of
y�, instead of x�, in the plane wave part exp�ip � y�. (It is
immaterial that y� appears rather than x� since we will be
integrating over x� anyway.)

The second condition in (44) shows that p� must be a
null vector. Thus the solution must be on shell, as we knew
it would be from the general statement that the constraints
put the N � 4 theory on shell. ua is an eigenvector of  �
p with zero eigenvalue. Since p� is real, we can write
pA _A � uA �u _A.

For a general solution to (37) and (42) we can do a
superposition by integrating over the null momenta. But
recall that uA was part of the space, so we do not have the
full freedom of integration. All of our constraints really
depend only on the CP1 subspace whose local coordinate
we have taken as z � �=�; there is freedom to divide out
by an appropriate number of �; �� because there is a
balance of charges. So what can be freely integrated over
is just the � part. We choose this measure to be consistent
with Lorentz invariance; this brings us to the combination

A�z given in (16) in terms of an integral over eA �

Ap exp�ip � y�.
3One might consider y� � x� � i �% _A
i %

Ai� ��A _A � F with an
arbitrary function F � F�%Ai; uA; �!A� such as %Ai� ��A _A �u _A, but
there is no combination satisfying the condition of being a
singlet for the supersymmetry indices i and having vanishing
D0 charge .

4There may exist � �wu� dependence, but this would not have an
important role in the dynamics with a fixed choice of KA _A.
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The final equation to be solved, namely, (39), is now
straightforward. First of all, we express it in local coordi-
nates. While uA and �uA�� define the usual complex coor-
dinates in terms of which we can get the local coordinates
z; �z, we had to introduce a vector K to obtain Lorentz-
invariant contractions and to define the derivatives D��. If
we choose KA_A � �A_A, this will correspond to the usual
description of CP1 where we use uA and �uA. (This corre-
sponds to the use of a particular frame to define the
derivatives D��, but our final results will be Lorentz-
invariant.) We now define a set of local gauge potentials
A�z;Az by

A�� �
�
��
�1� z�z�A�z; A�� �

��
�
�1� z�z�Az: (46)

The substitution of these into Eq. (39) transforms it into

@�zAz � @zA�z � �A�z;Az	 � 0: (47)

Basically, this takes us to the Eq. (7). What we have shown
is that solving (39) is equivalent to solving (47). Given a
solution of (47), we can obtain a solution to (39) by using
(46).

Equation (47) can be solved for Az in terms of A�z; the
latter is arbitrary except for the analyticity condition (37).
Notice that if we substitute (46) into (37), the prefactor
��= ����1� z�z� drops out; we can also factor out � from uA

(which is equivalent to writing u1 � 1; u2 � z. We thus
obtain the same conditions (44) for A�z with �1; z� in place
of uA. (This is in accordance with our earlier comment on
dividing out �; ��.) It can be solved for A�z as before, giving
a function of the z’s and the momentum p; the value of�; ��
given by the momentum can then be used to go back to the
full uA. We see that A�z is given by a superposition of fields
of the form Apeip�y with Ap given by (45). We now take it
to be given by

A�z � �
Z
d� ����

��
2�
Apeip�y � �

Z
d� ����

��
2�

eA: (48)

This is essentially (16), but we have obtained it as a
solution of the constraints. [It should be emphasized that
since the coefficients aa�; aai , etc., can also be functions of
p, there is no loss of generality in taking the particular form
(48). In other words, it is simply the choice for which the
coefficients can be interpreted as the properly normalized
annihilation amplitudes.]

The key issue is thus the solution of (47) for Az. But
rather than discussing Az in its own right, we shall now
turn to the S matrix. Since we are looking for tree-level
amplitudes at this point, what we need, in the spirit of (21),
is a classical action. The basic equation of motion for us is
(39) or (47). We need an action, which for any given A�z,
gives the Eq. (47) for Az. This action, not surprisingly, is a
variant of the WZW action in the holomorphically ex-
tended superspace �x�; %Ai; z; �z� and is
-6
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S � �k
Z
dXSWZW�U� �

k
�

Z
dXd2zTr�A�z@zUU

�1�:

(49)
Here k is a normalization constant which can be thought of
as the level number of the WZW action and dX �
d4xd2%1d2%2d2%3d2%4. The equation of motion can be
obtained by varying the matrix field U and is identical to
(47) with Az � �@zUU�1. Further, if we write A�z �
My�1@�zMy, for some matrix My, the solution to (47) is
evidently U � My�1. We can now use the Polyakov-
Wiegman identity to write

�SWZW�U� �
1

�

Z
d2zTr�A�z@zUU�1�

� �SWZW�MyU� � SWZW�My� � SWZW�My�

� SWZW�A�z�: (50)
This tells us that the action (49), which leads to the
required equation of motion (47), when evaluated on solu-
tions of that equation is given by the WZW action of (1)
(with the additional integration with the measure dX). All
we have to do at this point is to substitute the form of A�z
given by (48) to obtain the S matrix amplitudes, following
the general formula (22). Evidently, we have recovered the
formula (19).5 Notice also that our final formula (19)
involves only Lorentz-invariant scalar products; thus, the
choice of the vector K is irrelevant. (We can recover the

coupling constant by the standard scaling eA! geA. But the
overall normalization of the action k is not given by the
equations of motion. This is always the case classically.
Thus there is one constant in the amplitudes which is not
determined by our argument. This is basically Planck’s
constant.)

We also note that if we introduce two more variables 4 _A

and write combinations like �Di� � 4 _ADi_A, then we can
obtain similar results for the opposite ‘‘handedness,’’
with almost all postive helicity gluons A�� � � � ��� �
0, A�� ��� � ��� � 0, and A�� ��� � � ��� by ex-
changing the undotted sector with dotted sector.
Furthermore, if we were to introduce both uA and 4 _A,
then we are naturally led to a CP1 �CP1 structure. This
has occurred before in connection with the N � 4 theory,
for example, the paper of Rosly and Schwartz in [16] as
well as [6,11]. It would be interesting to utilize this struc-
ture as well as the Chern-Simons theory description to
eliminate the condition (42).
5There are additional �% _A
i %

Ai-terms from exp�ip � y�, since
y� � x� � i �% _A

i %
Ai� ��A _A, but the tree amplitudes are the same

as those of (18) since A�� � � � ��� � � �%�8j �% _A
i �0 � 0;A�� �

� � ��� � � �%�4j �% _A
i �0 � 0.
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IV. THE NON-MHV AMPLITUDES

So far our analysis is restricted to the MHV amplitudes.
In fact, we see that once we make the simplifying assump-
tion of Di_AA

�� � 0, we are restricted to the MHV ampli-
tudes. The proper way to proceed would thus be to relax
this condition and see how the solution to the constraints
would change. However, this is rather difficult; our deri-
vation is limited to the MHV amplitudes. As mentioned in
the introduction, a suggestion was made in [8] that one
could simplify the calculation of the non-MHV amplitudes
by using MHV vertices and then connecting them via
propagators, analogous to Wick contractions in standard
perturbative field theory. While we do not have an inde-
pendent justification or derivation of this result, we note
that there is an elegant way to incorporate it in our
formalism.

The Wick contraction operator for two gluons is given
by
Ŵ � exp

"
�
Z
x;y
D�x; y�

�
�aa��x�

�
�aa��y�

#
; (51)
with the propagator D�x; y� which is the inverse of p2.
Consider the functional for the S matrix defined by
F � Ŵ exp�i��eA	�; (52)
where ��eA	 is given in (19). Consider the application of
this to two vertices, resulting again in a tree diagram. First
of all, to include propagators, we need the off shell con-
tinuation of the amplitudes, at least for the gluon which is
replaced by the propagator. This will be assumed to be
done as in [8]. The prescription is the following: If p� is
the off shell momentum, the corresponding spinor momen-
tum in the MHV vertex will be taken as uA � pA _A'

_A,
where ' _A is a fixed spinor, taken to be the same for all
off shell lines in a diagram. Secondly, the individual MHV
amplitudes have a color structure of the form
Tr�ta1 � � � tan�. Since U�1�’s decouple from the theory, we
may extend the range of the indices a1; a2, etc., to include a
U�1� direction as well. We will take the ta’s to be normal-
ized so that we have the completeness relation �ta�ij�
�ta�kl � �jk�il. Then the contractions preserve the color
structure Tr�ta1 � � � tan� with cyclic ordering of the external
lines from the individual vertices.

Using (52), we may calculate the subamplitude
A�1�2�3�4�5�6�� for the scattering of six gluons. We
find
-7
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A �1�2�3�4�5�6�� � A�4�5�6�1�k��D
�1�
kl A�l�2�3�� �A�3�4�5�6�k��D

�2�
kl A�l�1�2��

�A�6�1�k��D
�3�
kl A�l�2�3�4�5�� �A�3�4�k��D

�4�
kl A�l�5�6�1�2��

�A�3�4�5�k��D
�5�
kl A�l�6�1�2�� �A�5�6�1�k��D

�6�
kl A�l�2�3�4��; (53)

where the D’s are given by

D�1�
kl � �p2 � p3�

�2; D�2�
kl � �p1 � p2�

�2;

D�3�
kl � �p6 � p1�

�2; D�4�
kl � �p3 � p4�

�2;

D�5�
kl � �p3 � p4 � p5�

�2; D�6�
kl � �p2 � p3 � p4�

�2:

(54)

This result agrees with the general prescription given in [8]. The general formula (52) can also generate loop diagrams. It is
not entirely clear to us at this point whether they are identical to the one-loop amplitudes of the N � 4 Yang-Mills theory,
although the resulting amplitudes are very similar to the recent suggestion in [17].
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