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Quasilocal contribution to the gravitational self-force
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The gravitational self-force on a point particle moving in a vacuum background space-time can be
expressed as an integral over the past world line of the particle, the so-called tail term. In this paper, we
consider that piece of the self-force obtained by integrating over a portion of the past world line that
extends a proper time �� into the past, provided that �� does not extend beyond the normal neighborhood
of the particle. We express this quasilocal piece as a power series in the proper time interval ��. We argue
from symmetries and dimensional considerations that the O���0� and O���� terms in this power series
must vanish, and compute the first two nonvanishing terms which occur at O���2� and O���3�. The
coefficients in the expansion depend only on the particle’s four velocity and on the Weyl tensor and its
derivatives at the particle’s location. The result may be useful as a foundation for a practical computational
method for gravitational self-forces in the Kerr space-time, in which the portion of the tail integral in the
distant past is computed numerically from a mode-sum decomposition.
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I. INTRODUCTION AND SUMMARY

One of the outstanding open problems of classical gen-
eral relativity is the calculation of the gravitational self-
force experienced by a massive particle moving in a curved
background space-time. Here by particle we do not mean a
point particle, but rather an extended object whose internal
structure has a negligible effect on its ‘‘center-of-mass’’
motion. Such a particle will not follow a geodesic of the
background space-time, but rather a geodesic of the total
space-time, whose curvature reflects both the background
and the mass/energy of the particle itself. However, if the
mass of the particle is much less than the natural length
scale of the background (i.e., the square root of the inverse
of the curvature scale of the background), the deviation of
the particle’s trajectory from a background geodesic will
be small over time scales that are less than the natural
length scale of the background. In this case, one can treat
the difference between the total space-time metric and the
background space-time metric to linear order as spin-2
field generated by the particle and living on the background
space-time. This field couples to the particle, and in this
picture, it is understood as causing a force, the self-force,
which causes the particle to deviate from the background
geodesic.

With this description, the gravitational self-force is
analogous to the self-force experienced by a electrically
charged point particle coupled to a Maxwell field in curved
space-time, or to the self-force experienced by a particle
05=71(2)=024036(18)$23.00 024036
carrying a scalar charge coupled to a massless linear
scalar field in curved space-time. In each of these cases,
the interaction of a particle with its own field alters its
motion. In the flat space-time limit, these forces reduce to
the familiar radiation reaction forces, as they are only
associated with accelerated motion and the resultant emis-
sion of radiation. In curved space-times, however, the
notion of emission of radiation can, in general, be
ambiguous. Furthermore, even in stationary space-times,
the self-forces can have conservative terms, as well as
dissipative pieces reminiscent of radiation reaction forces.
Thus, in curved space-times, the notion of a radiation
reaction force is replaced by the more general notion of a
self-force.

Recently, there has been renewed interest in finding the
gravitational self-force experienced by a massive particle
traveling in a curved background space-time. The primary
impetus for this interest is the imminent construction of
space-based gravitational wave observatories, such as
Laser Interferometer Space Antenna (LISA) [1]. One of
the most interesting gravitational wave sources for these
instruments will be compact solar mass objects inspiralling
into black holes of 103 to 108 solar masses out to Gpc
distances [2]. The extraction of the maximal amount of
information from such observations, however, can only be
effected if accurate theoretical waveform templates exist.
The calculation of such templates requires precise knowl-
edge of the orbital evolution of the smaller object in the
-1  2005 The American Physical Society
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gravitational background of the massive black hole, which
in turn requires an accurate calculation of the gravitational
self-force.

In flat space-time, the radiation reaction force can be
thought of as the recoil force experienced by the particle as
it emits radiation. Since the radiation carries momentum,
and since the radiation field is not generally spherically
symmetric, there is a nonzero net momentum transferred to
the particle. This change of momentum corresponds to a
force, which for an electrically charged particle in flat
space-time is given by the Abraham-Lorentz-Dirac for-
mula [3,4]. This explanation of the radiation reaction force
is, of course, highly simplified. It is not straightforward to
relate the force directly to the radiation—the force is local
to the particle while radiation is a far-field phenomenon.
Nonetheless, this simplified picture can provide intuitive
insight into the phenomenon.

In curved space-times, qualitatively new types of self-
interactions occur due to the failure of Huygens’ principle
(in its modern incarnation) to hold in most geometries.1

More pedantically, it is due to the fact that solutions to
wave equations on most curved manifolds depend not only
on Cauchy data directly intersected by the past light cone,
but also on Cauchy data interior to that intersection. The
portion of the field that propagates in the null directions
along the characteristics is called the direct part. The
portion of the field which propagates in the timelike direc-
tions in the interior of the light cone is called the tail.
Clearly, the tail part of a particle’s field can interact with
the particle, leading to a contribution to the self-force.

A general expression for the self-force on an electrically
charged particle in a curved space-time was obtained in the
seminal paper by DeWitt and Brehme [8].2 More recently,
similar expressions have been obtained for the gravita-
tional self-force by Mino, Sasaki and Tanaka [10] and by
Quinn and Wald [11], which we review in Sec. II below,
and for the scalar self-force by Quinn [12]. These
results have resolved many of the issues of principle in
computing self-forces in curved space-time. See Ref. [13]
1This statement is in fact a modification of a conjecture by
Hadamard [5] that the only hyperbolic differential operators
whose solutions obey Huygens’ principle are conformally re-
lated to the ordinary wave operator in Minkowski space with
even numbers of space-time dimensions. Hadamard originally
formulated this conjecture with scalar operators in mind, but it
has since been trivially extended to operators for fields with
higher spin. Counterexamples to Hadamard’s conjecture have
been found, originally in � 6 (but even) dimensions by
Stellmacher [6] and later in the more physically relevant case
of � 4 (even) dimensions by Günther [7]. Nonetheless, these
counterexamples are believed (but not yet proved) to be isolated
cases. This modified Hadamard conjecture has been proved in
broad classes of space-times (e.g., some algebraically special
space-times) and work continues in this area.

2The expression obtained by DeWitt and Brehme is missing a
term due to a trivial calculational error; see Hobbs [9] for the
correction.
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for a detailed review of and simplified versions of these
computations.

However, for applications to gravitational wave obser-
vations, one needs to translate the formal expressions of
Refs. [10,11] into practical computational schemes for
computing orbits of particles in the Kerr space-time. The
expressions for the self-force involve the retarded Green’s
function for the wave equation, and the standard method of
computing this Green’s function is to use a decomposition
of the field into modes. This mode decomposition method
combines together the tail and singular pieces of the fields
in a manner that is difficult to disentangle, and it is the tail
piece of the self-field that determines the self-force. Thus,
the results of Refs. [8,10–12] do not directly give a simple
method of computing self-forces in black hole space-times.

Nonetheless, some progress has been made in calculat-
ing the self-force for particular particle trajectories in
particular space-times. For specific geometries, and also
in the weak-field approximation, it has been possible to
compute the tail of the Green’s function. Some classic
results have been obtained for scalar or electric charges
in static, radial, or circular trajectories about black holes or
cosmic strings [14–24]. In Schwarzschild, and for circular
or equatorial orbits in Kerr, the time-averaged nonconser-
vative (i.e., radiation reaction) contributions to the gravi-
tational self-force may be deduced using energy and
angular-momentum balance arguments involving the flux
of radiation to infinity and down the black hole [25–32].
Furthermore, in the weak-field, slow-motion limit of gen-
eral relativity, one may use the post-Newtonian expansion
to obtain the gravitational self-force [33–35], and the
result agrees with that obtained by specializing the formal
results of Refs. [10,11] to weak fields [24].

While these results are encouraging, it is important and
desirable to have a framework in which arbitrary motions
in black hole space-times can be computed. Recently con-
siderable progress has been made in developing practical
computational schemes for obtaining self-forces.3 Most of
these schemes are based on computing the full retarded
field, which is infinite at the position of the particle on its
world line, and regularizing it in some way to effect the
subtraction of the direct part of the field, leaving the
desired tail part. Barack and Ori have derived a mode-
sum regularization scheme [36–38] that has been success-
fully applied in a number of cases [38–43]. The regulari-
zation parameters for this scheme have been derived from
the fundamental Mino-Sasaki-Tanaka-Quinn-Wald equa-
tion of motion for Schwarzschild in Refs. [44,45] and for
Kerr in Ref. [46]. Mino, Nakano and Sasaki have devel-
3See the proceedings of the Capra Ranch meetings on radia-
tion reaction at http://www.lsc-group.phys.uwm.edu/~patrick/
ireland99/, http://www.aei-potsdam.mpg.de/lousto/capra/,
http://cgwp.gravity.psu.edu/events/Capra5/capra5-BKP_2002-
05-24-1200.shtml and http://cgwa.phys.utb.edu/Events/
agendaView.php?EventID=3.
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4Note that because we have used the sign convention of
Misner, Thorne and Wheeler [58], our Weyl tensor has the
opposite sign to that of Mino, Sasaki and Tanaka [10]. Note
also that our Green’s function is defined to be one-half that of
Ref. [10].
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oped two regularization schemes, one of which is a mode-
by-mode regularization and the second of which they dub
the ‘‘power expansion regularization’’ which involves a
post-Newtonian expansion of the Green’s function [47–
49]. Both their methods have been applied [50,51].
Another scheme is that of Lousto, who used zeta-function
regularization of modes for a radially infalling scalar par-
ticle in Schwarzschild [52].

A qualitatively different method for computing self-
forces in black hole space-times has been suggested by
Poisson and Wiseman [53]. It is based on a direct compu-
tation of the tail field, rather than a regularization of the
total retarded field. The tail field can be expressed as an
integral over the past world line of the particle. The idea is
to split this integral into two pieces, a piece that extends
back into the past a proper time interval ��, which we call
the quasilocal piece, and the remainder of the integral. The
second piece, from the more distant past, can be computed
using standard multipolar decomposition of the full re-
tarded field; no difficulties involving divergences occur
here, and thus no regularization is needed. The first, qua-
silocal piece can be computed approximately as a power
series expansion in ��.

In this paper, we compute the expansion in powers of ��
of the quasilocal piece of the gravitational self-force for an
arbitrary vacuum space-time, to the first two nontrivial
orders in ��. Our result is given in Eq. (3.17) below, and
may be useful as a foundation for the Poisson-Wiseman
scheme. Alternatively it may be useful as a check of
numerical codes that use some regularization scheme. At
the core of our analysis is a local expansion of the tail piece
of the Green’s function for linearized perturbations. Such
local expansions of Green’s functions can be found in the
literature on quantum field theory in curved space-time;
see Refs. [54–56] for the scalar case, Ref. [55] for the
electromagnetic case, and Ref. [57] for the gravitational
case. We extend the expansion of Ref. [57] to one higher
order, and apply the result to compute the quasilocal piece
of the gravitational self-force.

The organization of this paper is as follows. In Sec. II we
review the formal expression for the gravitational self-
force obtained by Mino, Sasaki and Tanaka [10] and by
Quinn and Wald [11], and define the quasilocal contribu-
tion to the self-force. In Appendix A, we use symmetry and
dimensional arguments to deduce the possible terms that
can appear in the expansion of the quasilocal contribution,
thereby reducing the computation to obtaining one univer-
sal numerical coefficient at the leading nontrivial order
[O���2�] and four universal numerical coefficients at the
next higher order [O���3�]. Section III computes those
numerical coefficients; the final result is given in
Eq. (3.17). Some of the details of the computation are
relegated to Appendices B, C, D, and E. In Sec. IV we
calculate the application of the general expression to some
interesting cases. Finally, we make some concluding re-
marks in Sec. V.
024036
Throughout this paper we use geometrized units in
which G � c � 1, and we adopt the sign conventions of
Ref. [58].
II. THE GRAVITATIONAL SELF-FORCE

A. The Mino-Sasaki-Tanaka-Quinn-Wald formula

Consider a point particle of mass � moving on a geo-
desic x���� of a background space-time �M;g�
�, parame-
trized by proper time �. Throughout this paper we assume
that the background space-time satisfies the vacuum
Einstein equation R�� � 0. The particle will perturb the
background geometry to linear order in �. We denote the
linearized metric perturbation by h��, and the more con-
venient trace-reversed form of this perturbation by

 �
 � h�
 �
1
2g�
h��g

��: (2.1)

We raise and lower indices with the background metric. We
specialize throughout to the Lorentz gauge defined by

 �
;
 � 0; (2.2)

where the semicolon denotes a covariant derivative with
respect to the background metric g��. In this gauge the
linearized Einstein field equations take the form of the
simple wave equation

��g��g�� � 2C����� �� � �16�T��; (2.3)

where � and C���� are the D’Alembertian and Weyl
tensor associated with the background metric g�
, and
T�� is the linearized stress energy tensor. The wave equa-
tion (2.3) can be solved using the retarded Green’s function
G���0�0

ret , which is defined by the equation

��g��g���2C�����G
���0�0

ret �x;x0���g
��
�0
g��

�0
�4�x;x0�;

(2.4)

and by the fact that it has support only when x0 is in the
causal past of x. Here g��

0
is the parallel displacement

bivector [8,59,60], and �4�x; x0� � �4�x� x0�=
�������
�g

p
is a

generalized Dirac delta function.4 The retarded solution
to Eq. (2.3) can be written in terms of the Green’s function
as

 ��ret �x� � 16�
Z
d4x0

���������������
�g�x0�

q
G��

ret�0�0 �x; x0�T�
0�0
�x0�:

(2.5)

For the point particle source, the stress energy tensor is
given by
-3
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T���x� � �
Z 1

�1
�4�x; x0��0��u���

0�u���
0�d�0; (2.6)

where u���� is the particle’s four velocity, and inserting
this into Eq. (2.5) gives

 ��ret �x� � 16��
Z 1

�1
d�0G��

ret�0�0 �x; x0��0��u�
0
��0�u�

0
��0�:

(2.7)

Now one would expect the particle to move on a geode-
sic of the total metric g�� �  ret

�� � g��g

� ret


�=2. Such
geodesic motion would be equivalent to motion for which
the mass times acceleration with respect to g�� is

f� � �P��
� ret
�
;�; (2.8)

where the tensor P��
� is given by

P��
� � �1
2u
�u�u
u� � g���u
�u� � 1

2g
��u�u


� 1
4u
�g�
u� � 1

4g
��g�
: (2.9)

However, the retarded field  ret
�� and its gradient  ret

��;� are
divergent on the particle’s world line, so the naive expres-
sion (2.8) for the self-force is ill defined. Instead, the
correct expression for the self-force is given by Eq. (2.8)
with the retarded field replaced by the so-called tail field
 tail
�� [10,11]:

f� � �P��
�h tail
�
;�i: (2.10)

Here the angular brackets h. . .i denote the result obtained
by averaging over a two sphere of some small radius r
about the particle in the spatial hypersurface orthogonal to
u�, and by taking the limit r! 0. The tail field  tail

���x� is
defined by truncating the integral (2.7) over the particle’s
world line to exclude the contribution from the direct part
of the Green’s function:

 ��tail �x� � 16�� lim
�!0�

Z �ret�x���

�1
d�0G��

ret�0�0 �x; x0��0��

� u�
0
��0�u�

0
��0�: (2.11)

Here �ret�x� is the value of proper time � at the point where
the world line intersects the past light cone of the point x.
The remaining, direct portion of the field is

 ��direct�x� �  ��ret �x� �  ��tail �x�

� 16�� lim
�!0�

Z �ret�x���

�ret�x���
d�0G��

ret�0�0 �x; x0��0��

� u�
0
��0�u�

0
��0�: (2.12)

If we now take the gradient of the tail field (2.11) in
order to substitute into the formula (2.10) for the self-force,
we obtain two terms: a term generated by the action of the
gradient operator on the quantity �ret�x�, and a term gen-
erated by the action of the gradient operator on the retarded
Green’s function. The first contribution gives an expression
024036
which has a direction dependent limit on the world line, but
which vanishes once the average h. . .i is taken [11,61]. The
second contribution is continuous on the world line (so the
averaging can be dispensed with), and yields for the self-
force the expression [10,11]

f���� � 16��2P��
� lim
�!0�

Z ���

�1
d�0Gret

�
�0
0;��x; x
0��0��

� u�
0
��0�u


0
��0�: (2.13)

As an aside, we note that Detweiler and Whiting [61]
have introduced an alternative splitting of the retarded field
of the form

 ��ret �  ��sing �  ��regular; (2.14)

where the singular piece  ��sing is a solution of the inhomo-
geneous wave equation (2.3) which can be computed lo-
cally, and  ��regular is a solution of the corresponding
homogeneous wave equation such that the self-force is
given by the expression (2.8) with  ��ret replaced by
 ��regular. This alternative formulation also gives rise to the
final formula (2.13) for the self-force.

B. Equation of motion

The self-force formula (2.13) discussed above was de-
fined only for a geodesic world line. Therefore it is neces-
sary to supplement the self-force formula with a
prescription for computing the motion of a point particle
that includes the effect of the self-force to leading order in
the particle’s mass �. The reason that finding such a
prescription is not entirely trivial is the following
[10,11]: the linearized Einstein equation admits solutions
only if its source, the particle’s stress energy tensor (2.6), is
conserved. However, the stress energy tensor for a point
particle is conserved only if the world line is a geodesic.
Therefore it is not straightforward to define the self-force
on a nongeodesic world line.

Quinn and Wald [11] suggested the following method of
resolving this difficulty. They define a self-force for a
nongeodesic world line by relaxing the Lorentz gauge
condition (2.2) while retaining the form (2.3) of the line-
arized Einstein equation. The justification for relaxing the
gauge condition is that the associated errors are quadratic
in the mass �, while the self-acceleration is linear in �.
Their equation of motion is then

�a� � f�; (2.15)

with f� given by Eq. (2.13), modified as described above,
and a� is the 4-acceleration with respect to the background
metric. The equation of motion (2.15) is an integro-
differential equation which is nonlocal in time.

Here, we suggest an alternative equation of motion,
which gives the same results as Eq. (2.15) to leading order
in �. First, for any point P in space-time, and for any unit
future-directed timelike vector ~u at P , we define the self-
-4
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force vector f� � f��P ; ~u� to be self-force obtained from
the prescription (2.13) for the particular geodesic which
extends into the past from P whose tangent at P is ~u. The
equation of motion for the perturbed world line x���� is
then

�a� � f�� ~x���; ~u����: (2.16)

In other words, the world line is such that its acceleration at
any point is the acceleration that is obtained from the
integral (2.13) for the geodesic which is tangent to
the world line at that point. The justification for using the
024036
instantaneously tangential geodesic rather than the true
world line is essentially the reduction of order argument
discussed in Refs. [11,62]. The equation of motion (2.16) is
a second order differential equation which is local in time.
C. Definition of the quasilocal piece of the self-force

In this paper we evaluate not the entire integral over the
world line in the self-force formula (2.13), but instead that
portion of that integral near the particle with proper times
�0 in the range �� �� � �0 � �. Specifically, we define
f�QL��;��� � 16��2P��
� lim
�!0�

Z ���

����
d�0Gret

�
�0
0;��x; x
0��0��u�

0
��0�u


0
��0�: (2.17)
Here the subscript ‘‘QL’’ denotes ‘‘quasilocal.’’ By com-
paring with Eq. (2.13) we see that the entire self-force is
obtained from f�QL��;��� in the limit where ��! 1. We
will derive an approximate power series expansion of
f�QL��;��� that is valid in the limit ��! 0.

Within a sufficiently small neighborhood of the point
x� � x����, the retarded Green’s function can be written in
the Hadamard form

G���0�0

ret �x; x0� �
����x; x0��

4�
fU���0�0

�x; x0���!�x; x0��

� V���
0�0
�x; x0����!�x; x0��g: (2.18)

Here ��x; x0� is an arbitrary function which is positive for x
in the causal future of x0 and negative otherwise, ���� is the
Heaviside step function, !�x; x0� is Synge’s world function
[13,63], ���� is the ordinary Dirac delta distribution, and
U���0�0

�x; x0� and V���
0�0
�x; x0� are smooth functions. The

part of the Green’s function proportional to ��!� is called
the direct part, and the part of the Green’s function pro-
portional to ��!� is the tail part. For sufficiently small ��,
the portion of the world line between x���� ��� and
x���� that arises in Eq. (2.17) will lie inside the neighbor-
hood where the Hadamard expression (2.18) is valid.
Inserting this expression into the formula (2.17) for f�QL

gives

f�QL��;��� � �4�2P��
�
Z �

����
V�
�0
0;��x; x0��0��

� u�
0
��0�u


0
��0�d�0: (2.19)

Note that the direct part of the Green’s function does not
contribute to the expression (2.19), because of the limiting
process involving � in Eq. (2.17). That limiting process is
unnecessary for the tail contribution which gives an inte-
grand that is finite at �0 � �; hence there is no limiting
process in the final result (2.19).

The integral (2.19) can be approximately evaluated for
small �� using a covariant local expansion of V�
�0
0 �x; x0�
in a neighborhood of x0 � x. The result is of the form
fQL���;��� � f�0�
� ��� � f�1�

� ������ f�2�
� �����2

� f�3�
� �����3 �O���4�: (2.20)

Because this expansion arises from a covariant Taylor
series, the coefficients f�j�� ��� are purely local geometric
quantities evaluated at the present position x���� of the
particle. In Appendix A we derive the geometric content of
these coefficients using simple counting and dimensional
arguments. We find that

f�0�
� � 0; (2.21)

f�1�
� � 0; (2.22)

f�2�
� � c0�2���� � u�u��C�
�"C!
%"u�u!u%; (2.23)

f�3�
� � �2���� � u�u��u
u�fc1C
���C"�!�;�u

"u!

� c2C�
��;�C"�!�u"u! � c3�
1
2C��
�C

��
�
�

;�

� C�"
�C
�
!�

�
;�u

"u!� � c4�
1
2C��
�C

��
��

;�

� C�"
�C�!��
;�u"u!�g; (2.24)

where c0; c1; . . . ; c4 are dimensionless numerical coeffi-
cients that are as yet undetermined. The calculation of
these coefficients proves to be the most difficult part of
determining the expansion of f�QL, and is the topic of the
next section.

III. EXPANSION OF THE SELF-FORCE

In this section we use a local covariant expansion of the
retarded Green’s function to compute the numerical coef-
ficients appearing in the expansion (2.20) of the self-force.
We use the formalism of bitensors developed by DeWitt
and Brehme [8]; see Poisson [13] for a recent detailed
review of this formalism. A fundamental role in this for-
malism is played by Synge’s world function !�x; x0� and its
derivative !;��x; x0� (see Appendix B). The local covariant
-5
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expansion of any bitensor T�x; x0� takes the form

T�x; x0� �
X1
n�0

1

n!
t�1 ...�n
n �x�!;�1

�x; x0� . . .!;�n�x; x
0�; (3.1)

where the coefficients t�1 ...�n
n are local tensors at x. For

bookkeeping purposes we define s2 � j!j, then it follows
from Eq. (B5) below that the nth term in Eq. (3.1) scales as
sn. We shall use s as an expansion parameter throughout
our computations.

As a foundation for the expansion of the retarded
Green’s function, we compute in Appendix B local cova-
riant expansions of a number of fundamental bitensors,
including the second derivative !;�� of the world function,
various covariant derivatives of the parallel displacement
bivector g��

0
, and the Van Vleck-Morette determinant �,

to order O�s5� beyond the leading order. These expansions
were originally computed to O�s4� by Christensen [59,60],
and extended to O�s5� by Brown and Ottewill [54,55]. Our
results agree with those of Brown and Ottewill, except for
one case where we correct their result [Eq. (B33) below].

In Appendix C we compute the expansion to orderO�s3�
of tail portion V���0�0 of the retarded Green’s function,
extending previous work of Allen, Folacci and Ottewill
[57] who computed the expansion to order O�s2�. The
result is of the form

V���0�0 � g�0

g�0

��v0
��
��x� � v0

��
�"�x�!
;"

� 1
2v

0
��
�"* �x�!

;"!;*

� 1
6v

0
��
�"*+�x�!

;"!;*!;+ � v1
��
��x�!

� v1
��
�"�x�!!

;" �O�s4��; (3.2)

cf. Eqs. (C9) and (C14) below. Here the various expansion
coefficients v0

�...+�x� and v1
�...+�x� are given in Eqs. (C15)–

(C18) and (C22) and (C23) below.
We now turn to evaluation of the integrand in the ex-

pression (2.19) for the quasilocal piece of the self-force.
First, we note that the four velocity is parallel transported
along the world line, so we can make the replacement

V�
�0
0;�u
�0
u


0
� �V�
�0
0;�g

�0

�g

0

��u�u�: (3.3)

We can rewrite the first factor on the right-hand side as

V�
�0
0;�g
�0

�g

0

� � �V�
��;� �Q�"�
�V�
"�

�Q�"�
�V�
�" (3.4)

where we have defined �V��
� � g

�0
g�

�0
V���0�0 and we

have used the definition (B18) of the tensor Q��
. Using
the expansions (3.2), (B15), and (B25) we now obtain

V�
�0
0;�g
�0

�g

0

� � V �
��� �V �
���
%!;%

�V �
���
%+!;%!;+ �O�s3�;

(3.5)
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where

V �
��� � v0
�
��;� � v0

�
���; (3.6)

V �
���% � v0
�
��%;� � v0

�
��%� � v1
�
��g%�

� v0
�
��C

�
��%; (3.7)

V �
���%� � �1
3v

0
�
���C

�
%�� �

1
2v

0
�
��%�;�

� 1
2v

1
�
��;�g%� �

1
2v

0
�
��%��

� 3
2v

1
�
����g%�� � v0

�
��%C
�
���

� 1
3v

0
�
��C

�
��%;�: (3.8)

It is understood that the right-hand sides of Eqs. (3.6), (3.7),
and (3.8) are to be symmetrized on the index pair ����, and
on the index pair �%�� if present. We also note that
!;��x; x0� is proportional to the tangent to the geodesic
joining x � x���� to x0 � x�

0
��0�, i.e., the four velocity

u�. It follows from the normalization condition (B5) that

!;��x; x0� � ��� �0�u�; (3.9)

where u� is the four velocity at x����. Finally, substituting
the formulas (3.3), (3.5), and (3.9) into the expression
(2.19) gives

f�QL��;��� � �4�2P��
�u�u�
Z �

����
d�0fV �
���

�V �
���
%u%��� �0�

�V �
���
%�u%u���� �0�2

�O���� �0�3�g: (3.10)

Evaluating the integral over �0 gives an expansion of f�QL of
the form (2.20), where the coefficients are

f�0�� � 0; (3.11)

f�1�� � �4�2P��
�u�u�V �
���; (3.12)

f�2�� � �2�2P��
�u�u�V �
���
%u%; (3.13)

f�3�� � �4
3�

2P��
�u�u�V �
���
%�u%u�: (3.14)

The various coefficients V �...+ are obtained from the for-
mulas (3.6), (3.7), and (3.8) and are tabulated in
Appendix D. We now substitute those expressions into
Eqs. (3.11), (3.12), (3.13), and (3.14) and use the definition
(2.9) of the projection tensor P��
�. After a considerable
amount of algebra we obtain coefficients f�j�� of the
form (2.21), (2.22), and (2.23), as expected. The numerical
values of the coefficients are

c0 � �1 (3.15)

and
-6
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c1 � 1
6; c2 � � 3

20; c3 � 1
3; c4 � �19

60: (3.16)

Our final expression for the quasilocal piece of the self-force is therefore

fQL���;��� � ��2���� � u�u
��C�
�"C!



%
"u�u!u%��2 ��2���� � u�u

��u
u�f1
6C
���C"

�
!
�

;�u
"u!

� 3
20C�
��;�C"�!�u"u! � 1

3�
1
2C��
�C

��
�
�

;� � C�"
�C�!�
�

;�u
"u!� � 19

60�
1
2C��
�C

��
��

;�

� C�"
�C�!��
;�u"u!�g��3 �O���4�: (3.17)
IV. SOME SPECIAL CASES

Our expression (3.17) for the quasilocal contribution to
the self-force is quite general, applying to a massive par-
ticle with any four velocity in any vacuum background
space-time. There are, however, cases which are of more
intrinsic interest than others. In particular, cases in which
the background is a black hole are of interest for develop-
ing templates for LISA. We now examine the form that f�QL

takes for several particle four velocities in a Schwarzschild
background and for two simple four velocities in a Kerr
background.

We begin with the Schwarzschild background. In stan-
dard Schwarzschild coordinates, the line element is

ds2 � �

�
1 �

2m
r

�
dt2 �

dr2

1 � 2m
r

� r2d.2 � r2 sin2.d/2;

(4.1)

where m is the mass of the Schwarzschild black hole.
Consider a general particle four velocity. Because of the
spherical symmetry of the background, we can always
arrange that at any instant, the particle as well as the spatial
projection of the particle’s four velocity be in the equato-
rial plane. Doing so, we have that . � �=2 and u. � 0 for
a general particle four velocity. This leaves three nonvan-
ishing components for u�, however, the normalization
condition u�u� � �1 can be used to eliminate one (we
have chosen to eliminate ut). Thus, in this background, the
velocity of the particle is completely specified in general
by a choice of ur � dr=d� � _r and u/ � d/=d� � _/.

Putting this general four velocity and the Schwarzschild
metric into (3.17) yields

ftQL � �2 m2

r7�r� 2m�

������������������������������������������������������������
r�r _r2 � �r� 2m�� _/2r2 � 1��

q

�

�
9r3 _/2�2 _/2r2 � 1���2

�
3

10
_r�64 _/2r2 � 150 _/4r4 � 1���3 �O���4�

�

(4.2)
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frQL � �2 m
2

r8

�
�9r4�2 _/2r2 � 1� _/2 _r��2

�
3

20
�62 _/2r2m� 80m _/4r4 � 4m� 40 _/4r5

� 2r _r2 � 300r5 _r2 _/4 � 2r� 128r3 _r2 _/2

� 31 _/2r3���3 �O���4�

�
(4.3)

f.QL � 0 (4.4)

f/QL � ��2 m
2

r7
_/
�

9r� _/2r2 � 1��2 _/2r2 � 1���2 �
3

20

��388 _/2r2 � 300 _/4r4 � 99� _r��3 �O���4�

�
:

(4.5)

One expects, of course, the vanishing of the . component
by symmetry arguments. However, we notice several other
features. For purely radial motion ( _/ � 0), the quasilocal
part of the self-force vanishes to O���3�, and the f/QL

component vanishes to O���4�—indeed, by symmetry
arguments it must vanish to all orders. Thus, the quasilocal
part of the self-force is directed toward the black hole to
order O���4� in this case. For purely tangential motion
( _r � 0), frQL vanishes to O���2�. Further, there is no ��3

contribution to ftQL or f/QL in this case. On the other hand,
frQL does not vanish even if for a static particle, where _/ �

_r � 0.
A particularly interesting case is that of a particle fol-

lowing a circular geodesic around the black hole. In this
case,

_r � 0; _/ �
1

r

����������������
m

r� 3m

r
; (4.6)

which gives a quasilocal self-force contribution of

ftQL � 9�2 m
3

r6

����������������
r

r� 3m

r
�r�m�

�r� 3m�2 ��2 �O���4� (4.7)
-7
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frQL �
3

20
�2 m

2

r8 �35m2 � 19mr� 2r2�
�r� 2m�

�r� 3m�2 ��3

�O���4� (4.8)

f.QL � 0 (4.9)

f/QL � �9�2 m
2

r7 �r� 2m�
����������������
m

r� 3m

r
�r�m�

�r� 3m�2 ��2

�O���4�: (4.10)

Interestingly, we can assign physical meanings to two of
these components. Assuming that the self-force causes an
adiabatic deviation from the background geodesic, we can
define an energy for the particle of E � ut and an angular
momentum of L � u/. Thus, dE=d� � dut=d� � ft=�
and dL=d� � du/=d� � f/=�. In other words, ftQL=�

and f/QL=� can, respectively, be interpreted as the energy
and angular momentum radiated by the particle due to the
quasilocal part of the self-force.

Of course, we expect astrophysical black holes to pro-
vide a Kerr background space-time, so this background is
more astrophysically relevant than Schwarzschild.
Unfortunately, as is often the case, calculations in the
Kerr background lead to longer and less manageable ex-
pressions. Using symbolic algebra programs, it is straight-
forward to calculate, for example, for the case of general
equatorial motion in Kerr, and we have done so using
MAPLE. The expressions, however, are so unwieldy that
we choose not to display them here. Rather, we illustrate
with the two simplest motions in a Kerr background, sta-
tionary with respect to an observer at rest at infinity and
corotating with the black hole. We restrict the particle to be
in the equatorial plane in both cases for convenience.

We start with the metric in Boyer-Lindquist coordinates,

ds2 � �

�
� � a2 sin2.

�

�
dt2

� 2asin2.
�
r2 � a2 � �

�

�
dtd/

�

�
�r2 � a2�2 � a2 �sin2.

�

�
sin2.d/2

�
�

�
dr2 � �d.2; (4.11)

where

� � r2 � a2 cos2.; (4.12)

� � r2 � a2 � 2mr: (4.13)

As usual, a is the spin parameter for the Kerr black hole
and m is its mass. We will only be considering the special
case where the particle is located at . � �=2, and only
particles with ur � u. � 0. Again, we have the normal-
ization condition u�u� � �1 which we use to further
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eliminate ut. We therefore have only one specifiable four
velocity component, _/.

We begin with the case where _/ � 0. This is the case of
a particle which is momentarily stationary with respect to
an observer at spatial infinity. In that case, the quasilocal
part of the self-force becomes

ftQL � 18�2 a
2m3

r10

�r2 � 2mr� 2a2�

�r2 � 2mr� a2�3

�
�r�r� 2m��r2 � 2mr� a2�2�3=2

�r� 2m�4 ��2

�O���4�; (4.14)

frQL � �
3

10
�2 m

2

r11

�r2 � 2mr� a2�

�r� 2m�2 �10a4 � 16mra2

� 8a2r2 � 4r3m� r4 � 4m2r2���3 �O���4�;

(4.15)

f. � 0; (4.16)

f/QL � �9�2 am
2

r10

�r2 � 2mr� 2a2�

�r2 � 2mr� a2�3

�
�r�r� 2m��r2 � 2mr� a2�2�3=2

�r� 2m�3 ��2

�O���4�: (4.17)

It is interesting to note that there is a self-force at order ��2

in this case, unlike the case of a static particle in
Schwarzschild.

One might argue that this is not unexpected, since in
Kerr the particle is ‘‘moving’’ with respect to the rotating
background. A fairer comparison, therefore, might be with
a particle that is corotating in the Kerr background, i.e., one
for which u/ � 0. However, in this case we find the
quasilocal part of the self-force is

frQL � �
3

10
�2 m

2

r11

�r2 � 2mr� a2�

�r3 � 2ma2 � a2r�2 �22a4m2r2

� 27a2r5m� 71a4r3m� 44a6rm� r8 � 10r6a2

� 27a4r4 � 28a6r2 � 10a8���3 �O���4�

(4.18)

f/QL � �9�2 m
2a

r9

�r2 � a2��r4 � 3a2r2 � 2a2mr� 2a4�

�r2 � 2mr� a2��r3 � a2r� 2ma2�4

� �r�r3 � a2r� 2ma2��r2 � 2mr� a2��3=2

� ��2 �O���4�: (4.19)

Thus, in both analogues of the static particle in a
Schwarzschild background, the rotation of the Kerr back-
ground induces a radiation reaction force at order ��3.

We end this section with a warning. While the expres-
sions derived here might be useful for comparisons, they
-8



QUASILOCAL CONTRIBUTION TO THE . . . PHYSICAL REVIEW D 71, 024036 (2005)
do not, in general, have any intrinsic meaning (the case of
the circular geodesic in Schwarzschild being somewhat of
an exception). One obvious reason for this is that we have
found only a part of the self-force which reflects a very
limited part of the particle’s world line. However, there is a
more subtle limitation as well. The self-force is a gauge
dependent quantity, depending on the perturbation gauge
chosen. Our expressions, which are composed of quantities
that are gauge invariants of the background, are nonethe-
less tied to the Lorentz perturbation gauge. Thus, these
expressions may, in general, only be legitimately compared
to other expressions for the self-force in the Lorentz gauge.
V. CONCLUSION

In this paper, we have discussed a novel approach to
calculating the self-force experienced by a massive particle
moving on a geodesic in a curved background. In this
approach, proposed by Poisson and Wiseman, one does
not regularize the retarded Green’s functions nor the re-
tarded field. Rather, one explicitly calculates the tail part of
the retarded Green’s function in the normal neighborhood
of its current position. From this, one can calculate the
quasilocal part of the self-force, which arises from some
finite portion of the particle’s world line within this neigh-
borhood, of duration ��. The rest of the self-force can then
be obtained using the full retarded Green’s function (with-
out need of regularization), since it is well behaved (and
gives the correct contribution) for the portion of the parti-
cle’s world line beyond �� to the past.

We have also carried out the first step in this procedure,
the calculation of the first two nonvanishing terms of an
expansion of the quasilocal part of the self-force in ��.
Our expression has some remarkable properties. First, it is
quite general, in that it does not rely on prior specification
of the particle motion nor on prior specification of the
background geometry (we have restricted our attention to
vacuum backgrounds in this paper, but this was for conve-
nience, and exactly the same procedure can be used for
calculating the quasilocal part of the self-force in back-
grounds with matter). Second, we express the quasilocal
part of the self-force in terms of quantities that are purely
local to the particle. Thus, our expression does not require
a detailed understanding of the past history of the parti-
cle—it is only a function of the current position and
velocity of the particle. This can hardly be surprising—
within a normal neighborhood, there is a unique geodesic
specified by any four vector at a given point, which the
particle is assumed to be travelling along.

Much work remains in order to determine even if the
Poisson-Wiseman prescription is feasible, let alone to cal-
culate a complete self-force using it. While the approach
here is quite general, it is likely that the retarded Green’s
function from which the rest of the self-force is calculated
will be most easily obtained in most scenarios of interest
by a mode-sum expansion. It remains to be seen whether it
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is technically feasible to calculate the quasilocal part of the
self-force to sufficient order that it has sufficient precision
at a distance from the particle at which the mode-sum
converges well. Work is currently under way to begin
addressing such questions [64].

Some hope arises from the work of Anderson and Hu
[65], who have shown how to calculate the tail part of the
retarded Green’s function for a scalar particle in
Schwarzschild using the Hadamard-WKB approximation.
This approach, which should work for spin-1 (electromag-
netic) and spin-2 (gravitational) fields on a Schwarzschild
background, allows one to calculate to a much higher
order in �� for a fixed amount of effort. Furthermore, it
might be extendible to Kerr backgrounds. In any case, we
echo their sentiment, that this approach warrants further
investigation.
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APPENDIX A: GEOMETRIC CONTENT OF THE
EXPANSION COEFFICIENTS

In this appendix, we use symmetry and dimensional
arguments to deduce the forms of the coefficients f�0�

� ,
f�1�
� , f�2�

� and f�3�
� appearing in the expansion (2.20) of the

quasilocal piece of the self-force, up to some unknown
numerical coefficients. We start by noting that the self-
force is proportional to the square�2 of the particle’s mass,
from Eq. (2.19). Factoring out this factor of �2, we can
write the expansion (2.20) as

fQL���;��� � �2�f̂�0�
� � f̂�1�

� ��� f̂�2�
� ��2 � f̂�3�

� ��3

�O���4��: (A1)

Here the coefficients f̂�j�� � f�j�� =�2 satisfy the following
key properties:
(i) T
-9
hey are independent of the particle mass �.

(ii) T
hey must be constructed as polynomial expres-

sions in the following tensors at x����: the metric
g��, the four velocity u�, and the Weyl tensor and
its various symmetrized derivatives C��
�,
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C��
�;", C��
�;�"%�, etc. The Ricci tensor does not
appear since we are assuming a vacuum back-
ground, and the four acceleration of the curve a�

does not appear since we are assuming a geodesic
curve at zeroth order. The Levi-Civita tensor ���
�
cannot appear, since the expression (2.19) for the
self-force is invariant under the parity transforma-
tion ���
� ! ����
�.
(iii) S
ince the force is dimensionless (in geometric units
in which G � c � 1), and �� has dimensions of
length, each coefficient f̂�j�� has dimension
�length��2�j.
(iv) E
ach coefficient f̂�j�� must be orthogonal to the four
velocity u�, since the total force (2.19) has this
property.
We now apply these properties to deduce the most general
allowed forms of the various coefficients, which are given
in Eqs. (2.21), (2.22), (2.23), and (2.24) above.

1. The zeroth order coefficient f̂ �0�
�

The coefficient f̂�0�
� has dimension �length��2, and hence

must be linear in C��
� which also has dimension
�length��2. None of the derivatives of the Weyl tensor
can appear. However, there is no nonvanishing vector
that can be constructed out of C��
�, g�� and u� that is
orthogonal to u�. One needs to contract at least three of the
indices on the Weyl tensor with the metric or the four
velocity. However the Weyl tensor is traceless on all pairs
of indices, so one cannot use the metric to contract any pair
of indices. Also the antisymmetry properties C����
� �

C���
�� � 0 of the Weyl tensor mean that one cannot
contract with three factors of four velocity. Hence the
coefficient f̂�0�

� must vanish cf. Eq. (2.21) above. A version
of this argument was first given by Ori, and was used to
deduce the fact that the formula for the gravitational self-
force could contain only the tail term and could not contain
any local terms, unlike the scalar and electromagnetic self-
force expressions [66].

An alternative, simpler version of the argument can be
obtained by considering the independent, electric and mag-
netic components of the Weyl tensor. Introduce an ortho-
normal basis e�

0̂
� u� and e�

ĵ
, 1 � j � 3. Then we define

E î ĵ � C0̂ î 0̂ ĵ � e�
0̂
e�
î
e


0̂
e�
ĵ
C��
� (A2)

and

B î ĵ � �1
2�î k̂ l̂Ck̂ l̂ 0̂ ĵ � �1

2���
�C

�
"%u�e

�
î
u"e%

ĵ
: (A3)

In vacuum these are symmetric, traceless tensors, and the
Weyl tensor can be expressed in terms of these tensors via
the formulas

C0̂ î ĵ k̂ � ��l̂ ĵ k̂Bl̂ î (A4)

and
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Cî ĵ k̂ l̂ � ��î ĵ p̂�k̂ l̂ q̂Ep̂ q̂ (A5)

together with Eq. (A2). The coefficient f̂�0�
î

must be a three
vector that is linear in E î ĵ, or linear in Bî ĵ with one factor
of �î ĵ k̂ by parity arguments, and there is no such vector
since B�î ĵ� � 0.

2. The first order coefficient f̂ �1�
�

The coefficient f̂�1�
� has dimension �length��3 and so

must be linear in C��
�;". Again, it is impossible to form
a nonvanishing four vector that is orthogonal to u� by
contracting C��
�;" with the metric and/or four velocity.
The additional derivative index " cannot be contracted
with any of the indices on the Weyl tensor, since by the
Bianchi identity the Weyl tensor is divergence free on all
its indices in vacuum:

C��
�
;� � 0: (A6)

The " index can be contracted with the four velocity to
form C��
�;"u

", but then one is faced with the same
problem as above of contracting three of the four remain-
ing free indices to obtain a vector. It follows that f̂�1�

� must
vanish cf. Eq. (2.22) above.

One can also phrase this argument in terms of the
electric and magnetic components of the Weyl tensor as
before. The components of C��
�;" can be represented as
the ‘‘time derivatives’’ and ‘‘spatial derivatives’’ of E î ĵ and
Bî ĵ:

_E î ĵ � C��
�;"u
�e�

î
u
e�

ĵ
u" (A7)

E î ĵ;k̂ � C��
�;"u
�e�

î
u
e�

ĵ
e"
k̂

(A8)

_B î ĵ � �1
2���
�C


�
"%;!u

�e�
î
u"e%

ĵ
u!: (A9)

B î ĵ;k̂ � �1
2���
�C


�
"%;!u

�e�
î
u"e%

ĵ
e!
k̂
: (A10)

These quantities are not all independent but obey con-
straints that follow from the Bianchi identity:

E î ĵ;ĵ � 0; (A11)

B î ĵ;ĵ � 0; (A12)

_E î ĵ � ��î k̂ l̂Bĵ k̂;l̂; (A13)

_B î ĵ � �î k̂ l̂E ĵ k̂;l̂: (A14)

Since the time derivatives can be obtained from the spatial
derivatives, we can without loss of generality restrict at-
tention to the spatial derivatives. Thus, the coefficient f̂�1�

î
must depend linearly on E î ĵ;k̂ and/or Bî ĵ;k̂, and can depend
-10
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in addition only on �î ĵ and on �î ĵ k̂. Consider first the
derivative E î ĵ;k̂. This quantity cannot be contracted with
�î ĵ k̂ by parity arguments, and it is easy to see that one
cannot obtain a nonvanishing spatial vector. The only
candidate vectors are the divergence E î ĵ;k̂�

ĵ k̂ which van-

ishes by Eq. (A11), and the contraction E î ĵ;k̂�
î ĵ, which

vanishes by the traceless property of E î ĵ. Next, consider the
derivative Bî ĵ;k̂. By parity, this quantity must be accom-
panied by one factor of �î ĵ k̂ (or an odd number of factors of
it). Any such tensor will have an even number of indices,
and consequently it is impossible to obtain by contraction a
vector.

3. The second order coefficient f̂ �2�
�

The coefficient f̂�2�
� has dimension �length��4, and so

must be either quadratic in C��
� or linear in C��
�;�"!�.
Consider first the second derivative term C��
�;�"!�. Let us
first analyze the term C��
�;"! without the symmetriza-
tion. The six indices on this tensor must be reduced to one
index by contractions with the metric and/or the four
velocity. As before, the problem is getting rid of at least
three of the indices �, �, 
 and �. The only new type of
contraction that is available is to contract one of these
indices with the second derivative index ! [contractions
with the first derivative index " vanish by Eq. (A6)].
However, such a contraction can be reexpressed as a prod-
uct of two Weyl tensors by commuting the indices. The
same argument also applies to the symmetrized derivative
C��
�;�"!�, since it is a linear combination of unsymme-
trized derivatives. Thus, it is sufficient to consider expres-
sions that are quadratic in the Weyl tensor.5

Consider therefore expressions that are quadratic in the
Weyl tensor, or linear in C��
�C"!%�. We can classify such
expressions in terms of the number of contractions between
indices on the first Weyl tensor and indices on the second
Weyl tensor. The cases of zero, four and one contractions
are easy to dispense with. For example, in the case of one
contraction, there is no vector orthogonal to u� that can be
obtained by contracting C��
�C"!%

� with g�� and u�

(without further contractions between the two Weyl ten-
sors). In the case of three contractions, there are two differ-
5In fact, the only nontrivial candidate expression one can
construct from the symmetrized second derivative vanishes.
This expression is

C��
�;�"!�g
!�u�u
u" � �1

2�C"!�
%C%�


! � C"!�
%C�%


!

� C"!
%C��
%!�g!�u�u
u";

where we have used Eq. (A6). Here the last term in the square
brackets vanishes since the first factor is symmetric in the index
pair �%!� by virtue of being contracted with u"u
, and the
second factor is antisymmetric in �%!�. The remaining two
terms in the square brackets cancel against each other.
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ent tensors that one can construct, namely

V�� � C�
�"C�

�" (A15)

and

W�� � C�
�"C�
�
": (A16)

However it follows from C���
�� � 0 that V�� � 2W��,
so there is only one independent tensor obtainable from
three contractions. Furthermore using the formulas (A2),
(A4), and (A5) one can show that W�� is proportional to
the metric:

W�� � 1
4W



g��: (A17)

Hence there is no nonvanishing vector that can be formed
using three contractions.

Consider next the case of two contractions. There are
three different four index tensors that can be obtained with
two contractions, namely

X��"! � C��
�C"!
�; (A18)

Y�
"% � C��
�C"�%�; (A19)

and

Z�
"! � C��
�C"!
��: (A20)

The tensor X��"! does not yield any candidate expres-
sions, since one needs to contract it with three factors of the
four velocity, and it is antisymmetric on the index pairs
���� and �"!�. Similarly the tensor Z�
"! is antisymmet-
ric on the index pairs ��
� and �"!�, and so does not yield
any candidate expressions. The tensor Y�
"% can be used to
construct the nonvanishing four vector Y�
"%u
u"u%.
Projecting this vector orthogonal to the four velocity yields
the possible term

���� � u�u
��C�
�"C!



%
"u�u!u%: (A21)

This quantity is nonvanishing in general and so can appear
in the expression for f̂�2�

� cf. Eq. (2.23) above. It is the only
term that arises at this order in ��. Using the formulas (A2)
and (A4), we can express this term in terms of the electric
and magnetic components of the Weyl tensor as

��î ĵ k̂E ĵ l̂Bl̂ k̂: (A22)

This completes the derivation of the most general allowed
form of f̂�2�

� .
The analysis of expressions that are quadratic in the

Weyl tensor can be rephrased more simply in terms of
the tensors E î ĵ and Bî ĵ. One needs a spatial vector that is
bilinear in E î ĵ and/or Bî ĵ�p̂ q̂ r̂, since by parity each factor
of Bî ĵ must be accompanied by a factor of �p̂ q̂ r̂. It is easy
to see that the only nonvanishing candidate expression is
the product (A22).
-11
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4. The third order coefficient f̂ �3�
�

The coefficient f̂�3�
� has dimension �length��5, and so

must be either bilinear in C��
� and C��
�;", or else linear
in the symmetrized third derivative C��
�;�"!%�. The argu-
ment used in the first paragraph of Sec. A 3 above also
applies here and shows that any expression constructed
from the third derivative can be expressed as a product of
the Weyl tensor and a first derivative of the Weyl tensor.
Therefore it is sufficient to consider such products.

For analyzing these products, a fully covariant analysis
would be very complex, so we use the simpler formalism of
the electric and magnetic components. We need to con-
struct a vector that is a contraction of a product of one of
the tensors

E î ĵ; Bî ĵ�p̂ q̂ r̂ (A23)

together with one of the tensors

E î ĵ;k̂; Bî ĵ;k̂�p̂ q̂ r̂: (A24)

As before we can neglect the time derivatives because of
Eqs. (A13) and (A14). It follows from the identities (A11)–
(A14) and the fact that all of the tensors (A23) and (A24)
are symmetric and tracefree on the index pair �î ĵ� that
there are only four possible nonvanishing vectors that one
can construct, namely6

E ĵ k̂Eĵ k̂;î; E ĵ k̂E î ĵ;k̂; Bĵ k̂Bĵ k̂;î; and Bĵ k̂Bî ĵ;k̂:

(A25)

The corresponding covariant expressions can be obtained
from Eqs. (A2) and (A3) and are, respectively,

���� � u�u��C
���C"�!�;�u

u�u"u!; (A26)

C�
��;�C"
�
!
�u
u�u"u!; (A27)

���� � u�u
��u
u��1

2C��
�C
��

�
�

;� � C�"
�C
�
!�

�
;�u

"u!�;

(A28)

and

u
u��1
2C��
�C

��
��

;� � C�"
�C
�
!��

;�u"u!�; (A29)

cf. Eq. (2.24) above.
6One can also construct from the time derivatives the possible
terms �î ĵ k̂

_Bĵ l̂E l̂ k̂ and �î ĵ k̂Bĵ l̂
_E l̂ k̂. However these terms can be

expressed in terms of the four quantities (A25) using the for-
mulas (A13) and (A14):

�î ĵ k̂
_Bĵ l̂E l̂ k̂ � Eĵ k̂Eĵ k̂;î � Eĵ k̂E î ĵ;k̂;

�î ĵ k̂Bĵ l̂
_E l̂ k̂ � Bĵ k̂Bĵ k̂;î �Bĵ k̂Bî ĵ;k̂:
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APPENDIX B: LOCAL EXPANSIONS OF SOME
FUNDAMENTAL BITENSORS

In this appendix we compute local covariant expansions
of a number of fundamental bitensors, including the second
derivative !;�� of the world function, various covariant
derivatives of the parallel displacement bivector g��

0
, and

the Van Vleck-Morette determinant �, to order O�s5�
beyond the leading order. These expansions were origi-
nally computed to O�s4� by Christensen [59,60], and ex-
tended toO�s5� by Brown and Ottewill [54,55]. Our results
agree with those of Brown and Ottewill, except for one
case where we correct their result [Eq. (B33) below]. All of
the formulas in this appendix are valid in any number of
space-time dimensions, except in specific cases, noted
below, which make use of the identity (B4) which is
specific to four dimensions. For a detailed and pedagogic
review of the computational methods used here see
Ref. [13].

We first note a number of useful identities that follow
from the Bianchi identity and from properties of the
Riemann tensor:

R��
�R"�
� � 1
2R��
�R"

�
� (B1)

R��
�R"�
�;� � 1
2R��
�R"

�
�
;� (B2)

R�
���R��
�;� � �1

2R�
���R����;
 (B3)

C����C�
��� � 1

4g��C���%C
���%: (B4)

Next, we derive the coincidence limits x0 ! x of symme-
trized derivatives of the world function !. Following
Ref. [8], these can be obtained by repeatedly differentiat-
ing the identity

! � 1
2g
��!;�!;� (B5)

and by taking the coincidence limit. The results are

lim
x0!x

!;�� � g��; (B6)

lim
x0!x

!;��
 � 0; (B7)

lim
x0!x

!;��
� � �1
3�R�
�� � R���
�; (B8)

lim
x0!x

!;��
�" � �1
4�R�
��;" � R���
;" � R���";


� R�"��;
 � R�"�
;� � R�
�";��; (B9)

lim
x0!x

!;���
�"�� � �12
5R�
��;"� � 8

15R�
�<R�"�
<; (B10)

and
-12
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lim
x0!x

!;���
�"��� � �10
3R�
��;"�� �

10
3R�
�<R�"�

<
;�:

(B11)

In Eqs. (B10) and (B11), the right-hand sides are to be
symmetrized over the index pair ���� and over as many of
the indices �
�"��� as are present.

Next, consider any smooth bitensor T�x; x0� (we sup-
press tensor indices on T). We can expand this bitensor
about x as a covariant Taylor expansion

T�x; x0� �
X1
n�0

1

n!
t�1 ...�n
n �x�!;�1

�x; x0� . . .!;�n�x; x
0�;

(B12)

where the coefficients t�1 ...�n
n are local tensors at x. By

repeatedly differentiating Eq. (B12) and taking the coinci-
dence limit we find for n � 0 that

t0�x� � lim
x0!x

T�x; x0�; (B13)

together with the recursion relation for n � 1

tn�1 ...�n�x� � lim
x0!x

T;��1 ...�n��x; x
0�

�
Xn�1

r�0

�
n
r

�
tr��1 ...�r;�r�1 ...�n��x�: (B14)

We now apply the recursion relation (B14) to the bitensor
!;���x; x0�, using the formulas (B6)–(B11). The result is
the expansion

!;�� � g�� � 1
3R�
��!

;
!;� � 1
12R�
��;"!;
!;�!;"

� � 1
60R�
��;"� � 1

45R�
�%R�"�
%�!;
!;�!;"!;�

� � 1
360R�
��;"�� �

1
120R�
�%;�R�"�

%

� 1
120R�
�%R�"�

%
;��!

;
!;�!;"!;�!;� �O�s6�:

(B15)

It follows from Eq. (B15) that in vacuum

�! � n�O�s4�; (B16)

where n is the number of space-time dimensions, and that

��!;�� � O�s3�: (B17)

A similar computation can be carried out for the tensor
Q��
 defined by

Q��
 � g�
�0
g�0�;
: (B18)

By starting with the identity [8]

g�
g�0�;�!;
 � 0; (B19)

repeatedly differentiating and taking the coincidence limit
one obtains

lim
x0!x

g�0�;� � 0; (B20)
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lim
x0!x

g�0�;�
g�
0

% � �1
2R�%�
; (B21)

lim
x0!x

g�0�;��
��g
�0

% � �2
3R�%�
;�; (B22)

lim
x0!x

g�0�;��
�"�g
�0

% � �3
4R�%�
;�" �

1
4R�%
’R��"

’;

(B23)

and

lim
x0!x

g�0�;��
�"��g
�0

% � �4
5R�%�
;�"� � 8

15R�%
’;�R��"
’

� 3
5R�%
’R��"

’
;�: (B24)

In Eqs. (B20)–(B24), the right-hand sides are understood
to be symmetrized over as many of the indices �
�"�� as
are present. Combining the coincidence limits (B20)–
(B24) with the formulas (B12)–(B14) for Taylor expan-
sions together with the definition (B18) one obtains

Q��
 � 1
2R��
�!

;� � 1
6R��
�;"!;�!;" � 1

24�R��
�;"�

� R���%R
"�
%�!;�!;"!;� � � 1

120R��
�;"��

� 7
360R���%;�R
"�%

� 1
60R���%R
"�

%
;��!

;�!;"!;�!;� �O�s5�:

(B25)

Next, we derive an expansion for the quantity
g�

�0
g�0�;


;
 by using the identity [8]

g�
�0
g�0�;


;
 � Q��

;
 �Q�

�
Q��

; (B26)

together with the expansion (B25). The result is

g��
0
g�0�;


;
 � �1
4C�%
’C�

%
�
’!;
!;�

� � 1
20C�%
’C�

%
�
’

;" �
7

60C�%
’;"C�
%
�
’

� 2
45C��%
;’C�

%
"
’�!;
!;�!;" �O�s4�;

(B27)

where we have specialized to the vacuum case R�� � 0.
Next, following Ref. [8] we define the tensor

D�� � �g�
�0
!;�0� (B28)

which is related to the Van Vleck-Morette determinant [67]
� by

� � detD�
�: (B29)

Using the identity [8]

D�� � Q�
�!;
 � !;�� (B30)

together with the expansions (B15) and (B25) we obtain
the expansion
-13
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D�� � g�� � 1
6R�
��!

;
!;� � 1
12R�
��;"!

;
!;�!;"

� � 1
40R�
��;"� � 7

360R�
�%R�"�
%�!;
!;�!;"!;�

� � 1
180R�
��;"�� �

1
90R�
�%;�R�"�

%

� 1
120R�
�%R�"�

%
;��!

;
!;�!;"!;�!;� �O�s6�:

(B31)

The determinant ofD�
� can be calculated via (E4). Taking

the square root of the determinant gives

�1=2 � 1 � 1
12R��!

;�!;� � 1
24R��;
!;�!;�!;


� � 1
80R��;
� �

1
360R%��’R

%

�
’

� 1
288R��R
��!

;�!;�!;
!;� � � 1
360R��;
�"

� 1
288R��R
�;"

� 1
360R%��’R

%

�
’

;"�!;�!;�!;
!;�!;" �O�s6�:

(B32)

Acting on this expression with the wave operator and using
the identities (B1)–(B3) together with Eq. (B15) we obtain

��1=2 � 1
6R� � 1

40�R�� � 1
120R;�� � 1

72RR��

� 1
30R�
R



� � 1

60R�
��R

�

� 1
60R�
�"R�


�"�!;�!;� � � 1
45R��R�

�
;


� 1
180R��R�

�
�
�

;
 �
1

120R��
;�

;�


� 1
180R��;�R�

�


� � 1

90R����R�
���

;


� 1
144RR��;
 �

1
360R;��
�!

;�!;�!;
 �O�s4�:

(B33)

Specializing to the vacuum case R�� � 0 yields

��1=2 � 1
60C����C�

���!;�!;�

� 1
90C����C�

���
;
!

;�!;�!;
 �O�s4�: (B34)

In the special case of four space-time dimensions this can
be further simplified using the identity (B4) to give

��1=2 � 1
240C"���C

"���g��!;�!;�

� 1
360C���%;
C

���%g��!
;�!;�!;
 �O�s4�:

(B35)
APPENDIX C: COVARIANT EXPANSION OF THE
RETARDED GREEN’S FUNCTION

In this appendix we derive the local covariant expansion
of the retarded Green’s function G���0�0

ret �x; x0� which is
defined by the differential equation

��g��g�� � 2C�����G
���0�0

ret �x; x0�

� ��g
��
�0
g��

�0
� ?g��g

�0�0
��4�x; x0�: (C1)
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Here we have introduced a real parameter ? to facilitate
comparison with the work of Allen, Folacci and Ottewill
(AFO) [57], who analyzed the case ? � �1=2. For this
paper we are interested in the case ? � 0 cf. Eq. (2.4)
above. Note that these two Green’s functions, the cases
? � 0 and ? � �1=2, are related to each other by a trace
reversal on the index pair ��0�0�. Throughout this appendix
we specialize to four space-time dimensions.

We use the standard method explained by Hadamard [5],
DeWitt and Brehme [8], and AFO [57] in the scalar, vector
and tensor cases, respectively, and we extend the expan-
sions of AFO to one higher order. We assume for the
Feynman Green’s function the expression

G���0�0

F �x; x0� �
1

4�2



U���0�0

�x; x0�
!� i�

� V���
0�0
�x; x0� ln�!� i��

�W���0�0
�x; x0�

�
(C2)

for some bitensorsU���0�0
, V���

0�0
andW���0�0

, where we
have introduced a regularization parameter � to give the
appropriate singularity structure. The expression (2.18) for
the retarded Green’s function can be obtained by taking the
negative of the imaginary part of the Feynman Green’s
function (C2), and by multiplying by the function
����x; x0�� defined in Sec. II C [8].

Substituting the real part of the Green’s function (C2)
into the homogeneous version of the differential
equation (C1), and equating to zero the coefficients of
1=!2, ln!, and the remainder gives the three equations

U���0�0;
!;
 �
1
2U

���0�0
�ln��;
!;
 � 0; (C3)

D ��
��V���0�0 � 0; (C4)

and

D��
��U���0�0 � 2V���0�0 � 2V���0�0

;
!;
�

V���0�0 �ln��;
!;
 � !D��
��W���0�0 � 0: (C5)

Here we have defined the differential operator

D ��
�� � ������� � 2C�

�
�
�; (C6)

and we have made use of the identity [8]

�! � 4 � �ln��;
!;
; (C7)

where � is the Van Vleck-Morette determinant (B29).
The solution to the differential equation (C3) forU���0�0

which is appropriate for the source term on the right-hand
side of Eq. (C1) is

U���0�0 � �1=2�g�0��g���0 � ?g��g�0�0 �; (C8)

where we have used the identity (B19).
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Next, we assume formal power series expansions for
V���0�0 and W���0�0 of the form

V���0�0 �x; x0� �
X1
n�0

Vn���0�0 �x; x0�!n (C9)

and

W���0�0 �x; x0� �
X1
n�0

Wn
���0�0 �x; x0�!n: (C10)

Note that these expansions do not define unique represen-
tations of the bitensors V���0�0 and W���0�0 , since the
coefficients Vn���0�0 andWn

���0�0 can be arbitrary functions
of x and x0. However, one can obtain a unique set of
coefficients from the following prescription [8]. Pick a
bisolution W0

���0�0 of the homogeneous wave equation
D��

��W0
���0�0 � 0. Then, substitute the expansions (C9)

and (C10) into Eqs. (C4) and (C5), simplify using the
identities (B5) and (C7), and equate to zero the coefficients
of powers of !. The result is the following recursive set of
ordinary differential equations along the geodesic joining x
and x0 that allow one to solve for the coefficients:

V0
���0�0 � �V0

���0�0;� � 1
2V

0
���0�0 �ln��;��!

;�

� �1
2D��

��U���0�0 ; (C11)

Vn���0�0 �
1

n� 1

�
Vn���0�0;� �

1

2
Vn���0�0 �ln��;�

�
!;�

� �
1

2n�n� 1�
D��

��Vn�1
���0�0 (C12)

and

Wn
���0�0 �

1

n� 1

�
Wn
���0�0;� �

1

2
Wn
���0�0 �ln��;�

�
!;�

� �
1

2n�n� 1�
D��

��Wn�1
���0�0

�
1

n� 1
Vn���0�0 �

1

2n2�n� 1�
D��

��Vn�1
���0�0 :

(C13)

Equations (C12) and (C13) apply for n � 1. The power
series (C9) and (C10) with these coefficients converge in a
neighborhood of the diagonal x � x0 for analytic metrics
[5].

In this paper we are only interested in the coefficients
Vn���0�0 , which can be obtained from Eqs. (C11) and (C12).
We expand each of these coefficients as covariant Taylor
series of the form (B12)

Vn���0�0 � g�0

g�0

��vn��
��x� � vn��
�"�x�!
;"

� 1
2v

n
��
�"* �x�!

;"!;*

� 1
6v

n
��
�"*+�x�!

;"!;*!;+ � . . .�; (C14)
024036
where the coefficients vn�...+ are local tensors at x. We now
specialize to the case n � 0, and substitute the expansion
(C14) for V0

���0�0 and the expression (C8) for U���0�0 into
the differential equation (C11). We simplify using the
identity (B19) and the definition (C6), and expand the
various terms as power series in !;� using the expansions
(B15), (B25), (B27), (B32), and (B35). Equating the co-
efficients of the various powers of!;� then gives a series of
equations that can be solved for the coefficients v0

�...+. The
results are

v0
��
� � �C�
��; (C15)

v0
��
�" �

1
2C�
��;"; (C16)

v0
��
�"* � �1

3C�
��;"* �
1
6C�


�
"C���*

� 1
6g�
C�

��
"C���* �

1
180&��
�C

��%
"C��%* ;

(C17)

and

v0
��
�"*+ � 1

4C�
��;"*+ � 1
4�C�


�
"C���* �;+

� 1
5g�
�C�

��
"C���* �;+

� 1
10g�
C�

��
"C���* ;+

� 1
15g�
C���";�C�*

�
+

� 1
240&��
�g"*C

��%!C��%!;+; (C18)

where

&��
� � 1
2g�
g�� �

1
2g��g�
 � ?g��g
�: (C19)

In Eqs. (C15)–(C18), the right-hand sides are understood
to be symmetrized on the index pair ����, on the index pair
�
��, and on as many of the index triplet �"*+� as are
present. When ? � �1=2, the formulas (C15)–(C17)
agree with Eqs. (A20)–(A22) of AFO specialized to the
vacuum case.

We will also need the first two of the coefficients in the
expansion of V1

���0�0 , which we obtain from Eq. (C12)
with n � 1. The hard part of the computation is evaluating
the source term on the right-hand side of this equation.
Using the definition (C14) and the expansions (B15),
(B25), and (B27), we obtain

g

�0
g�

�0
�V0

���0�0 � �v0
��
� � 2v0

��
�" � v0
��
�"

� ��v0
��
�" � 2v0

��
�"* � v0
��
�"*

� C�+��;*C
+*"�!;" �O�s2�:

(C20)

Now inserting suitably symmetrized versions of the for-
mulas (C15)–(C18) for the expansion coefficients v0

�...+

and using the identity (B4) gives
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g�
0


 g
�0

� �V0
���0�0 � �1
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�� �
1
6C�
+*C��

+* � 1
24g�
g��C��%!C

��%! � 1
180&��
�C��%!C

��%!

� � 1
12��C�
��;"� �

1
360&��
�C��%!;"C

��%! � 1
24g�
g��C��%!;"C

��%! � 1
6C�


��C����;"

� 1
6C�


��C���";� �
5
6C�+��;*C"

*


+ � 1

6C
+��;*C"
*
�
+ � 1

45g��C�
+* ;%C
+*%

" �
1

15g��C�
+*%C
+"%;*

� 1
45g��C�
+* ;%C%*+" �

1
10g��C


+*%C�+"%;* �!;" �O�s2�; (C21)

where the right-hand side is understood to be symmetrized on the index pairs ���� and �
��. Next, we expand both sides of
Eq. (C12) with n � 1 as a power series in !;� to O�s�, using the formulas (C15), (C16), and (C21) to evaluate the right-
hand side, and the expansion (C14) with n � 1 on the left-hand side. Equating the coefficients of the various powers of!;�
then gives a series of equations that can be solved for the coefficients v1

�...+. The results are

v1
��
� � 1

12�C�
�� �
1
2C�

�
�
�C
��� �

1
24C�


��C���� �
1

24g�
C�
��%C���% �

1
720&��
�C

��%!C��%! (C22)

and

v1
��
�" � � 1

24��C�
��;"� �
1

720&��
�C��%!;"C��%! � 1
80g�
g��C��%!;"C��%! � 1

18C�

��C����;"

� 1
3C�

�
�
�C�
��;" �

1
6C�

�
�
�

;"C�
�� �
1

12C"
+
�
*C*
��;+ � 1

4C"+

*C�*��

;+ � 1
36C�
*+C��

*
"

;+

� 1
270g��C�
+*;%C+*%" �

1
90g��C�

+*%C
+"%;* �
1

270g��C�
+* ;%C%*+" �
1

60g��C

+*%C�+"%;*

� 1
180g��C�

��%C
��%;"; (C23)

where again there is implicit symmetrization on the index pairs (��) and (
�). When ? � �1=2, Eq. (C22) agrees with
Eq. (A23) of AFO specialized to the vacuum case.7

APPENDIX D: EXPANSION COEFFICIENTS

In this appendix we list the expressions for the coefficients V �...+ which appear in the expansion (3.5). These
expressions are obtained by substituting Eqs. (C15)–(C18) and (C22) and (C23), specialized to ? � 0, into Eqs. (3.6),
(3.7), and (3.8). The results are

V ��
�" � �1
2C�
��;"; (D1)

V ��
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%����; (D2)

and
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7Note that the expressions (C15)–(C18) and (C22) and (C23) are all traceless on the index pair �
��, aside from the terms involving
the tensor &��
�. This means that performing a trace reversal on the index pair �
�� is equivalent to changing the value of ? from 0 to
�1=2, in agreement with the discussion after Eq. (C1) above.
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The right-hand sides of Eqs. (D1) and (D2) are understood
to be symmetrized over the index pairs ���� and �
��. In
Eq. (D3), as the notation on the left-hand side indicates, we
have only computed the piece of V ��
�"!% which is
totally symmetric on the indices �
�!%�. This is because
only this piece of V ��
�"!% is needed for computing
the expansion coefficient f�2�

� , from Eq. (3.14) above.
The right-hand side of Eq. (D3) is understood to be sym-
metrized on the index pair ���� and on the indices
�
�!%�.
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APPENDIX E: SOME USEFUL DETERMINANT
IDENTITIES

One occasionally encounters determinants of rank two
tensors in relativity. The normal expressions for evaluating
determinants do not lend themselves naturally to expres-
sion using standard tensor notation. However, it is possible
to write the determinant of any square matrix in terms of
powers of the matrix and their traces, both of which are
easily expressed in tensor notation. We list the three sim-
plest here for a matrix A of various sizes
Dimension Identity

2 � 2 DetA � ��TrA�2 � Tr�A2��=2 (E1)

3 � 3 DetA � ��TrA�3 � 3�TrA�Tr�A2� � 2Tr�A3��=6 (E2)

4 � 4 DetA � f�TrA�4 � 6�TrA�2 Tr�A2� � 8�TrA�Tr�A3� � 3�Tr�A2��2 � 6Tr�A4�g=24 : (E3)

Similar identities can be obtained for any dimension through a straightforward recursive application of Newton’s identities.
To make the usefulness of these identities more apparent, we express the determinant in the 4 � 4 case in tensor notation

using (E3):

D etA�� � ��A���
4 � 6�A���

2A�
A


� � 8A��A

�

A



�A

�
� � 3�A��A

�

�

2 � 6A��A
�

A



�A

�
��=24: (E4)

While this expression is not a computationally efficient way of calculating the determinant, it clearly has the advantage of
reducing the determinant operation to more familiar tensor operations. We include it here because we have not been
successful in locating it in the literature.
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