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Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole
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We present a new three-dimensional fully general-relativistic hydrodynamics code using high-
resolution shock-capturing techniques and a conformal traceless formulation of the Einstein equations.
Besides presenting a thorough set of tests which the code passes with very high accuracy, we discuss its
application to the study of the gravitational collapse of uniformly rotating neutron stars to Kerr black
holes. The initial stellar models are modeled as relativistic polytropes which are either secularly or
dynamically unstable and with angular velocities which range from slow rotation to the mass-shedding
limit. We investigate the gravitational collapse by carefully studying not only the dynamics of the matter,
but also that of the trapped surfaces, i.e., of both the apparent and event horizons formed during the
collapse. The use of these surfaces, together with the dynamical horizon framework, allows for a precise
measurement of the black-hole mass and spin. The ability to successfully perform these simulations for
sufficiently long times relies on excising a region of the computational domain which includes the
singularity and is within the apparent horizon. The dynamics of the collapsing matter is strongly
influenced by the initial amount of angular momentum in the progenitor star and, for initial models
with sufficiently high angular velocities, the collapse can lead to the formation of an unstable disc in
differential rotation. All of the simulations performed with uniformly rotating initial data and a polytropic
or ideal-fluid equation of state show no evidence of shocks or of the presence of matter on stable orbits
outside the black hole.
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I. INTRODUCTION

The numerical investigation of gravitational collapse of
rotating stellar configurations leading to black-hole forma-
tion is a long standing problem in numerical relativity.
However, it is through numerical simulations in general
relativity that one can hope to improve our knowledge of
fundamental aspects of Einstein’s theory such as the cos-
mic censorship hypothesis and black-hole no-hair theo-
rems, along with that of current open issues in relativistic
astrophysics research, such as the mechanism responsible
for gamma-ray bursts. Furthermore, numerical simulations
of stellar gravitational collapse to black holes provide a
unique mean of computing the gravitational waveforms
emitted in such events, believed to be among the most
important sources of detectable gravitational radiation.

However, the modelling of black-hole spacetimes with
collapsing matter-sources in multidimensions is one of the
most formidable efforts of numerical relativity. This is due,
on one hand, to the inherent difficulties and complexities of
the system of equations which is to be integrated, the
Einstein field equations coupled to the general-relativistic
hydrodynamics equations, and, on the other hand, to the
immense computational resources needed to integrate the
equations in the case of three-dimensional (3D) evolutions.
In addition to the practical difficulties encountered in the
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accurate treatment of the hydrodynamics involved in the
gravitational collapse of a rotating neutron star to a black
hole, the precise numerical computation of the gravita-
tional radiation emitted in the process is particularly chal-
lenging as the energy released in gravitational waves is
much smaller than the total rest-mass energy of the system.

The ability to perform long-term numerical simulations
of self-gravitating systems in general relativity strongly
depends on the formulation adopted for the Einstein
equations. The covariant nature of these equations (the
‘‘many-fingered time’’ of relativity) leads to difficulties
in constructing an appropriate coordinate representation
which would allow for stable and accurate simulations.
Over the years, the standard approach has been mainly
based upon the unconstrained solution of the 3� 1
Arnowitt Deser Misner (ADM) formulation of the field
equations, which, despite large-scale and dedicated collab-
orations [1–3] has gradually been shown to lack the stabil-
ity properties necessary for long-term numerical simu-
lations. In recent years, however, a considerable effort
has been invested in extending the set of ADM equations
solved by including at some level the solution of the
constraint equations on each spatial hypersurface [4–6],
or by reformulating the ADM approach in order to achieve
long-term stability (see, e.g., [7] and references therein).
Building on the experience developed with lower-
-1  2005 The American Physical Society
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dimensional formulations, Nakamura, Oohara and Kojima
[8] presented in 1987 a conformal traceless reformulation
of the ADM system which subsequent authors (see, e.g.,
[9–16]) gradually showed to be robust enough to accom-
plish such a goal for different classes of spacetimes, in-
cluding black holes and neutron stars (both isolated and in
coalescing binary systems). The most widespread version
developed from this formalism, which we refer to here as
the NOK formulation, was given by [9,10] and is com-
monly referred to as the BSSN formulation.

In addition to the improvements achieved in the formu-
lation of the field equations, successful long-term 3D evo-
lutions of black holes in vacuum have been obtained in the
last few years using excision techniques (see, e.g., [17–
26]), although the original idea is much older [27]. In this
approach, the spacetime region within the black-hole hori-
zon, and so causally disconnected, can be safely ignored
without affecting the evolution outside the horizon as long
as suitable boundary conditions are specified at the exci-
sion surface. The simulations presented here show the
applicability of excision techniques also in nonvacuum
spacetimes, namely, during the collapse of rotating neutron
stars to Kerr black holes. The excision technique, which is
applied once the black-hole apparent horizon is found,
permits to extend considerably the lifetime of the simula-
tions, at least with the resolutions used here. This, in turn,
allows for an accurate investigation of the dynamics of the
trapped surfaces formed during the collapse, from which
important information on the mass and spin of the black
hole, as well as on the amount of energy which is lost to
gravitational radiation, can be extracted. While our study
was nearing completion, we have learned that a similar
approach has also been implemented with success [28].

The presence of rotation in the collapsing stellar models
requires multidimensional investigations, either in axisym-
metry or in full 3D. The numerical investigations of black-
hole formation (beyond spherical symmetry) started in the
early 1980’s with the pioneering work of Nakamura [29].
He adopted the �2� 1� � 1 formulation of the Einstein
equations in cylindrical coordinates and introduced
regularity conditions to avoid divergences at coordinate
singularities. Nakamura used a ‘‘hypergeometric’’ slicing
condition which prevents the grid points from reaching the
singularity when a black-hole forms. The simulations
could track the evolution of the collapse of a 10M�

‘‘core’’ of a massive star with different amounts of rota-
tional energy, up to the formation of a rotating black hole.
However, the numerical scheme employed was not accu-
rate enough to compute the emitted gravitational radiation.
In subsequent works, Nakamura [30] (see also [8]) consid-
ered a configuration consisting of a neutron star with an
accreting envelope, which was thought to mimic mass
fallback in a supernova explosion. Rotation and infall
velocity were added to such a configuration, simulating
an evolution dependent on the prescribed rotation rates and
rotation laws.
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Later on, in a series of papers [31–34], Bardeen, Stark
and Piran studied the collapse of rotating relativistic poly-
tropes to black holes, succeeding in computing the asso-
ciated gravitational radiation. The gravitational field and
hydrodynamics equations were formulated using the 3� 1
formalism in two spatial dimensions, using the radial
gauge and a mixture of singularity-avoiding polar and
maximal slicings. The initial model was a spherically
symmetric relativistic polytrope of massM in equilibrium.
The gravitational collapse was induced by lowering the
pressure in the initial model by a prescribed (and often very
large) fraction and by simultaneously adding an angular
momentum distribution approximating rigid-body rotation.
Their simulations showed that Kerr black-hole formation
occurs only for angular momenta less than a critical value.
Furthermore, the energy �E carried away through gravi-
tational waves from the collapse to a Kerr black hole was
found to be �E=Mc2 < 7� 10�4, the shape of the wave-
forms being nearly independent of the details of the
collapse.

The axisymmetric codes employed in the aforemen-
tioned works adopted curvilinear coordinate systems
which may lead to long-term numerical instabilities at
coordinate singularities. These coordinate problems have
deterred researchers from building 3D codes in spherical
coordinates. Recently, a general-purpose method (called
‘‘cartoon’’), has been proposed to enforce axisymmetry in
numerical codes based on Cartesian coordinates and which
does not suffer from stability problems at coordinate sin-
gularities [35]. It should be noted, however, that the stabil-
ity properties of the cartoon method are not fully
understood yet, as discussed by [36]. Using this method,
Shibata [37] investigated the effects of rotation on the
criterion for prompt adiabatic collapse of rigidly and differ-
entially rotating polytropes to a black hole, finding that the
criterion for black-hole formation depends strongly on the
amount of angular momentum, but only weakly on its
(initial) distribution. The effects of shock heating when
using a nonisentropic equation of state (EOS hereafter) are
important in preventing prompt collapse to black holes in
the case of large rotation rates.

More recently, Shibata [12,38] has performed axisym-
metric simulations of the collapse of rotating supramassive
neutron stars to black holes for a wide range of polytropic
EOSs and with an improved implementation of the hydro-
dynamics solver (based on approximate Riemann solvers)
with respect to the original implementation used in [37].
Parametrizing the ‘‘stiffness’’ of the EOS through the
polytropic index N, the final state of the collapse is a
Kerr black hole without any noticeable disc formation,
when the polytropic index N is in the range 2=3 � N �
2. Based on the specific angular momentum distribution in
the initial star, Shibata has estimated an upper limit to the
mass of a possible disc as being less than 10�3 of the initial
stellar mass [38]. Unfortunately, such small masses cannot
-2
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currently be confirmed with the presently-available reso-
lutions in 3D simulations on uniform grids.

Three-dimensional, fully relativistic simulations of the
collapse of supramassive uniformly rotating neutron stars
to rotating black holes were presented in [11]. The simu-
lations focused on N � 1 polytropes and showed no evi-
dence of massive disc formation or outflows. These results
are in agreement with those obtained in axisymmetry
[12,38] and with the new simulations reported by [28]
(both in axisymmetry and in 3D) which show that for a
rapidly rotating polytrope with J=M2 < 0:9 (J being the
angular momentum) all the mass falls promptly into the
black hole, with no disc being formed. Hence, all existing
simulations agree that massive disc formation from the
collapse of neutron stars requires differential rotation, at
least for a polytropic EOS with 1 � N � 2.

Here, we present the results of new, fully 3D simulations
of gravitational collapse of uniformly rotating neutron
stars, both secularly and dynamically unstable, which we
model as relativistic polytropes. The angular velocities of
our sample of initial models range from slow rotation to the
mass-shedding limit. For the first time in such 3D simula-
tions, we have detected the event horizon of the forming
black hole and showed that it can be used to achieve a more
accurate determination of the black-hole mass and spin
than it would be otherwise possible using the area of the
apparent horizon. We have also considered several other
approaches to measure the properties of the newly formed
Kerr black hole, including the recently proposed isolated
and dynamical-horizon frameworks. A comparison among
the different methods has indicated that the dynamical-
horizon approach is simple to implement and yields esti-
mates which are accurate and more robust than those of the
equivalent methods.

The simulations are performed with a new general-
relativistic hydrodynamics code, the WHISKY code, in
which the Einstein and hydrodynamics equations are
finite-differenced on a Cartesian grid and solved using
state-of-the-art numerical schemes (a first description of
the code was given in [39]). The code incorporates the
expertise developed over the past few years in the numeri-
cal solution of the Einstein equations and of the hydro-
dynamics equations in a curved spacetime (see [13,14], but
also [40] and references therein) and is the result of a
collaboration among several European Institutes [41].

As mentioned before, we have implemented in the
WHISKY code a robust excision algorithm which warrants
the extension of the lifetime of the simulations far beyond
the evolution times when the black holes first form. Our
calculations are starting from initially axisymmetric stellar
models but are performed in full 3D to allow for departures
from the initial axial symmetry. Overall, our results show
that the dynamics of the collapsing matter is strongly
influenced by the initial amount of angular momentum in
the progenitor neutron star, which, when sufficiently high,
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leads to the formation of an unstable flattened object. All of
the simulations performed for realistic initial data and a
polytropic equation of state show no evidence of shock
formation preventing a prompt collapse to a black hole, nor
the presence of matter on stable orbits outside the black
hole. It should be remarked, however, that both of these
conclusions may change if the initial stellar models are
rotating differentially.

The use of numerical grids with uniform spacing and the
present computational resources have placed the outer
boundary of our computational box in regions of the space-
time where the gravitational waves have not yet reached
their asymptotic form. As a result, the information on
the gravitational waveforms that we extract through per-
turbative techniques [42,43] does not provide interesting
information besides the obvious change in the stellar quad-
rupole moment. Work is now in progress to use mesh
refinement techniques [44] to move the outer boundary
sufficiently far from the source so that important informa-
tion can be extracted on the gravitational wave emission
produced during the collapse. The results of these inves-
tigations will be presented in a companion paper [45].

The paper is organized as follows: Sec. II describes the
formulation we adopt for the Einstein and hydrodynamics
equations, the way they are implemented in the code and a
brief discussion of how the excision techniques can be
employed within a hydrodynamical treatment making use
of high-resolution shock-capturing (HRSC) schemes. To
avoid detracting the reader’s attention from the physical
problem considered here, we have confined most of the
technical details concerning the numerical implementation
of the hydrodynamical equations to Appendix A. Sec. III is
therefore devoted to describing the various properties of
the initial stellar models. The following two Secs., IV and
V, present our results regarding the dynamics of the col-
lapsing stars and of the trapped surfaces, respectively. In
both cases we will be considering and comparing the
dynamics of slowly and of rapidly rotating stellar models.
The paper ends with Sec. VI, which contains a summary of
the results obtained and the perspectives for further inves-
tigations. Finally, Appendix B is devoted to presenting
some of the tests the code passes with very high accuracy.

We here use a spacelike signature ��;�;�;�� and a
system of units in which c � G � M� � 1 (unless explic-
itly shown otherwise for convenience). Greek indices are
taken to run from 0 to 3, Latin indices from one to three and
we adopt the standard convention for the summation over
repeated indices.
II. BASIC EQUATIONS AND THEIR
IMPLEMENTATION

The WHISKY code solves the general-relativistic hydro-
dynamics equations on a 3D numerical grid with Cartesian
coordinates. The code has been constructed within the
framework of the CACTUS Computational Toolkit (see
-3
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[46] for details), developed at the Albert-Einstein Institute
(Golm) and at the Louisiana State University (Baton
Rouge). This public domain code provides high-level fa-
cilities such as parallelization, input/output, portability on
different platforms and several evolution schemes to solve
general systems of partial differential equations. Clearly,
special attention is dedicated to the solution of the Einstein
equations, whose matter-terms in nonvacuum spacetimes
are handled by the WHISKY code. While the WHISKY code is
entirely new, its initial development has benefitted in part
from the release of a public version of the general-
relativistic hydrodynamics code described in [14,47], and
developed mostly by the group at the Washington
University (St. Louis).

The WHISKY code, however, incorporates important re-
cent developments regarding, in particular, new numerical
methods for the solution of the hydrodynamics equations
that have been described in detail in [39] and will be briefly
reviewed in Appendix A. These include: (i) the Piecewise
Parabolic Method (PPM) [48] and the Essentially Non-
Oscillatory (ENO) methods [49] for the cell-reconstruction
procedure; (ii) the Harten-Lax-van Leer-Einfeldt (HLLE)
[50] approximate Riemann solver, the Marquina flux for-
mula [51]; (iii) the analytic expression for the left eigen-
vectors [52] and the compact flux formulas [53] for a
Roe-type Riemann solver and a Marquina flux formula;
(iv) the use of a ‘‘method of lines’’ (MoL) approach for the
implementation of high-order time evolution schemes;
(v) the possibility to couple the general-relativistic hydro-
dynamics equations with a conformally decomposed three-
metric. The incorporation of these new numerical tech-
niques in the code has led to a much improved ability to
simulate relativistic stars, as shown in Appendix B which is
devoted to code tests.

While the CACTUS code provides at each time step a
solution of the Einstein equations [13]

G�� � 8T��; (2.1)

where G�� is the Einstein tensor and T�� is the stress-
energy tensor, the WHISKY code provides the time evolu-
tion of the hydrodynamics equations, expressed through
the conservation equations for the stress-energy tensor T��

and for the matter current density J�

r�T�� � 0; r�J� � 0: (2.2)

In what follows we briefly discuss how both the right and
the left-hand side of Eqs. (2.1) are computed within the
coupled CACTUS/WHISKY codes.

A. Evolution of the field equations

We here give only a brief overview of the system of
equations for the evolution of the field equations, but refer
the reader to [13] for more details. Many different formu-
lations of the equations have been proposed throughout the
years, starting with the ADM formulation in 1962 [54]. As
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mentioned in the Introduction, we use the NOK [8] for-
mulation, which is based on the ADM construction and has
been further developed in [9].

In the ADM formulation [54], the spacetime is foliated
with a set of nonintersecting spacelike hypersurfaces. Two
kinematic variables relate the hypersurfaces: the lapse
function �, which describes the rate of advance of time
along a timelike unit vector n� normal to a spacelike
hypersurface, and the shift three-vector �i that relates the
coordinates of two spacelike hypersurfaces. In this con-
struction the line element reads

ds2 � ���2 � �i�i�dt2 � 2�idxidt� �ijdxidxj: (2.3)

The original ADM formulation casts the Einstein equa-
tions into a first-order (in time) quasilinear [55] system of
equations. The dependent variables are the three-metric �ij
and the extrinsic curvature Kij, with first-order evolution
equations given by

@t�ij � �2�Kij �ri�j �rj�i; (2.4)

@tKij � �rirj�� �
�
Rij � KKij � 2KimKmj

� 8
�
Sij �

1

2
�ijS

�
� 4�ADM�ij

�
� �mrmKij � Kimrj�m � Kmjri�m: (2.5)

Here, ri denotes the covariant derivative with respect to
the three-metric �ij, Rij is the Ricci curvature of the three-
metric, K 
 �ijKij is the trace of the extrinsic curvature,
Sij is the projection of the stress-energy tensor onto the
spacelike hypersurfaces and S 
 �ijSij (for a more de-
tailed discussion, see [56]). In addition to the evolution
equations, the Einstein equations also provide four con-
straint equations to be satisfied on each spacelike hyper-
surface. These are the Hamiltonian constraint equation

�3�R� K2 � KijKij � 16�ADM � 0; (2.6)

and the momentum constraint equations

rjKij � �ijrjK � 8ji � 0: (2.7)

In Eqs. (2.4), (2.5), (2.6), and (2.7), �ADM and ji are the
energy density and the momentum density as measured by
an observer moving orthogonally to the spacelike
hypersurfaces.

Details of our particular implementation of the confor-
mal traceless reformulation of the ADM system as pro-
posed by [8–10] are extensively described in [13,57] and
will not be repeated here. We only mention, however, that
this formulation makes use of a conformal decomposition
of the three-metric, ~�ij � e�4 �ij, and the trace-free part
of the extrinsic curvature, Aij � Kij � �ijK=3, with the
conformal factor  chosen to satisfy e4 � �1=3, where �
is the determinant of the spatial three-metric �ij. In this
-4
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formulation, in addition to the evolution equations for the
conformal three-metric ~�ij and the conformal traceless
extrinsic curvature ~Aij, there are evolution equations for
the conformal factor  , for the trace of the extrinsic
curvature K and for the ‘‘conformal connection functions’’
~�i 
 ~�ij;j . We note that although the final mixed, first and
second-order, evolution system for f ;K; ~�ij; ~Aij; ~�

ig is not
in any immediate sense hyperbolic, there is evidence show-
ing that the formulation is at least equivalent to a hyper-
bolic system [58–60]. In the formulation of [9], the
auxiliary variables ~Fi � �

P
j ~�ij;j were used instead of

the ~�i.
In Refs. [13,61] the improved properties of this confor-

mal traceless formulation of the Einstein equations were
compared to the ADM system. In particular, in [13] a
number of strongly gravitating systems were analyzed
numerically with convergent HRSC methods with total-
variation-diminishing (TVD) schemes using the equations
described in [47]. These included weak and strong gravi-
tational waves, black holes, boson stars and relativistic
stars. The results showed that this treatment leads to nu-
merical evolutions of the various strongly gravitating sys-
tems which did not show signs of numerical instabilities
for sufficiently long times. However, it was also found that
the conformal traceless formulation requires grid resolu-
tions higher than the ones needed in the ADM formulation
to achieve the same accuracy, when the foliation is made
using the ‘‘K-driver’’ approach discussed in [62]. Because
in long-term evolutions a small error-growth rate is the
most desirable property, we have adopted the conformal
traceless formulation as our standard form for the evolution
of the field equations.

1. Gauge choices

The code is designed to handle arbitrary shift and lapse
conditions, which can be chosen as appropriate for a given
spacetime simulation. More information about the possible
families of spacetime slicings which have been tested and
used with the present code can be found in [13,22]. Here,
we limit ourselves to recalling details about the specific
foliations used in the present evolutions. In particular, we
have used hyperbolic K-driver slicing conditions of the
form

�@t � �
i@i�� � �f����2�K � K0�; (2.8)

with f���> 0 and K0 
 K�t � 0�. This is a generalization
of many well-known slicing conditions. For example, set-
ting f � 1 we recover the ‘‘harmonic’’ slicing condition,
while, by setting f � q=�, with q an integer, we recover
the generalized ‘‘1� log’’ slicing condition [63]. In par-
ticular, all of the simulations discussed in this paper are
done using condition (2.8) with f � 2=�. This choice has
been made mostly because of its computational efficiency,
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but we are aware that ‘‘gauge pathologies’’ could develop
with the ‘‘1� log’’ slicings [64,65].

As for the spatial gauge, we use one of the ‘‘Gamma-
driver’’ shift conditions proposed in [22] (see also [57]),
that essentially act so as to drive the ~�i to be constant. In
this respect, the ‘‘Gamma-driver’’ shift conditions are
similar to the ‘‘Gamma-freezing’’ condition @t~�

k � 0,
which, in turn, is closely related to the well-known mini-
mal distortion shift condition [66]. The differences be-
tween these two conditions involve the Christoffel
symbols and are basically due to the fact that the minimal
distortion condition is covariant, while the Gamma-
freezing condition is not.

In particular, all of the results reported here have been
obtained using the hyperbolic Gamma-driver condition,

@2t �i � F@t~�
i � '@t�i; (2.9)

where F and ' are, in general, positive functions of space
and time. For the hyperbolic Gamma-driver conditions it is
crucial to add a dissipation term with coefficient ' to avoid
strong oscillations in the shift. Experience has shown that
by tuning the value of this dissipation coefficient it is
possible to almost freeze the evolution of the system at
late times. We typically choose F � 3

4 and ' � 3 and do
not vary them in time.

B. Evolution of the hydrodynamics equations

An important feature of the WHISKY code is the imple-
mentation of a conservative formulation of the hydrody-
namics equations [52,67,68], in which the set of Eqs. (2.2)
is written in a hyperbolic, first-order and flux-conservative
form of the type

@tq� @if�i��q� � s�q�; (2.10)

where f�i��q� and s�q� are the flux-vectors and source
terms, respectively [40]. Note that the right-hand side
(the source terms) depends only on the metric, and its first
derivatives, and on the stress-energy tensor. Furthermore,
while the system (2.10) is not strictly hyperbolic, strong
hyperbolicity is recovered in a flat spacetime, where
s�q� � 0.

As shown by [68], in order to write system (2.2) in the
form of system (2.10), the primitive hydrodynamical var-
iables (i.e. the rest-mass density � and the pressure p
(measured in the rest-frame of the fluid), the fluid three-
velocity vi (measured by a local zero-angular-momentum
observer), the specific internal energy * and the Lorentz
factor W) are mapped to the so-called conserved variables
q 
 �D; Si; -� via the relations

D 

����
�

p
W�; Si 


����
�

p
�hW2vi;

- 

����
�

p
��hW2 � p� �D;

(2.11)
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where h 
 1� *� p=� is the specific enthalpy and
W 
 �1� �ijvivj��1=2. Note that only five of the seven
primitive variables are independent.

In order to close the system of equations for the hydro-
dynamics an EOS which relates the pressure to the rest-
mass density and to the energy density must be specified.
The code has been written to use any EOS, but all of the
tests so far have been performed using either an (isen-
tropic) polytropic EOS

p � K��; (2.12)

e � ��
p

�� 1
; (2.13)

or an ‘‘ideal-fluid’’ EOS

p � ��� 1��*: (2.14)

Here, e is the energy density in the rest-frame of the fluid,
K the polytropic constant (not to be confused with the trace
of the extrinsic curvature defined earlier) and � the adia-
batic exponent. In the case of the polytropic EOS (2.12),
� � 1� 1=N, where N is the polytropic index and the
evolution equation for - needs not be solved. In the case of
the ideal-fluid EOS (2.14), on the other hand, nonisentropic
changes can take place in the fluid and the evolution
equation for - needs to be solved. In addition to the
EOSs (2.12) and (2.14), a ‘‘hybrid’’ EOS (suitable for
core-collapse simulations), as described in [69,70], has
also been implemented.

Note that polytropic EOSs (2.12) do not allow any trans-
fer of kinetic energy to thermal energy, a process which
occurs in physical shocks (shock heating). However, we
have verified, by performing simulations with the more
general EOS (2.14) on some selected cases, that for the
physical systems treated here, shock heating is not impor-
tant (no shocks form during our simulations). Since in our
numerical scheme using a general EOS like (2.14) is more
expensive than using a polytropic EOS, the systematic
investigations presented here have been obtained using
the latter.

Additional details of the formulation we use for the
hydrodynamics equations can be found in [40]. We stress
that an important feature of this formulation is that it has
allowed to extend to a general relativistic context the
powerful numerical methods developed in classical hydro-
dynamics, in particular, HRSC schemes based on linear-
ized Riemann solvers (see [40]). Such schemes are
essential for a correct representation of shocks, whose
presence is expected in several astrophysical scenarios.
Two important results corroborate this view. The first
one, by Lax and Wendroff [71], states that a stable scheme
converges to a weak solution of the hydrodynamical equa-
tions. The second one, by Hou and LeFloch [72], states
that, in general, a nonconservative scheme will converge to
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the wrong weak solution in the presence of a shock, hence
underlining the importance of flux-conservative formula-
tions. For a full introduction to HRSC methods the reader
is also referred to [73–75].

C. Hydrodynamical excision

Excision boundaries are usually based on the principle
that a region of spacetime that is causally disconnected can
be ignored without this affecting the solution in the re-
maining portion of the spacetime. Although this is true for
signals and perturbations travelling at physical speeds,
numerical calculations may violate this assumption and
disturbances, such as gauge waves, may travel at larger
speeds thus leaving the physically disconnected regions.

Note that, in nonvacuum spacetimes, the excision
boundaries for the hydrodynamical and the metric fields
need not be the same. For the fluid quantities, in fact, all
characteristics emanating from an event in spacetime will
propagate within the sound-cone at that event, and, for
physically realistic EOSs, this sound-cone will always be
contained within the light-cone at that event. As a result, if
a region of spacetime contains trapped surfaces, both the
hydrodynamical and the metric fields are causally discon-
nected and both can be excised there. On the other hand,
there may be situations, e.g. when the bulk flow is locally
supersonic but no trapped surfaces are present, in which it
is possible (at least in principle) to excise the hydrodynam-
ical fields without having to do the same for the metric
fields. We have not used this option here and the hydro-
dynamical excision implemented in our simulations has
always been made within regions of the spacetime con-
tained inside trapped surfaces.

A first naive implementation of an excision algorithm
within a HRSC method could ensure that the data used to
construct the flux at the excision boundary is extrapolated
from data outside the excision region. This may appear to
be a good idea since HRSC methods naturally change the
stencils depending on the data locally. In general, however,
this approach is not guaranteed to reduce the total variation
of the solution and simple examples may be produced that
fail with this boundary condition.

An effective solution, however, is not much more com-
plicated and can be obtained by applying at the excision
boundary the simplest outflow boundary condition (here,
by outflow we mean flow into the excision region). In
practice, we apply a zeroth-order extrapolation to all var-
iables at the boundary, i.e., a simple copy of the hydro-
dynamical variables across the excision boundary (note
that setting the hydrodynamical fields inside the excised
region to zero would still yield an outflow boundary con-
dition, but leads to incorrect outflow speeds). If the recon-
struction method requires more cells inside the excision
region, we force the stencil to only consider the data in the
exterior and the first interior cell. Although the actual
implementation of this excision technique may depend
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on the reconstruction method used, the working principle is
always the same.

The location of the excision boundary itself is based on
the determination of the apparent horizon which, within the
CACTUS code, is obtained using the fast finder of Thornburg
[76]. The excision boundary is placed a few gridpoints
(typically 4), within a surface which is 0.6 times the size
of the apparent horizon. This may not be a suitable outflow
boundary on a Cartesian grid, as pointed out by [77,78].
However, similar or larger excision regions show no prob-
lems in vacuum evolutions and since the sound-cones are
always contained within the light-cones, we expect no
additional problems to arise from the hydrodynamics.

More details on how the hydrodynamical excision is
applied in practice, as well as tests showing that this
method is stable, consistent and converges to the expected
order will be published in a separate paper [79].
FIG. 1. Gravitational mass shown as a function of the central
energy density for equilibrium models constructed with the
polytropic EOS, for � � 2 and polytropic constant KID � 100.
The solid, dashed and dotted lines correspond to the sequence of
nonrotating models, the sequence of models rotating at the mass-
shedding limit and the sequence of models that are at the onset of
the secular instability to axisymmetric perturbations. Also shown
are the secularly (open circles) and dynamically unstable (filled
circles) initial models used in the collapse simulations.
III. INITIAL STELLAR MODELS

As mentioned earlier, this paper is specially dedicated to
study the gravitational collapse of slowly and rapidly rotat-
ing supramassive relativistic stars, in uniform rotation, that
have become unstable to axisymmetric perturbations.
Given equilibrium models of gravitational mass M and
central energy density ec along a sequence of fixed angular
momentum or fixed rest mass, the Friedman, Ipser and
Sorkin criterion @M=@ec � 0 [80] can be used to locate
the exact onset of the secular instability to axisymmetric
collapse. The onset of the dynamical instability to collapse
is located near that of the secular instability but at some-
what larger central energy densities. Unfortunately, no
simple criterion exists to determine this location, but the
expectation mentioned above has been confirmed by the
simulations performed here and by those discussed in [11].
Note that in the absence of viscosity or strong magnetic
fields, the star is not constrained to rotate uniformly after
the onset of the secular instability and could develop
differential rotation. In a realistic neutron star, however,
viscosity or intense magnetic fields are likely to enforce a
uniform rotation and cause the star to collapse soon after it
passes the secular instability limit.

The initial data for our simulations are constructed using
a 2D numerical code, that computes accurate stationary
equilibrium solutions for axisymmetric and rapidly rotat-
ing relativistic stars in polar coordinates [81]. The data are
then transformed to Cartesian coordinates using standard
coordinate transformations. The same initial data routines
have been used in previous 3D simulations [13,14,82] and
details on the accuracy of the code can be found in [83].

For simplicity, we have focused on initial models con-
structed with the polytropic EOS (2.12), choosing � � 2
and polytropic constant KID � 100 to produce stellar mod-
els that are, at least qualitatively, representative of what is
expected from observations of neutron stars. More specifi-
cally, we have selected four models located on the line
024035
defining the onset of the secular instability and having
polar-to-equatorial axes ratio of roughly 0.95, 0.85, 0.75
and 0.65 (these models are indicated as S1–S4 in Fig. 1),
respectively. Four additional models were defined by in-
creasing the central energy density of the secularly un-
stable models by 5%, keeping the same axis ratio. These
models (indicated as D1–D4 in Fig. 1) were expected and
have been found to be dynamically unstable.

Figure 1 shows the gravitational mass as a function of
the central energy density for equilibrium models con-
structed with the chosen polytropic EOS. The solid, dashed
and dotted lines correspond, respectively, to: the sequence
of nonrotating models, the sequence of models rotating at
the mass-shedding limit and the sequence of models that
are at the onset of the secular instability to axisymmetric
perturbations. Furthermore, the secularly and dynamically
unstable initial models used in the collapse simulations are
shown as open and filled circles, respectively.

Table I summarizes the main equilibrium properties of
the initial models. The circumferential equatorial radius is
denoted as Re, while � is the angular velocity with respect
to an inertial observer at infinity, and rp=re is the ratio of
the polar to equatorial coordinate radii. The height of the
corotating innermost stable circular orbit (ISCO) is defined
as h� � R� � Re, where R� is the circumferential radius
for a corotating ISCO observer. Note that in those models
for which a value of h� is not reported, all circular geode-
sic orbits outside the stellar surface are stable. Other quan-
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TABLE I. Equilibrium properties of the initial stellar models.
The different columns refer, respectively, to: the central rest-
mass density �c, the ratio of the polar to equatorial coordinate
radii rp=re, the gravitational mass M, the circumferential equa-
torial radius Re, the angular velocity �, the ratio J=M2 where J
is the angular momentum, the ratio of rotational kinetic energy to
gravitational binding energy T=jWj, and the ‘‘height’’ of the
corotating ISCO h�. All models have been computed with a
polytropic EOS with KID � 100 and � � 2.

Model �c
a rp=re M Re �b J=M2 T=jWjb h�

S1 3.154 0.95 1.666 7.82 1.69 0.207 1.16 1.18
S2 3.066 0.85 1.729 8.30 2.83 0.363 3.53 0.51
S3 3.013 0.75 1.798 8.90 3.49 0.470 5.82 0.04
S4 2.995 0.65 1.863 9.76 3.88 0.545 7.72 � � �

D1 3.280 0.95 1.665 7.74 1.73 0.206 1.16 1.26
D2 3.189 0.85 1.728 8.21 2.88 0.362 3.52 0.58
D3 3.134 0.75 1.797 8.80 3.55 0.468 5.79 0.10
D4 3.116 0.65 1.861 9.65 3.95 0.543 7.67 � � �

a�10�3. b�10�2.
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tities shown are the central rest-mass density �c, the an-
gular momentum J, and the ratio of rotational kinetic
energy to gravitational binding energy T=jWj.
FIG. 2. L2 norm of the Hamiltonian constraint violation for the
initial model D1 shown as a function of time. The different lines
refer to different grid resolutions, but in all cases the IVP was
solved after the pressure was uniformly decreased to trigger the
collapse.
IV. DYNAMICS OF THE MATTER

This Section discusses the dynamics of the matter during
the collapse of the initial stellar models described in the
preceding section. All of the simulations reported here
have been computed using a uniformly spaced computa-
tional grid for which symmetry conditions are imposed
across the equatorial plane. Different spatial resolutions
have been used to check convergence and improve the
accuracy of the results, with the finest resolution having
been obtained using 2882 � 144 cells. While the precise
numbers depend on the resolution used and on the model
simulated, as a general rule we have used �50% of the
cells in the x-direction to cover the star in case D1 and
�66% of the cells in the x-direction to cover the star in D4.
As a result, the outer boundary is set at �2:0 times the
stellar equatorial radius for D1 and at �1:4 times the stellar
equatorial radius for D4.

The hydrodynamics equations have been solved em-
ploying the Marquina flux formula and a third-order
PPM reconstruction, which was shown in [84] to be supe-
rior to other methods in maintaining a highly-accurate
angular-velocity profile (see also [82,85] for recent 3D
evolutions of rotating relativistic stars with a third-order
order PPM reconstruction). The Einstein field equations,
on the other hand, have been evolved using the ICN
evolution scheme, the ‘‘1� log’’ slicing condition and
the ‘‘Gamma-driver’’ shift conditions [22]. Finally, both
polytropic and ideal-fluid EOSs have been used, although
no significant difference has been found in the dynamics
between the two cases. This is most probably related to the
024035
small J=M2 of the uniformly rotating initial models con-
sidered here. This implies a relatively rapid collapse and as
a result we do not see any shock formation (see below for a
more complete discussion). Hereafter we will restrict our
attention to a polytropic EOS only.

Given an initial stellar model which is dynamically
unstable, simple round-off errors would be sufficient to
produce an evolution leading either to the gravitational
collapse to a black hole or to the migration to the stable
branch of the equilibrium configurations [14] (we recall
that both evolutions are equally probable mathematically,
although it is easier to imagine that it would collapse to a
black hole). In general, however, leaving the onset of the
dynamical instability to the cumulative effect of the nu-
merical truncation error is not a good idea, since this
produces instability-growth times that are dependent on
the grid-resolution used.

For this reason, we induce the collapse by slightly
reducing the pressure in the initial configuration. This is
done uniformly throughout the star by using a polytropic
constant for the evolution K that is smaller than the one
used to calculate the initial data KID. The accuracy of the
code is such that only very small perturbations are suffi-
cient to produce the collapse and we have usually adopted
�KID � K�=KID & 2%.

After imposing the pressure reduction, the Hamiltonian
and momentum constraints are solved to enforce that the
constraint violation is at the truncation-error level. We
refer to this procedure as to solving the initial value prob-
lem (IVP), which ensures that second-order convergence
holds from the start of the simulations, as shown in Fig. 2
for the L2 norm of the Hamiltonian constraint. Strict
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second-order convergence is lost when the excision is
introduced, although the code remains convergent at a
lower rate while the norms of the Hamiltonian constraint
start to grow exponentially (this is not shown in Fig. 2). We
are presently investigating the origin of the deterioration of
the convergence rate at the time of excision, although this
is somewhat unavoidable when excising a spherical region
in a Cartesian rectangular grid in the course of the
evolution.

Details on how we solve the IVP implementing the
York-Lichnerowicz conformal transverse-traceless decom-
position can be found in [86]. If, on the other hand, the IVP
is not solved after the pressure change, the constraints
violation increases twice as fast and converges to second-
order only after an initial period of about 20 M� 0:17 ms.
To assess the validity of our procedure to trigger the
collapse, we also perform the pressure change after the
evolution has started and without solving the IVP. In this
case, after the system has recovered from the perturbation,
the violation of the constraints is only a few percent differ-
ent from the case in which the IVP is solved. Furthermore,
other dynamical features of the collapse, such as the instant
at which the apparent horizon is first formed (see Sec. V for
a detailed discussion), do not vary by more than 1%.

The dynamics resulting from the collapse of models S1–
S4 and D1–D4 are extremely similar and no qualitative
differences have been detected. However, as one would
expect, models D1–D4 collapse more rapidly to a black
hole (the formation of the apparent horizon appears about
5% earlier in coordinate time), are computationally less
expensive and therefore better suited for a detailed inves-
tigation. As a result, in what follows we will restrict our
discussion to the collapse of the dynamically unstable
models and distinguish the dynamics of case D1, in
Sec. IVA, from that of model D4, in Sec. IV B.
A. Slowly rotating stellar models

We start by discussing the dynamics of the matter by
looking at the evolution of the initial stellar model D1
which is slowly rotating (thus almost spherical, with
rp=re � 0:95) and has the largest central density (cf.
Fig. 1 and Table I).

We show in Figs. 3 and 4 some representative snapshots
of the evolution of this initial model. The different panels
of Fig. 3, in particular, refer to the initial and intermediate
stages of the collapse and show the isocontours of the rest-
mass density and velocity field in the �x; y� plane (left
column) and in the �x; z� plane (right column), respectively.
The isobaric surfaces are logarithmically spaced starting
from � � 2:0� 10�5 and going up to � � 2:0� 10�3 at
the stellar interior. The velocity vector field is expressed in
units of c and the length for a velocity of 0:2 c is shown in
the lower-right panel. Panels on the same row refer to the
same instant in time and this is indicated in ms in the top-
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right corner of each panel. The units on both axes are
expressed in km and refer to coordinate lengths. This
sequence has been obtained with a grid of 2882 � 144
zones but the data for the velocity field has been down-
sampled to produce clearer figures. The data have also been
restricted to a single octant in the �x; z� plane to provide a
magnified view. In all cases, however, the whole extent of
the numerical grid is reported in the figures.

Overall, the sequence shown in Fig. 3 is simple to
illustrate. During the collapse of model D1 spherical sym-
metry is almost preserved; as the star increases its com-
pactness and the matter is compressed to larger pressures,
the velocity field acquires a radial component (which
was zero initially) that grows to relativistic values.
This is clearly shown in the panels at t � 0:49 ms and
t � 0:54 ms, which indicate that the star roughly preserves
the ratio of its polar rp and equatorial re radii (see also
Fig. 7), while radial velocities in excess of �0:28 c can be
easily reached. The behavior of the angular-velocity during
this collapse will be analyzed in more detail in Sec. IV C,
but we can here anticipate that it does not show appreciable
departures from a profile which is uniform inside the star.

Soon after t � 0:54 ms, (i.e. at t � 0:546 ms � 66:6 M
in the high-resolution run), an apparent horizon is found
and when this has grown to a sufficiently large area, the
portion of the computational domain containing the singu-
larity is excised. A discussion of how the trapped surfaces
are studied in practice will be presented in Sec. V, while
details on the hydrodynamical excision have been given in
Sec. II C. Here, we just remark that the use of an excised
region and the removal of the singularity from the compu-
tational domain is essential for extending the calculations
significantly past this point in time. Figure 4 shows a
magnified view of the final stages of the collapse of model
D1. Indicated as an area filled with squares is the excised
region of the computational domain, which is an approxi-
mation of a sphere on the uniform Cartesian grid, i.e., a
‘‘lego-sphere’’. Also shown with a thick dashed line is the
coordinate location of the apparent horizon and it should be
remarked that, because of rotation, this surface is not a
coordinate two-sphere, although the departures are not
significant and cannot be appreciated in Fig. 4 (see
Sec. V and Table II for details). At t � 0:57 ms, the time
which Fig. 4 refers to, most of the matter has already fallen
within the apparent horizon and has assumed an oblate
shape.

The numerical calculations were carried out up to t ’
0:73 ms� 89 M, thus using an excised region in a dy-
namical spacetime for more than 26% of the total comput-
ing time. By this point, all of the stellar matter has
collapsed well within the event-horizon and the Hamil-
tonian constraint violation has become very large.

Overall, confirming what was already discussed by sev-
eral authors in the past, the gravitational collapse of the
slowly rotating stellar model D1 takes place in an almost
-9



FIG. 3. Collapse sequence for the slowly rotating model D1. Different panels refer to different snapshots during the collapse and
show the isocontours of the rest-mass density and velocity field in the �x; y� plane (left column) and in the �x; z� plane (right column),
respectively. The isobaric surfaces are logarithmically spaced and a reference length for the vector field is shown in the lower-right
panel for a velocity of 0:2 c. The time of the different snapshots appears in the top right corner of each panel and it is given in ms, while
the units on both axes are expressed in km. See main text for a discussion and Fig. 5 for a comparison with the collapse of a rapidly
rotating model.
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spherical manner and we have found no evidence of shock
formation which could prevent the prompt collapse to a
black hole, nor appreciable deviations from axisymmetry
(cf. left panel of Fig. 4). It is possible, although not likely,
that these qualitative features may be altered when a real-
024035
istic EOS is used, since in this case shocks may appear,
whose heating could stall or prevent the prompt collapse to
a black hole. However, as mentioned in the Introduction,
more dramatic changes are expected to appear if the initial
configurations are chosen to have larger initial angular
-10



FIG. 4. Magnified view of the final stages of the collapse of model D1. A region around the singularity that has formed is excised
from the computational domain and is shown as an area filled with squares. Also shown with a thick dashed line is the coordinate
location of the apparent horizon. Note that because of rotation this surface is not a two-sphere, although the departures are not
significant and cannot be appreciated from the Figure (cf. Figure 16 for a clearer view).
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momenta and, in particular, when J=M2 * 1 [12,28]. A
first anticipation of the important corrections that centrifu-
gal effects could produce is presented in the following
Section, where we examine the dynamics of a rapidly
rotating stellar model.

B. Rapidly rotating stellar models

We next consider the dynamics of the matter during the
collapse of model D4 which, being rapidly rotating, is
already rather flattened initially (i.e. rp=re � 0:65) and
has the largest J=M2 among the dynamically unstable
models (cf. Fig. 1 and Table I).

As for the slowly rotating star D1, we show in Figs. 5
and 6 some representative snapshots of the evolution of this
rapidly rotating model. The data has been computed using
the same resolution of 2882 � 144 zones and the isocon-
tour levels shown for the rest-mass density are the same
used in Fig. 3 and 4. It is apparent from the panels of Fig. 5
referring to t � 0, that model D4 is considerably more
oblate than D1, as one would expect for a star rotating at
almost the mass-shedding limit.

Also in this case, we believe that the sequence in Fig. 5 is
simple to illustrate. Note, in particular, how the dynamics
is very similar to the one discussed for model D1 up to a
time t� 0:49 ms. However, as the collapse proceeds, sig-
nificant differences between the two models start to emerge
and in the case of model D4 the large angular-velocity of
the progenitor stellar model produces significant deviations
from a spherical infall. Indeed, the parts of the star around
the rotation axis that are experiencing smaller centrifugal
forces collapse more promptly and, as a result, the con-
figuration increases its oblateness.
024035
This is illustrated in Fig. 7, which shows the time
evolution of the ratio of the polar and equatorial proper
radii for all models in Table I (note that these ratios should
not be confused with those in Table I that refer, instead, to
coordinate radii). Each curve in Fig. 7 extends until all of
the matter along the z-axis has fallen inside the apparent
horizon of the newly formed black hole. Clearly, in all
cases the oblateness increases as the collapse proceeds and
this is much more evident for those stellar models that are
rapidly rotating initially. In particular, for the most rapidly
rotating models D4 and S4, the ratio between polar and
equatorial proper radii becomes as small as 0.45 at the time
when the matter on the rotation axis is below the apparent
horizon.

At about t � 0:64 ms (i.e. at t � 0:649 ms � 70:8 M in
the high-resolution run), the collapse of model D4 pro-
duces an apparent horizon. Soon after this, the central
regions of the computational domain are excised, prevent-
ing the code from crashing and thus allowing for an ex-
tended time evolution. The dynamics of the matter at this
stage is shown in the lower panels of Fig. 5, which refer to
t � 0:67 ms and where both the location of the apparent
horizon (thick dashed line) and of the effective excised
region (area filled with squares) are shown. By this time the
star has flattened considerably, all of the matter near the
rotation axis has fallen inside the apparent horizon, but a
disc of low-density matter remains near the equatorial
plane, orbiting at very high velocities * 0:2 c. The appear-
ance of an effective barrier preventing a purely radial infall
of matter far from the rotational axis may be the conse-
quence of the larger initial angular momentum of the this
collapsing matter and of the pressure wave originating
from the faster collapse along the rotational axis. Note,
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FIG. 5. Collapse sequence for the rapidly rotating model D4. The conventions used in these panels are the same as in Fig. 3, which
can be used for a comparison with the collapse of a slowly rotating model. Note that a region around the singularity that has formed is
excised from the computational domain and is indicated as an area filled with squares. Also shown with a thick dashed line is the
coordinate location of the apparent horizon.
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in fact, that the radial velocity at the equator does not
increase significantly at the stellar surface between t ’
0:49 ms and t ’ 0:67 ms, but that it actually slightly de-
creases (cf. the �x; z� planes in the mid and lower panels of
Fig. 5). This is the opposite of what happens for the radial
velocity of the fluid elements in the stellar interior on the
024035
equatorial plane: it grows also in this time interval. A more
detailed discussion of this behavior will be made in
Sec. V D.

Note that the disc formed outside the apparent horizon is
not dynamically stable and, in fact, it rapidly accretes onto
the newly formed black hole. This is shown in Fig. 6, which
-12



FIG. 6. Magnified view of the final stages of the collapse of model D4. Note that a region around the singularity that has formed is
excised from the computational domain and this is indicated as an area filled with squares. Also shown with a thick dashed line is the
coordinate location of the apparent horizon. Note that because of the rapid rotation, this surface has significant departures from a two-
sphere (cf. Figure 16 for a clearer view).
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offers a magnified view at a later time t � 0:79 ms. At this
stage the disc is considerably flattened but also has large
radial inward velocities which induce it to be accreted
rapidly onto the black hole. Note that as the area of the
apparent horizon increases, so does the excised region,
which is allowed to grow accordingly. This can be appre-
ciated by comparing the areas filled with squares in the
lower panels of Fig. 5 (referring to t � 0:67 ms) with the
corresponding ones in Fig. 6 (referring to t � 0:79 ms).
FIG. 7. Ratio of the proper polar radius to the proper equatorial
radius for all the initial models. Each curve ends at the time
when, for each simulation, all the matter along the z-axis has
fallen below the apparent horizon.

024035
By a time t � 0:85 ms, essentially all (i.e. more than
99.9%) of the residual stellar matter has fallen within the
trapped surface of the apparent horizon and the black hole
thus formed approaches the Kerr solution (see Sec. V).
Note that a simple kinematic explanation can be given for
the instability of the disc formed during this oblate collapse
and comes from relating the position of the outer edge of
the disc when this first forms, with the location of the ISCO
of the newly formed Kerr black hole. Measuring accurately
the mass and spin of the black hole reveals, in fact, that the
ISCO is located at x � 11:08 km, which is always larger
than the outer edge of the disc (cf. lower panels of Fig. 5).
Such behavior is not surprising since we are here dealing
with initial models with a moderate J=M2, that collapse
essentially on a dynamical timescale, and for which pres-
sure gradients cannot play an important role. As a result,
simple pointlike particle motion in stationary spacetimes is
a sufficient approximation to the dynamics.

Also for model D4, a more detailed discussion (e.g. of
the evolution of the distribution of angular velocity, or of
the disc rest mass) will be presented in Sec. IV C. Here,
however, we can anticipate that when analyzed more
closely the rest mass in the disc and outside the apparent
horizon is effectively very small and that the angular
velocity shows appreciable departures from a uniform
profile.

A more quantitative description of the rest-mass density
evolution is presented in Fig. 8, where different lines show
the profiles of the rest-mass density along the x-axis on the
equatorial plane. The values are normalized to the initial
value at the stellar center, with different labels referring to
different times and, in particular, to t � 0:0 (dashed line),
0:25; 0:40; 0:49; 0:54; 0:65; 0:67; 0:74; 0:79 and 0:89 ms,
-13



FIG. 8. Rest-mass density of model D4 normalized to the
initial value at the stellar center. The profiles are measured along
the x-axis on the equatorial plane and refer to different times (see
main text for details). Line 5, shown as dotted, corresponds to the
time when the apparent horizon is first found. The inset shows a
magnified view of the final stages of the evolution using a
logarithmic scale and also the location of the excised region as
it grows in time.
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respectively. Line 5, furthermore, is shown as dotted and
refers to the time when the apparent horizon is first formed.
After this time, the excised region is cut from the computa-
tional domain as shown in the inset of Fig. 8, which
illustrates the final stages of the evolution. Note that as
the matter falls into the black hole, the apparent horizon
increases its radius and thus the location of the excised
region moves outside. This is clearly shown in the inset.
Note also that the rest-mass density does not drop to zero
outside the stellar matter but is levelled off to the uniform
value of the atmosphere, whose rest-mass density is 7
orders of magnitude smaller than the initial central density.

It should be remarked that such a tenuous atmosphere
has no dynamical impact and does not produce any in-
crease of the mass of the black hole that can be appreciated
in our simulations. With such rest-mass densities, in fact, it
would take a time �104 M to produce a net increase of
�1% in the black-hole mass. Clearly, these systematic
errors are well below the truncation errors, even at the
highest resolutions.

The simulation ends at t � 0:91 ms� 99 M, when the
rest-mass density is everywhere at the atmosphere level
and the violations of the Hamiltonian constraint are large.
By this time the evolution has been carried for more than
28% of the total time using a singularity excising region.
Also in this case, we do not find evidence of shock for-
mation nor of significant deviations from axisymmetry.

As mentioned in the Introduction, all simulations to-date
agree that no massive and stable discs form for initial
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models of neutron stars that are uniformly rotating and
when a polytropic EOS with 1 � N � 2 is used. Our
results corroborate this view and in turn imply that the
collapse of a rapidly rotating old and cold neutron star
cannot lead to the formation of the central engine believed
to operate in a gamma-ray burst, namely, a rotating black
hole surrounded by a centrifugally-supported, self-
gravitating torus. Relativistic simulations with more ap-
propriate initial data, accounting, in particular, for the
extended envelope of the massive progenitor star which
is essential in the so-called collapsar model of gamma-ray
bursts [87], will be necessary to shed light on the mecha-
nism responsible for such events.

Convincing evidence has recently emerged [28] that a
massive disc can be produced if the stellar models are
initially rotating differentially and with initial total angular
momenta J=M2 * 1, as it may happen for young and hot
neutron stars. In this case, the massive disc could emit
intense gravitational radiation either through its oscilla-
tions [88] or as a result of the fragmentation produced by
nonaxisymmetric instabilities [28]. We are presently inves-
tigating this possibility and the results of our investigation
will be reported in a forthcoming paper.

C. Disc formation and differential rotation

We now discuss in more detail two interesting properties
of the matter dynamics in both slowly and rapidly rotating
models: the evolution of the rest mass outside the apparent
horizon and the development of differential rotation during
the collapse.

In order to monitor the changes of the rest-mass distri-
bution during the collapse we define the rest mass within a
two-sphere of coordinate radius ri < Re as (see, for in-
stance, [89])

M��ri� �
Z
r0<ri

��u0
����
�

p
d3x0; (4.1)

where d3x0 is the 3D coordinate volume element. Shown in
Fig. 9 is the evolution of the rest mass measured within
several representative two-spheres for models D1 (left
panel) and D4 (right panel), respectively. Different lines
refer to different coordinate radii for the two-spheres (i.e.
ri � 0:2; 0:4 and 0:6Re, where Re is the initial equatorial
circumferential radius) and are normalized to the total rest
mass within the computational domain M�, shown as a
solid line. Marked instead with filled dots are the values of
M��ri� at the times when the apparent horizon is first
found; for simplicity, the data shown in Fig. 9 refer to a
simulation with 962 � 48 gridzones, but for this quantities
higher resolutions have just the effect of shifting the time at
which the apparent horizon is first found.

As mentioned before, the excised region is not intro-
duced immediately after the apparent horizon has been
found, but only when this has grown to a sufficiently large
size. When this happens, the inner part of the computa-
tional domain is removed and the integrals (4.1) are no
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FIG. 9. Evolution of the mass fraction versus time during the collapse of D1 (left panel) and D4 (right panel). The rest mass is
measured within two-spheres of coordinate radii ri � 0:2; 0:4 and 0.6 times the initial stellar equatorial circumferential radius Re (cf.
Table I). Marked with filled dots on the different lines are the times at which the apparent horizon is first found (the data refers to a
simulation with 962 � 48 gridzones). The insets in both panels show, on a logarithmic scale, the evolution of the normalized rest mass
outside the apparent horizon. Note that this is appreciably nonzero for a rather long time in case of model D4.
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longer meaningful. As a result, all of the curves in Fig. 9
are truncated at the time when the excision region is first
introduced, which occurs at t � 0:72 ms and t � 0:79 ms
for models D1 and D4, respectively.

A rapid comparison between the two panels of Fig. 9 is
sufficient to identify the differences in the rest-mass evo-
lution in slowly and rapidly rotating models. Firstly, the
rest-mass distribution is very different already initially,
being more uniform in D1 and more centrally concentrated
in D4, as can be appreciated by comparing M� at ri �
0:4Re and 0:6Re. Secondly, the rest-mass infall is much
faster for the slowly rotating model D1, while it is more
progressive for model D4, as shown by the change in the
fractional mass ratio at ri � 0:4Re. Finally, the amount of
matter outside ri � 0:4Re at the time when the apparent
horizon is found, and which is very close to the amount of
matter outside the apparent horizon, is different in the two
cases, being essentially zero for model D1 and a few
percent for model D4. A clearer view of this is presented
in the two insets of Fig. 9 which show, on a logarithmic
scale, the evolution of the normalized rest mass outside the
apparent horizons, i.e. M��r > rAH�=M�, since these first
form and as they grow in time. It is interesting to note the
different behavior in this case with a rapid decrease when
the rotation rate is small and a much slower one in the case
of a rapidly rotating progenitor (Note that the two insets
cover the same timescale although they refer to a different
time interval.).

Two additional comments are worth making. The first
one is thatM� effectively includes also the rest mass in the
atmosphere but this is always & 10�4 of the total rest mass.
The second one is thatM� in Fig. 9 does not simply refer to
024035
the initial value of the total rest mass but is effectively
computed at each step and appears constant in time be-
cause of the ability of the code to conserve rest mass. A
closer look at the solid curve in Fig. 9 reveals, in fact, that
M� varies over time to less than one part in 104.

An interesting question to ask at this stage is whether
these uniformly rotating models will develop any degree of
differential rotation as the collapse proceeds. Part of the
interest in this comes from the fact that neutron stars are
thought to rotate differentially, at least during the initial
stages of their life. This is expected to hold both when the
neutron star is produced through a stellar core collapse, in
which case the differential rotation may be present already
in the stellar progenitor and is then amplified during col-
lapse [90], and when the neutron star is the end-result of a
binary merger of neutron stars [91]. However, as the neu-
tron star cools and grows older, dissipative viscous effects
or the coupling with nonturbulent magnetic fields are ex-
pected to bring the star into uniform rotation (see [92–94]
for a detailed description of this process). It is therefore
interesting to investigate whether a degree of differential
rotation will be produced also during the final collapse of a
uniformly rotating star to a Kerr black hole. To answer this
question we have monitored both the averaged angular
velocity h�i, defined as

h�i 

1

2

�
u 

ut

��������x�axis
�
u 

ut

��������y�axis

�
; (4.2)

and the corresponding averaged angular momentum per
unit mass hhu i, which is a conserved quantity along
the path lines of fluid elements in an axisymmetric (but
not necessarily stationary) spacetime [95]. Note that
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u =ut � �v � � and the average over the two different
directions is here used to compensate the small errors that
are produced in the evaluation of these quantities near the
axes.

We note that our measure of the differential rotation will
depend on the specific slicing chosen. However, for the
simulations reported here, the lengthscale of variation of
the lapse function at any given time is always larger than
the stellar radius at that time, ensuring that the events on
the same timeslice are also close in proper time. A useful
measure of the differential rotation that develops during
collapse is the departure from unity of the ratio of the
values of � at the center and at the surface of the star on
the equatorial plane and it is instructive to compare how
this varies in the dynamics of the two models D1 and D4,
which have been evolved using the same slicing.

The time evolution of h�i and hhu i is presented in the
two panels Fig. 10, whose lower parts refer to model D4
while the upper ones refer to model D1. Both quantities are
shown normalized to their initial value at the stellar sur-
face. Let us concentrate on the slowly rotating model first.
The different lines refer to three representative times which
are t � 0:0 (shown as dashed), t � 0:45 ms and 0.52 ms,
respectively. Initially, the angular velocity is, by construc-
tion, uniform throughout the star (left panel) and the cor-
responding specific angular momentum grows linearly
with the distance from the stellar center (right panel). As
the collapse proceeds and the stellar size decreases, the
angular velocity is expected to increase while the angular
momentum per unit mass remains constant. This is indeed
what happens for model D1, whose specific angular mo-
mentum is conserved with an overall error at the stellar
surface which is always less than 10% and which decreases
with resolution. A similar behavior is observed also much
FIG. 10. Evolution of the averaged angular velocity h�i (left pane
(right panel). Both quantities are measured at the stellar equator, are
both models D1 (upper parts) and D4 (lower parts).
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later in the simulation, when the apparent horizon has been
found and the singularity has been excised. Overall, the
angular velocity in the collapsing model D1 grows like
��t� / r�ne , where n ’ 1:5 and therefore less than it would
do in the case of the collapse of a Newtonian, uniform
density star (i.e. n � 2); which is a result of relativistic and
rotational effects (see [96]).

A comparison of the lower parts of the two panels in
Fig. 10 is sufficient to realize that the evolution of the
angular velocity is rather different for a rapidly rotating
stellar model. The different lines in this case refer to t �
0:0; 0:48 and 0:65 ms, respectively, and it is apparent that a
non-negligible degree of differential rotation develops as
the collapse proceeds, with a difference of a factor �2
between the angular velocity of the inner and outer parts of
the collapsing matter as the apparent horizon first appears.
Clearly, this differential rotation is produced very rapidly
and will persist only for a very short time before the star is
enclosed in a trapped surface.

It is difficult to establish, at this stage, whether the
differential rotation generated in this way could produce
a phenomenology observable in some astrophysical con-
text and more detailed investigations, in particular, of the
coupling of this differential rotation with magnetic fields
[97,98], are necessary. Finally, it is worth remarking that
while differential rotation develops for model D4 but not
for D1, the specific angular momentum is conserved to the
same accuracy in both models.
V. DYNAMICS OF THE HORIZONS

In order to investigate the formation of a black hole in
our simulations, we have used horizon finders, available
through the CACTUS framework, which compute both the
l) and of the averaged angular momentum per unit mass hhu i
normalized to the initial value at the stellar surface and refer to
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apparent horizon and the event horizon. The apparent
horizon, which is defined as the outermost closed surface
on which all outgoing photons normal to the surface have
zero expansion, is calculated at every time step and its
location is used to set up the excised region inside the
horizon. Specific technical details about the handling of the
excised region for the fields are presented in [19,22], while
a brief discussion of how the hydrodynamical excision is
performed in WHISKY was presented in Sec. II C.

In contrast, the event horizon, which is an expanding
null surface composed of photons which will eventually
find themselves trapped, is computed a posteriori, once the
simulation is finished, by reconstructing the full spacetime
from the 3D data each simulation produces. In stationary
black-hole systems, where no mass-energy falls into the
black hole, the apparent and event horizons coincide, but
generally (in dynamical spacetimes) the apparent horizon
lies inside the event horizon. We have here used the fast
solver of Thornburg [76] to locate the apparent horizon at
every time step, and the level-set finder of Diener [99] to
locate the event horizon after the simulation has been
completed and the data produced is post-processed.

In all cases considered, we have found that the event
horizon rapidly grows to its asymptotic value after forma-
tion. With a temporal gap of �10M after the formation of
the event horizon, the apparent horizon is found and then it
rapidly approaches the event horizon, always remaining
within it. With the exception of the initial gap, the horizon
proper areas as extracted from the apparent and event-
horizon are very close (see, e.g., Fig. 16).
FIG. 11. Convergence of the measure of the black-hole mass
as the resolution is increased. The curves refer to estimates using
the event-horizon equatorial circumference [i.e. Eq. (5.1)] and
have been obtained using 2882 � 144 and 1922 � 96 zones,
respectively. Shown in the small inset are the results for model
D1, while those for model D4 are in the main panel.
A. Measuring the event-horizon mass

We measure the mass of the newly formed black hole to
estimate the amount of energy that is emitted as gravita-
tional radiation during the collapse. In particular, we do a
simple energy accounting, comparing the mass of the black
hole with the ADM mass of the spacetime computed by the
initial data solver on a compactified grid extending to
spatial infinity [81]. This value is slightly different (1%
in the worst case) from the one which is instead computed
on the finite domain of our computational grid at the initial
time and after the constraints are solved. The difference
between the two values can be used to define an ‘‘error-
bar’’ for our measure of the black-hole mass and hence of
the energy in gravitational waves (cf. Figure 15). Two
notes are worth making about this error before we go on
to discuss how the black-hole mass is actually measured.
Firstly, the difference between the two masses represents
the truncation error produced by the finite size of the
computational domain and is conceptually distinct from
the truncation error introduced by the finite differencing.
While the first is assumed to be constant in time, the second
in general grows with time (especially after the excision is
made) and is monitored through the calculation of the
024035
constraint equations. Secondly, this error-bar sets a global
lower limit on the accuracy of our measure of asymptotic
quantities and therefore on the energy lost to gravitational
waves during the collapse. No reliable measure of this lost
energy can be made below the error-bar even if the con-
straint equations are solved to a larger precision (this will
be discussed in more detail in Sec. V C).

The first and simplest method of approximating the
black-hole mass is to note that, for a Kerr (or
Schwarzschild) black hole, the mass can be found directly
in terms of the event-horizon geometry as

M �
Ceq

4
; (5.1)

where Ceq 

R

2
0

���������g  
p d is the proper equatorial cir-

cumference. Provided there is a natural choice of equato-
rial plane, it is expected that, as the black-hole settles down
to Kerr, Ceq will tend to the correct value. However, as
numerical errors build up at late times it may be impossible
to reach this asymptotic regime with sufficient accuracy.

The estimate of M coming from the use of (5.1) is
presented in Fig. 11, which shows the time evolution of
the event-horizon equatorial circumference. The two lines
refer to two different resolutions (2882 � 144 and 1922 �
96 zones, respectively) and should be compared with the
value of the ADM massMADM (indicated with a short-long
dashed line), and with the error-bars as deduced from the
initial data. Shown in the small inset are the results for
model D1, while those for model D4 are in the main panel.

Note that if a measure of the event horizon is not
available, Eq. (5.1) could be computed using the equatorial
circumference of the apparent horizon (this is what was
-17



FIG. 12. Evolution of the event-horizon massM � Ceq=4 for
models D1 and D4. Different lines refer to the different initial
guesses for the null surface and are numbered 0, 1 and 2. Note
that they converge exponentially to the correct event-horizon
surface for decreasing times.
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done, for instance, in [28]). Doing so would yield results
that are similar to those shown in Fig. 11, although with a
slightly larger deviation from MADM. This is because we
have found the apparent horizon to systematically under-
estimate the equatorial circumference. In particular, in the
high-resolution run for model D4, the differences between
the apparent and event-horizon equatorial circumferences
are & 2%.

Clearly, as the equatorial circumference grows, the
agreement with the expected ADM mass improves as it
does with the use of higher spatial resolution. However,
equally evident is that the errors grow as the collapse
proceeds and this is due, in part, to the loss of strict
second-order convergence at later times, but also to the
way the event horizon is found. The level-set approach of
[99], in fact, needs initial guesses for the null surface,
which converge exponentially to the correct event-horizon
surface for decreasing times, hence introduces a systematic
error in the calculation of the event horizon at late times.
This is shown in Fig. 12, which presents the evolution of
the event-horizon mass M � Ceq=4 for models D1 and
D4. Different lines refer to the different initial guesses and
are numbered ‘‘0’’, ‘‘1’’ and ‘‘2’’, respectively, (note that
for the curves shown in Fig. 11 the initial guesses 0 and 1
were used for cases D4 and D1, respectively).
B. Measuring the angular momentum of the black-hole

A major difficulty in an accurate measurement ofM lies
in the calculation of its nonirreducible part, i.e., in the part
that is proportional to the black-hole angular momentum J.
We now discuss a number of different ways to calculate J
024035
from the present simulations; these measurements will then
be used to obtain alternative estimates of M in Sec. V C.

1. Measuring J from the horizon distortion

In a series of papers studying the dynamics of distorted
black-hole spacetimes, it was shown that the horizon ge-
ometry provides a useful measure of the black-hole prop-
erties both in vacuum [100–103] and when these are
accreting matter axisymmetrically [104]. In particular,
the idea is to look at the distortion of the horizon using
the ratio of polar and equatorial proper circumferences,
Cr 
 Cpol=Ceq. For a perturbed Kerr black hole this is
expected to oscillate around the asymptotic Kerr value
with the form of a quasinormal mode (QNM). By fitting
to this mode we extract an estimate of the angular momen-
tum parameter a=Mhor from the relation [105]
a
Mhor

�
������������������������������������������������
1� ��1:55� 2:55Cr�

2
q

; (5.2)
where we have indicated withMhor the black-hole mass as
measured from expression (5.2), which coincides with M
only if the spacetime has become axisymmetric and sta-
tionary. The fit through expression (5.2) is expected to be
accurate to �2:5% [105].

The fit itself depends on an initial guess for a=Mhor and
we start from a Schwarzschild black hole and iterate until
the desired convergence is reached. This measure is not
gauge invariant, although Eq. (5.2) is independent of the
spatial coordinates up to the definition of the circumfer-
ential planes, but works adequately with the gauges used
here. The fit is best performed shortly after black-hole
formation as the oscillations are rapidly damped. This
minimizes numerical errors but in those cases where matter
continues to be accreted, it may lead to inaccurate esti-
mates of the angular momentum.

Examples of the fitting procedure are shown in Fig. 13,
in which the fit is shown as a solid line, while the open
circles represent the computed values of Cr; these are
slightly noisy as a result of the interpolation needed by
the level-set approach to find points on the horizon two-
surface [99]. The estimate for Cr of a Kerr black hole
having the fitted value of a=Mhor is shown as a dashed
line. Note that the values of a=Mhor � 0:21 and a=Mhor �
0:54 are very close to the total J=M2 of the initial stellar
models, i.e., 0.2064 and 0.5433, as shown in Table II. This
demonstrates that, to within numerical accuracy, the entire
angular momentum of the spacetime ends up in the black
hole.

Using expression (5.2) to estimate the angular momen-
tum J introduces an error, if the black hole has not yet
settled to a Kerr solution. Having this in mind, however, it
-18



FIG. 13. Fitting the oblateness of the event horizon to QNMs of a Kerr black hole. The fit is shown with the solid line, while the open
circles represent the computed values of Cr. The estimate for Cr of a Kerr black hole having the fitted value of a=Mhor is shown with a
dashed line.

TABLE II. Estimates of the black-hole angular momentum
J=M2 through the oblateness of the event-horizon. The oscilla-
tions in the oblateness of the event horizon can be fitted to the
normal modes of a Kerr black hole. Note that for each model
the measured angular momentum is remarkably close to that of
the initial spacetime �J=M2�ADM. Also reported are the initial
ADM mass, the value of the equatorial circumference as ob-
tained through the fit �Cr�EH, and the corresponding value
obtained through the estimated spin parameter �Cr�Kerr.

Model MADM �J=M�2ADM �J=M2�EH �Cr�EH �Cr�Kerr

D1 1.6653 0.2064 0.21 0.99 0.9916
D2 1.7281 0.3625 0.36 0.97 0.9734
D3 1.7966 0.4685 0.47 0.95 0.9544
D4 1.8606 0.5433 0.54 0.94 0.9372
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is possible to estimate the angular momentum as

J �
�
a
Mhor

�
Mhor M ’

�
a
Mhor

�
M2: (5.3)
2. Measuring J with the dynamical-horizon framework

A second method of approximating J and hence mea-
suring M is to use the isolated and dynamical-horizon
frameworks of Ashtekar and collaborators [106–110].
This assumes the existence of an axisymmetric Killing
vector field intrinsic to a marginally trapped surface such
as an apparent horizon. This gives an unambiguous defini-
tion of the spin of the black hole and hence of its total mass.
If there is an energy flux across the horizon, the isolated-
horizon framework needs to be extended to the dynamical-
horizon formalism [109,111].
024035
In practice, our approach to the dynamical-horizon
framework has been through the use of a code by
Schnetter which implements the algorithm of [110] to
calculate the horizon quantities. The advantage of the
dynamical-horizon framework is that it gives a measure
of mass and angular momentum which is accurately com-
puted locally, without a global reconstruction of the space-
time. One possible disadvantage is that the horizon itself is
required to be (close to) axisymmetric; so in case it de-
viates largely from axial symmetry, no information can be
found. However, because arbitrarily large distortions are
allowed as long as they are axisymmetric, we have not
encountered problems in applying the dynamical-horizon
framework to the horizons found in our simulations.

3. Measuring J from the angular velocity of the event
horizon

A third method for computing J only applies if an event-
horizon is found and if its angular velocity has been
measured. In a Kerr background, in fact, the generators
of the event horizon rotate with a constant angular velocity

! 
 �gt =g  �
�����������������
gtt=g  

q
. In this case the generator

velocity can be directly related to the angular momentum
parameter as

a
M

�
J

M2 �

�
A!2



�
1�

A!2

4

��
1=2
: (5.4)

As with the previous approximations, expression (5.4) is
strictly valid only for a Kerr black hole and will therefore
contain a systematic error which, however, decays rapidly
as the black-hole perturbations are damped. On the other
hand, the event horizon generator velocities have the con-
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siderable advantage that everything is measured instanta-
neously and the values of ! are valid whether or not the
background is an isolated Kerr black hole. The disadvant-
age, though, is that, as mentioned above, the numerical
event-horizon surfaces become systematically less accu-
rate at late times (cf. Figure 12).

4. Comparison of angular momentum measurements

A detailed comparison of the three different methods for
measuring the angular momentum of the black hole is
shown in Fig. 14. The measurement of angular momentum
using the angular velocity of the generators is shown as
solid lines. Both for slowly (left panel) and rapidly (right
panel) rotating stellar models, the event horizon has zero
area (and thus zero angular momentum) when it is first
formed. However, as the rotating matter collapses, the
event-horizon area and angular momentum grow, the black
hole is spun up and, to numerical accuracy, the total
angular momentum of the spacetime is contained within
the black hole (cf. Fig. 13). At late times, the estimate using
the generator velocities of the event horizon drifts away,
probably due to a combination of gauge effects and the
systematic errors in the trial guesses for the null surfaces.

In the case of the slowly rotating model D1, in particular,
the estimate from the dynamical-horizon finder is perfectly
stable (cf. dashed line in the left panel of Fig. 14), indicat-
ing that an approximately stationary Kerr black hole has
been formed by the time the simulation is terminated. In
the case of the rapidly rotating model D4, however, this is
no longer the case as matter continues to be accreted also at
later times, when the errors have also increased consider-
FIG. 14. Comparison of the different measures of the angular mo
estimate using the fit to the circumference ratio (see left panel of Fig
considerably more accurate at late times as the event-horizon sur
horizontal short-long dashed lines are the values of �J=M2�ADM in th
details).
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ably. As a result, the measure of the spin through the
dynamical-horizon finder is less accurate and does not
seem to have stabilized by the time the simulation ends
(cf. dashed line in the right panel of Fig. 14). This may
indicate that the final black hole has not settled down to a
Kerr black hole on the timescales considered here.

C. Black-hole mass from the Christodoulou formula

It was shown by Christodoulou that, in the axisymmetric
and stationary spacetime of a Kerr black hole, the square of
the black-hole mass M is given by [112]

M2 � M2
irr �

4J2

A
�

A
16

�
4J2

A
; (5.5)

where Mirr is the irreducible mass, A is the event horizon
proper area, and J is the black hole angular momentum. As
the black hole approaches a stationary state at late times,
the apparent and event horizons will tend to coincide and in
that case the mass of the black hole is very well approxi-
mated by the above formula.

We have applied the above formula, using the various
methods for measuring the angular momentum J. In par-
ticular, using the method for obtaining J from the distor-
tion of the event horizon, through Eq. (5.3), the black-hole
mass is given by

M2 �
A
8

�
Mhor

a

�
2
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s �
: (5.6)
mentum for the cases D1 (left panel) and D4 (right panel). The
. 13) is also shown. The dynamical-horizon spin measurement is
faces will diverge exponentially at this point. Shown with the
e two cases as measured from the initial data (see main text for
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If, on the other hand, J is found from the angular velocity
! of the event horizon, then it is possible to use (5.4) in
(5.5) and obtain

M2 �
A

16� 4A!2 : (5.7)

In the framework of dynamical horizons, expression (5.5)
holds for any axisymmetric isolated or dynamical horizon,
independently of whether it is stationary.

Figure 15 collects the four different ways of measuring
the black-hole mass for the collapse of models D1 and D4.
The different lines refer to the different approaches we
have outlined above. In addition, we display the irreducible
massMirr. The left panel of Fig. 15, in particular, shows the
results of the different measures for the slowly rotating
model D1. Because in this case all of the matter rapidly
collapses into the black hole, the different estimates of the
total mass agree very well. However, already in this slowly
rotating case the irreducible mass of the apparent horizon is
noticeably lower. The left panel also shows that while the
different methods provide comparable estimates, only the
one corresponding to Eq. (5.1) (i.e. the solid line) falls for
some time within the error-bar provided by the initial
estimate ofMADM (this is particularly evident in the inset).
Because when this happens the norms of the Hamiltonian
constraint have not yet started to grow exponentially and
the largest value of the constraint violation is about an
order of magnitude smaller (i.e. the L1norm of the
Hamiltonian constraint is �4:9� 10�4 at t � 0:56 ms)
we can use the error-bar in MADM to place an upper bound
of 0:5%MADM to the energy lost through the emission of
gravitational radiation in this case. Clearly, the true bound
FIG. 15. Comparison of the five different approaches used in the m
and D4. Different lines refer to the different methods discussed in th
methods are overall comparable when the rotation is slow, but that d
right panel (model D4) shows that the different measures can be co
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is certainly considerably lower and we expect that with
accuracies comparable to the ones of 2D simulations,
our estimates of the efficiency of gravitational radiation
emission could converge to the values of Stark and
Piran [32].

The right panel of Fig. 15, on the other hand, shows the
results of the different mass measures for the rapidly
rotating model D4. In this case, the contribution from the
spin energy is considerably larger and noticeable differ-
ences appear among the different approaches. Since all
seem to have systematic errors, this makes it less trivial
to establish which method is to prefer. On one hand, those
methods using information from the event-horizon equa-
torial circumference or that fit the perturbations of the
event horizon (i.e. Eqs. (5.1) and (5.6)) seem to provide
accurate estimates at earlier times but suffer of the overall
inaccuracy at later stages, when the initial guesses for the
null surface are distinct. It is indeed at these early times
that these measurements are within the error-bar provided
by the initial estimate of MADM. On the other hand, those
methods that measure the angular velocity of the null
generators (i.e. Eq. (5.7)) or that use the dynamical-horizon
framework produce reasonably accurate estimates, that
converge with resolution, that monotonically grow in
time and that are within the error-bar of the initial estimate
of MADM. Furthermore, in the case of the dynamical-
horizon framework, this is not only physically expected,
given that a small but nonzero fraction of the matter con-
tinues to be accreted nearly until the end of the simulation,
but it is also guaranteed analytically.

Because of these differences in the measures of M and
because the black hole does not have time to settle down to
a constant total mass, the upper bound on the energy
easure of the total black-hole mass for the collapse of models D1
e main text. The left panel (model D1), shows that the different
ifferences are already present (this is as shown in the inset). The
nsiderably different when the rotation is large.
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emission is more conservative than in case D1. In particu-
lar, taking again as a reference the time when the estimate
relative to Eq. (5.1) is within the error-bar (i.e. at t �
0:70 ms) and the largest value of the constraint violation
is about an order of magnitude smaller (i.e. the L1 norm of
the Hamiltonian constraint is �1:2� 10�3) and is not yet
growing exponentially, we place an upper bound of
1% MADM on the energy lost through gravitational radia-
tion. Once again, we expect the true value to be consid-
erably smaller.

One obvious and expected result is that the irreducible
mass in the collapse of model D4 (the dot-dashed line in
the right panel of Fig. 15) deviates by a large amount from
the actual black-hole mass, since it does not include the
rotational energy of the black hole.

Finally, we will make a comment on the different meth-
ods used for measuring the mass and spin of a black hole in
a numerical simulation. Although the direct comparison of
many different methods employed here have provided
valuable information on the dynamics of the system, we
have found the dynamical-horizon framework to be simple
to implement, accurate and not particularly affected by the
errors from which equivalent approaches seem to suffer,
as shown in our Figs. 14 and 15. As a result, we recom-
mend its use as a standard tool in numerical relativity
simulations.

D. Reconstructing the global spacetime

All of the results presented and discussed in the previous
Sections describe only a small portion of the spacetime
which has been solved during the collapse. In addition to
this, it is interesting and instructive to collect all of these
FIG. 16. Evolution of the most relevant surfaces during the collapse
the worldlines of the circumferential radii of the event horizon, of the
for the horizons we plot both the equatorial and the polar circumfe
shown for the stellar surface. Shown in the insets are the magnified
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pieces of information into a global description of the
spacetime and look for those features which mark the
difference between the collapse of slowly and rapidly
rotating stellar models. As we discuss below, these features
emerge in a very transparent way within a global view of
the spacetime.

To construct this view, we use the worldlines of the most
representative surfaces during the collapse, namely, those
of the equatorial stellar surface, of the apparent horizon
and of the event horizon. For all of them we need to use
properly defined quantities and, in particular, circumferen-
tial radii. The results of this spacetime reconstruction are
shown in Fig. 16, whose left and right panels refer to the
collapse of models D1 and D4, respectively. The different
lines indicate the worldlines of the circumferential radius
of the stellar surface (dotted line), as well as of the apparent
horizon (dashed line) and of the event horizon (solid line).
Note that for the horizons we show both the equatorial and
the polar circumferential radii, with the latter being always
smaller than the former. For the stellar surface, on the other
hand, we show the equatorial circumferential radius only.
This is because the calculation of the stellar polar circum-
ferential radius requires a line integral along the stellar
surface on a given polar slice. Along this contour one must
use a line element which is suitably fitted to the stellar
surface and diagonalized (see [103] for a detailed discus-
sion). In the case of model D4, however, this is difficult to
compute at late times, when the disc is formed and the line
integral becomes inaccurate.

Note that in both panels of Fig. 16 the event horizon
grows from an essentially zero size to its asymptotic value.
In contrast, the apparent horizon grows from an initially
nonzero size and, as it should, is always contained within
for the cases D1 and D4. Solid, dashed and dotted lines represent
apparent horizon and of the stellar surface, respectively. Note that
rential radii, while only the equatorial circumferential radius is
views of the worldlines during the final stages of the collapse.
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the event horizon. At late times, the worldlines merge to
the precision at which we can compute them. A rapid look
at the two panels of Fig. 16 is sufficient to appreciate the
different properties in the dynamics of the collapse of
slowly and rapidly rotating models.

Firstly, in the case of model D1, the differences between
the equatorial and polar circumferential radii of the two
trapped surfaces are very small and emerge only in the
inset that offers a magnified view of the worldlines during
the final stages of the collapse. This is not the case for
model D4, for which the differences are much more evi-
dent and can be appreciated also in the main panel. Of
course, this is what one expects given that the ratio of these
two quantities depends on a=M and is �1 for a slowly
rotating black hole (cf. Table II).

Secondly, the worldlines of the stellar equatorial circum-
ferential radius are very different in the two cases. In the
slowly rotating model D1, in particular, the star collapses
smoothly and the worldline always has negative slope, thus
reaching progressively smaller radii as the evolution pro-
ceeds (cf. left panel of Fig. 16). By time t ’ 0:59 ms, the
stellar equatorial circumferential radius has shrunk below
the corresponding value of the event horizon. In the case of
the rapidly rotating model D4, on the other hand, this is no
longer true and after an initial phase which is similar to the
one described for D1, the worldline does not reach smaller
radii. Rather, the stellar surface slows its inward motion
and, at around t� 0:6 ms, the stellar equatorial circum-
ferential radius does not vary appreciably. Indeed, the right
panel of Fig. 16 shows that at this stage the stellar surface
moves to slightly larger radii. This behavior marks the
phase in which a flattened configuration has been produced
and the material at the outer edge of the disc experiences a
stall (cf. the middle and lower panels of Fig. 5). As the
collapse proceeds, however, also this material will not be
able to sustain its orbital motion and, after t� 0:7 ms, the
worldline moves to smaller radii again. By a time t ’
0:9 ms, the stellar equatorial circumferential radius has
shrunk below the corresponding value of the event horizon.
VI. CONCLUSION

Although 3D numerical relativity has been a very active
research area for several years now, there are still a number
of technical issues to be addressed and physical problems
to be investigated in detail. Separate progress has been
made so far in obtaining long-term stable evolutions of
vacuum spacetimes and of spacetimes with matter. Both of
them have posed significant numerical problems because
of the existence of horizons containing physical singular-
ities, in one case, and the development of nonlinear hydro-
dynamical phenomena such as shocks, in the other. In
black-hole vacuum spacetimes, these problems have suc-
cessfully been dealt with by using better suited formula-
tions of the Einstein equations and by employing excision
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techniques for the regions of the spacetime containing the
singularity. In spacetimes containing matter, on the other
hand, sophisticated numerical techniques (such as the
HRSC methods) have been employed to accurately track
the dynamics of the shocks.

Here, we have combined these two different approaches
by implementing excision techniques within a forming
horizon, thus following the dynamics of the matter as it
accretes onto the developing black hole. We have shown
that doing so allows the numerical evolution to proceed
uninhibited from fully regular initial conditions of matter
in equilibrium and devoid of trapped surfaces, up to a
vacuum spacetime featuring an event-horizon enclosing
an excised physical singularity. This new important ability
in numerical relativity evolutions will help in a more de-
tailed investigation of complex astrophysical systems, such
as the coalescence of neutron star binaries, considered as a
prime candidate for the detection of gravitational waves,
and of the collapse of stellar cores, considered as the
progenitors of gamma-ray bursts.

Our hydrodynamical excision technique is implemented
within a new 3D general-relativistic numerical evolution
code that combines state-of-the-art numerical methods for
the spacetime evolution (i.e. the NOK formulation of the
Einstein equations with Gamma-driver shift conditions)
with an accurate hydrodynamical evolution employing
several high-order HRSC methods. The evolution of the
spacetime and of the hydrodynamics is coupled transpar-
ently through the method of lines, which allows for the
straightforward implementation of various different time-
integrators.

As a first astrophysical problem for this novel setup, we
have here focused on the collapse of rapidly rotating
relativistic stars to Kerr black holes. The stars are assumed
to be in uniform rotation and dynamically unstable to
axisymmetric perturbations. While the collapse of slowly
rotating initial models proceeds with the matter remaining
nearly uniformly rotating, the dynamics is shown to be
very different in the case of initial models rotating near the
mass-shedding limit, for which strong differential rotation
develops. Although the stars become highly flattened dur-
ing collapse, attaining a disclike shape, the collapse cannot
be halted because the specific angular momentum is not
sufficient for a stable disc to form. Instead, the matter in the
disc spirals towards the black hole and angular momentum
is transferred inward to produce a spinning black hole.

Several different approaches have been employed to
compute the mass and angular momentum of the newly
formed Kerr black hole. Besides more traditional methods
involving the measure of the geometrical properties of the
apparent and event horizons, we have fitted the oscillations
of the perturbed Kerr black hole to specific quasi-normal
modes obtained by linear perturbation theory. In addition,
we have also considered the recently proposed isolated and
dynamical horizon frameworks, finding it to be simple to
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implement and yielding estimates which are accurate and
more robust than those of other methods. This variety of
approaches has allowed for the determination of both the
mass and angular momentum of the black hole with an
accuracy unprecedented for a 3D simulation. These mea-
sures, in turn, have allowed us to set upper limits on the
energy and angular momentum that could be lost during
the collapse in the form of gravitational radiation.

Work using mesh-refinement techniques is already in
progress to extract more precise information and wave-
forms for the gravitational radiation recorded at large
distances from the collapsing stars. This aspect of the
gravitational collapse has not yet been considered in full
3D simulations and will be reported in a forthcoming paper
[45]. Finally, all of the techniques discussed here will also
be applied to the study of the collapse of differentially
rotating stars, governed by more realistic and nonisentropic
EOSs. The expectation is that initial data with J=M2 * 1
can be constructed in this case, whose collapse could lead
to the formation of a massive disc orbiting around the
newly formed Kerr black hole [12,28,38]
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APPENDIX A: NUMERICAL METHODS

In this Appendix we focus on the numerical methods
that the WHISKY code incorporates for the solution of the
general relativistic hydrodynamics equations. The corre-
sponding methods for the spacetime equations are those
implemented in the CACTUS code and they have been
reported elsewhere and the interested reader is addressed
to [13,57] for more details.

As mentioned in the main text, our code uses high-
resolution shock-capturing methods based on reconstruc-
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tion evolution methods. In this approach, all variables q are
represented on the numerical grid by cell-integral averages.
The function is then reconstructed within each cell, usually
by piecewise polynomials in a way that preserves conser-
vation of the variables q. This gives two values at each cell
boundary which are then used to solve (approximately) the
Riemann problem, giving the flux through the cell bound-
ary. A Method of Lines approach is then used to update in
time. We will here give brief descriptions of each method,
but further details can be found in [39].

1. Time update: the method of lines

The reconstruction methods guarantee that a prescribed
order of accuracy is retained in space. However, the need to
retain a high-order accuracy also in time can complicate
considerably the evolution from a time-level to the follow-
ing one. As a way to handle this efficiently, we have chosen
to follow a MoL approach [73,74]. Here, the continuum
equations are considered to be discretized in space only.
The resulting system of ordinary differential equations
(ODEs) can then be solved numerically with any stable
solver. This method minimizes the coupling between
the spacetime and hydrodynamics solvers and allows for
a transparent implementation of different evolution
schemes.

MoL itself does not have a precise truncation error but,
rather, it acquires the truncation order of the time-
integrator employed. Several integrators are available in
our implementation of MoL, including the second-order
Iterative Crank Nicholson (ICN) solver and Runge-Kutta
(RK) solvers of first to fourth-order accuracy. The second
and third-order RK solvers are known to be TVD while the
fourth-order is known to not be TVD [113,114]. As the
coupling between the spacetime and the hydrodynamics is
only second-order accurate, we typically use the ICN
solver.

The calculation of the right-hand side to feed to the ODE
splits into the following parts:
(1) C
-24
alculation of the source terms s�q�x�1�j1 ; x
�2�
j2
; x�3�j3 �� at

all the grid points.

(2) F
or each direction x�i�:

(i) Reconstruction of the data q to both sides of
a cell boundary. In this way, two values qL
and qR of qji�1=2 are determined at the cell
boundary; qL is obtained from cell ji (left
cell) and qR from cell ji � 1 (right cell) (see
Appendix A 2 for more details).

(ii) Solution at cell boundary of the approximate
Riemann problem having the values qL;R as
initial data (see Appendix A 3 for more
details).

(iii) Calculation of the intercell flux
f�x

�i���qji�1=2�, that is, of the flux across the
boundary between a cell (e.g., the ji-th) and
its closest neighbor (e.g., the �ji � 1�-th).
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(3) R
ecovery of the primitive variables and computation
of the stress-energy tensor for use in the Einstein
equations.
As a result of steps 1.–3., the core of the WHISKY code is
effectively represented by two routines. One that recon-
structs the function q at the boundaries of a computational
cell and another one that calculates the intercell flux f at
this cell boundary.

2. Reconstruction methods

For the reconstruction procedure we have implemented
several different approaches, including slope-limited TVD
methods, the Piecewise Parabolic Method [48] and the
Essentially Non-Oscillatory method [49].

The TVD method uses limiters to avoid oscillations at
shocks: we typically use the Van Leer monotized centered
method, although a variety of others (minmod, Superbee)
have also been implemented. This method is simple and
computationally the least expensive to implement, but is at
most second-order accurate, dropping to first-order at local
extrema.

The PPM method of Colella and Woodward [48] is a
composite reconstruction method that has special treat-
ments for shocks, where the reconstruction is modified to
retain monotonicity, and contact surfaces, where the re-
construction is modified to sharpen the jump. PPM con-
tains a number of tunable parameters, but we always use
those suggested by [48]. PPM is third-order accurate at
most.

The ENO methods have a large number of variants, with
the common theme that the ‘‘least oscillatory’’ stencil
amongst all possible stencils of a given order is chosen.
In practice we use it in its simplest form: direct piecewise
polynomial reconstruction of the variables, as described in
[115]. ENO has no tunable parameters besides the order of
accuracy, which may be arbitrary.

All these methods are stable in the presence of shocks.
By default we use PPM as this seems to be the best balance
between accuracy and computational efficiency, as shown,
for example, in [84], and is our best choice for all the test
evolutions we present in Appendix B.

3. Approximate Riemann problem solvers

Once a reconstruction procedure has provided data on
either side of each cell boundary, this is then used to
specify the initial states of the semi-infinite piecewise
constant Riemann problems. Since the exact solution of
the Riemann problem [116] is still too costly to use,
even when recast in an efficient form [117,118], we have
here implemented three different approximate Riemann
solvers.

The first and simplest method implemented is the HLLE
method [50]. This approximates the solution by only two
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waves with the intermediate state given by the conservation
of the mass-flux. This method is very efficient but diffu-
sive. The second method is the Roe solver [119]. This
solves a linearized problem at each boundary, approximat-
ing every wave by either a shock or a contact discontinuity.
This method is less efficient but very accurate. However, it
may have problems near sonic points. The third method is
the Marquina solver [120,121]. This is similar to the Roe
solver, except that at possible sonic points a Lax-Friedrichs
flux (analogous to the HLLE method) is used, ensuring that
the solution does not contain rarefaction shocks. Note that
we use the modified method of [51] instead of the original
method.

Both the Roe and Marquina solvers require the compu-
tation of the eigenvalues and eigenvectors (from both the
right and left cell) of the linearized Jacobian matrices AL
and AR given by fL � ALqL and fR � ARqR. We use an
implemention of the analytic expression for the left eigen-
vectors [52], thus avoiding the computationally expensive
inversion of the three 5� 5 matrices of the right eigenvec-
tors, associated to each spatial direction. We also use a
compact version of the flux formula (a variant on the
methods described in [53]) to increase speed and accuracy.
These improvements bring a �40% reduction of the com-
putational time spent in the solution of the hydrodynamics
equations and a �5� 10% reduction in evolutions involv-
ing also the time integration of the Einstein equations. The
small overall gain in efficiency is due to the fact that only
around half of the computational time is spent computing
the update of the hydrodynamic variables, with the other
half spent in the update of the spacetime field variables. Of
the time spent computing the hydrodynamic update terms
around one third is spent solving the Riemann problem.
These improvements were made by Joachim Frieben at the
Universidad de Valencia.
4. Treatment of the atmosphere

At least mathematically, the region outside our initial
stellar models is assumed to be perfect vacuum.
Independently of whether this represents a physically real-
istic description of a compact star, the vacuum represents a
singular limit of the Eqs. (2.10) and must be treated artifi-
cially. We have here followed a standard approach in
computational fluid-dynamics and added a tenuous ‘‘atmo-
sphere’’ filling the computational domain outside the star.
This approach, which was implemented also in [14,91],
was instead not used in the simulations presented in [122],
where new strategies were suggested. Unfortunately, these
corrections would not have been effective here because of
the conservation form of our hydrodynamical Eqs. (2.10),
which we have used to guarantee the correct evolution of
shocks.

We have treated the atmosphere as a perfect fluid gov-
erned by the same polytropic EOS used for the bulk matter,
-25



FIG. 17. Solution of a Riemann problem set on the main
diagonal of the cubic grid. The figure shows the comparison of
the hydrodynamical variables evolved by WHISKY, indicated with
symbols, with the exact solution. The numerical simulation was
obtained with the van Leer reconstruction method and the Roe
solver, on a grid with 1403 points.
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but having a zero coordinate velocity. Furthermore, the
rest-mass density is several (usually 7) orders of magnitude
smaller than the initial central density. Note that the atmo-
sphere used for the calculation of the initial data and the
one evolved during the simulations need not be the same.
Indeed, for the initial stellar models used for the collapse
calculations we have typically set the atmosphere to be 2
orders of magnitude smaller than the evolved one to mini-
mize spurious matter accretion onto the black-hole. In the
pulsation tests presented in Appendix B, on the other hand,
the initial and evolved atmospheres are the same.

The evolution of the hydrodynamical equations in grid-
zones where the atmosphere is present is the same as the
one used in the bulk of the flow. Furthermore, when the rest
mass in a gridzone falls below the threshold set by the
atmosphere, that gridzone is simply not updated in time.

As mentioned in Sec. IV B, the use of a tenuous atmo-
sphere has no dynamical impact and does not produce any
increase of the mass of the black hole that can be appre-
ciated in our simulations. With the rest-mass densities used
here for the atmosphere, in fact, and using the mass accre-
tion rates measured once the apparent surface is first found,
we have estimated that a net increase of �1% in the black-
hole mass would require an integration time of �104M.
These systematic errors are well below our truncation
errors, even at the highest resolutions we can afford.
FIG. 18. Central mass-density, normalized to the initial value,
in a stable TOV star (M � 1:4M� and polytropic exponent � �
2) evolution at different resolutions. PPM and Marquina were
used for all runs.
APPENDIX B: NUMERICAL TESTS

Several tests have been performed to assess the stability
and accuracy of our code, some of which have also pro-
vided new interesting physical results. Here, we briefly
discuss some of the most representative of these tests and
results, referring the interested reader to [39] for more
details.

First of all, we consider a standard shock-tube test,
setting as initial data a global Riemann problem, in par-
ticular, one in which the initial discontinuity is orthogonal
to the main diagonal of our cubic grid. More precisely the
initial data consists of a left (L) and right (R) states with
values given, respectively, by

�R � 1; pR � 1:666� 10�6; vR � 0;

�L � 10; pL � 13:333; vL � 0:

In Fig. 17 we show the solution at a given time together
with the exact solution. The excellent agreement of the two
sets of curves is particularly remarkable if one bears in
mind that the evolution is fully 3D and not simply along a
coordinate axis.

Next, we consider the evolution of a stable relativistic
polytropic spherical (TOV) star. As this is a static solution,
no evolution is expected. Yet as shown in Fig. 18, both a
small periodic oscillation and a small secular increase of
the central density of the star are detected during the
024035
numerical evolution of the equations. Both effects have,
however, a single explanation. Since the initial data con-
tains also a small truncation-error, this is responsible for
triggering radial oscillations which appear as periodic
variations in the central density. As the resolution is in-
creased, the truncation error is reduced and so is the
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amplitude of the oscillation. The secular growth, on the
other hand, is a purely numerical problem, probably related
to the violation of the constraint equations. As for the
oscillation amplitude, also the secular growth converges
to zero with increasing resolution. Note that the conver-
gence rate is not exactly second-order but slightly
smaller, because the reconstruction schemes are only
first-order accurate at local extrema (i.e. the center and
the surface of the star) thus increasing the overall trunca-
tion error [35].

In order to further investigate the accuracy of our im-
plementation of the hydrodynamics equations, we have
suppressed the spacetime evolution and solved just the
hydrodynamics equations in the fixed spacetime of the
initial TOV solution. This approximation is referred to as
the ‘‘Cowling approximation’’ and is widely used in per-
turbative studies of oscillating stars. In this case, in addi-
tion to the confirmation of the convergence rate already
checked in fully evolved runs, we have also compared the
frequency spectrum of the numerically induced oscillation
with the results obtained by an independent 2D code [84]
and with perturbative analyses.

In Fig. 19 we show a comparison between the two codes
reporting the power spectrum of the central density oscil-
lations computed with the WHISKY code and the corre-
sponding frequencies as obtained with perturbative
techniques and with the 2D code. Clearly the agreement
is very good with an error below 1% in the fundamental
frequency. The fact that the frequencies computed with the
code coincide with the physical eigenfrequencies calcu-
lated through perturbative analysis allows us to study with
our code the physical properties of linear normal-modes of
FIG. 19. Power spectrum of the central mass-density evolution
of an M � 1:4M�, � � 2 stable TOV star performed with 1283

grid points. The units of the vertical axis are arbitrary.
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oscillation even if such oscillations are generated
numerically.

The last test performed in the linear regime consists of
the evolution of stationary solutions of rapidly rotating
stars, with angular velocity up to 95% of the allowed
mass-shedding limit for uniformly rotating stars. In this
case, a number of small improvements on the boundary and
gauge conditions have allowed us to extend considerably
the timescale of our evolutions of stable rapidly rotating
stars, which can now be evolved for about 10 ms, a time-
scale which is 3 times larger than the one previously
reported in [14]. In analogy with the nonrotating case,
the truncation error triggers quasiradial oscillations in the
star. Such pulsations converge to zero with increasing
resolution. Determining the frequency spectrum of fully
relativistic and rapidly rotating stars is an important
achievement, allowing the investigation of a parameter
space which is astrophysically relevant but too difficult to
treat with current perturbative techniques. More details on
this investigation will be presented in a separate paper.

Finally, we have considered tests of the nonlinear dy-
namics of isolated spherical relativistic stars. To this pur-
pose we have constructed TOV solutions that are placed on
the unstable branch of the equilibrium configurations (see
inset of Fig. 20). The truncation error in the initial data for
a TOV solution is sufficient to move the model to a differ-
ent configuration and in WHISKY this leads to a rapid
migration toward a stable configuration of equal rest
mass but smaller central density. Such a violent expansion
produces large amplitude radial oscillations in the star that
are either at constant amplitude, if the polytropic EOS
(2.12) is used, or are damped through shock heating, if
the ideal-fluid EOS (2.14) is used and the equation for - is
FIG. 20. Normalized central mass-density evolution of an
M � 1:4M�, � � 2 unstable TOV star performed with 963

grid points.
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evolved in time. A summary of this dynamics is presented
in Fig. 20, which shows the time series of the normalized
central density for a TOV solution. Note that the asymp-
024035
totic central density tends to a value corresponding to a rest
mass slightly smaller than the initial one (straight dotted
line). This is the energy loss due to the internal dissipation.
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