
PHYSICAL REVIEW D 71, 024028 (2005)
Universality of the Hawking effect
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Addressing the question of whether the Hawking effect depends on degrees of freedom at ultrahigh
(e.g., Planckian) energies/momenta, we propose three rather general conditions on these degrees of
freedom under which the Hawking effect is reproduced to lowest order. As a generalization of Corley’s
results, we present a rather general model based on nonlinear dispersion relations satisfying these
conditions together with a derivation of the Hawking effect for that model. However, we also demonstrate
counter-examples, which do not appear to be unphysical or artificial, displaying strong deviations from
Hawking’s result. Therefore, whether real black holes emit Hawking radiation remains an open question
and could give nontrivial information about Planckian physics.
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I. INTRODUCTION

The striking similarity between the laws of black hole
physics and the (zeroth till third) law of thermodynamics
motivated the idea to assign thermodynamic properties
such as temperature and entropy to black holes [1].
Hawking’s prediction [2] that black holes should emit
thermal radiation with the temperature being consistent
with the thermodynamic interpretation strongly supported
this idea. As a consequence, the concept of black hole
entropy as given by the surface (horizon) area of the black
hole in Planckian units (instead of the volume, for ex-
ample) is now used in many ways to estimate the total
entropy of other objects—which is expected to be a mea-
sure of the number of fundamental degrees of freedom of
the underlying theory (including quantum gravity).

However, in view of the (exponential) gravitational red-
shift near the horizon, the outgoing particles of the
Hawking radiation originate from modes with extremely
large (e.g., trans-Planckian) wavenumbers. As the known
equations of quantum fields in curved space-times are
expected to break down at such wavenumbers, the deriva-
tion of the Hawking radiation has the flaw that it applies a
theory beyond its region of validity. This observation poses
the question of whether the Hawking effect is independent
of Planckian physics or not.

One way to address this question is to model the break-
down of the (usual) local Lorentz invariance (to be ex-
pected at the Planck scale) by a (nonlinear) deviation from
the linear dispersion relation at high wavenumbers, see,
e.g., [3,4]. This method is inspired by the black hole
analogues which exploit the analogy between the propa-
gation of excitations (e.g., sound waves) in laboratory-
physics systems and quantum fields in curved space-times,
see, e.g., [5–7].

In Secs. II, III, IV, and V we generalize and simplify the
model and the results presented by Corley in [3] (see also
[4]) trying to identify and to present the crucial points.
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Section VI is devoted to the question of which conditions
and assumptions regarding Planckian physics are needed to
reproduce Hawking’s result—together with some counter-
examples.
II. LINEAR MODEL

At first we consider a subluminal dispersion relation cf.
Fig. 1, which is in some sense conceptually more clear
because the in-modes generating the Hawking radiation
come from outside the black hole. The horizon acts as a
classical turning point where the JWKB (geometric optics)
approximation breaks down allowing phenomena like par-
ticle creation. In contrast to Ref. [3], we shall not specify
the shape of the dispersion relation apart from some rather
general assumptions.

A. Wave Equation

The geometry as seen by the low-energy particles is
described in terms of the 1� 1 dimensional Painlevé-
Gullstrand-Lemaı̂tre [8] metric ( �h � c � 1 throughout)

ds2 � dt2 � �dx� v�x�dt�2

� �1� v2�dt2 � 2vdtdx� dx2: (1)

The quantity v�x� can be interpreted as the local velocity of
the freely falling frames measured with respect to the time
t corresponding to the Killing vector @t of that stationary
metric. In terms of the sonic black hole analogues, t is the
laboratory time and v is just the position-dependent veloc-
ity of the fluid with the (assumed to be constant) speed of
sound being absorbed by a redefinition of the coordinates.
Since the behavior near the horizon in arbitrary dimensions
is essentially 1� 1 dimensional for each mode, we restrict
ourselves to 1� 1 dimensions. Furthermore, we neglect
backscattering (as induced by the angular-momentum bar-
rier, for example).
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FIG. 1. Subluminal dispersion relation (not to scale). The
points of intersection (black circles) with the two lines for v >
1 (i.e., x < 0) and v < 1 (i.e., x > 0) determine the solutions of
the dispersion relation for a given !. The two points correspond-
ing to large wavenumbers k�
 have group velocities smaller than
v, i.e., they are ‘‘swept away’’ and approach the horizon from
above x > 0. Hence these solutions are the in-modes. The other
solution at x > 0 with the group velocity exceeding v represents
the outgoing Hawking radiation. The only solution beyond the
horizon x < 0 again has a group velocity smaller than v. The
corresponding wavefunction represents the infalling partner par-
ticles of the outgoing Hawking radiation, which have a negative
energy as measured from infinity. During the evolution, the high-
wavenumber in-modes k�
 (x decreases� v increases) are
being converted into the low-wavenumber Hawking radiation
plus partner particles—where the break down of the JWKB
approximation near the horizon leads to a mixing of these modes
resulting in particle creation.
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In order to ensure hyperbolicity, causality, and stability,
we only allow second time-derivatives. Hence the gener-
alized Klein-Fock-Gordon equation reads
�
@
@t
�

@
@x

v�x�
��

@
@t
� v�x�

@
@x

�
� �

�
@2

@x2
� F

�
@2

@x2

��
�;

(2)
with the function F representing the nontrivial dispersion
relation. In general, the function F might contain an arbi-
trary number of derivatives—, i.e., be nonlocal (think of a
lattice, for example). Note that we do not take into account
absorption (i.e., F is real). The resulting dispersion relation
�!� vk�2 � k2 � F��k2� is plotted in Fig. 1.

For a stationary metric as in Eq. (1), we may separate the
most general solution of the Klein-Fock-Gordon Eq. (2)
into stationary modes with frequencies !
024028
�
F
�
@2

@x2

�
� �1� v2�

@2

@x2
� 2v�i!� v0�

@
@x
�

i!�i!� v0�
�
�! � 0: (3)

The black-hole horizon is assumed to be located at x � 0
and hence the Taylor expansion of the velocity around this
point reads

v�x� � �1� �x�O��2x2�; (4)

with � denoting the surface gravity.

B. Assumptions

Let us summarize the assumptions that will be used for
deriving the Hawking effect:

Obviously, the surface gravity of the black hole (and
hence the temperature of the Hawking radiation) must be
much smaller than the cut-off scale where the concept of
geometry and metric breaks down (i.e., F is not negligible
anymore)

�		kcutoff : (5)

Furthermore, we shall assume that particle creation—ne-
cessitating a break-down of the JWKB (geometric optics)
approximation—occurs in the vicinity of the horizon only.
Hence we shall consider an intermediate regime: close to
the horizon at x � 0 in units of �

�jxj 	 1; (6)

but still many cut-off lengths away from the horizon

jxjkcutoff��1: (7)

Based on the above assumptions, we may neglect terms
of second and higher order in � and ! since we are
interested in low-frequency modes ! � O��� only
(Hawking radiation). Accordingly, the wave Eq. (3) sim-
plifies to�

F
�
@2

@x2

�
� 2�x

@2

@x2
� 2�i!� ��

@
@x

�
�! � 0: (8)

At this stage, it is advantageous to Laplace transform this
equation via

�!�x� �
Z

C
dsexs e�!�s�: (9)

where the contour C in the complex plane will be discussed
below. Note the change of sign in the second term due to
the integration by parts. The wave equation for the Laplace

transformed mode e�!�s� in terms of the complex variable
s reads�

F�s2� � 2�
@
@s

s2 � 2�i!� ��s
� e�! � 0: (10)
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In the following, we shall impose the following condi-
tions on the dispersion relation F�s2�:
(i) T
he dispersion relation F�s2� is assumed to be an
analytic function of s2.
(ii) H
ence it possesses a Laurent/Taylor expansion

F�s2� � k2cutoff
X1
n�2

an

�
s

kcutoff

�
2n
; (11)

where the (nonvanishing) coefficients an and the
radius of convergence are supposed to be of order
one—, i.e., the dispersion relation does not depend
on small quantities like �=kcutoff .
(iii) F
urthermore, we assume a subluminal dispersion
relation, i.e., in the rest frame, we have�
d!
dk

�
2
� 1�0 � !2 � k2 � F��k2� � k2

�0 � F��k2� � k2: (12)
(iv) F
inally, we assume that asymptotically k2 " 1, the
dispersion relation is well separated from the line
! � k, i.e., the phase velocity does not approach
unity

lim
k2"1

!2

k2
< 1�lim

k2"1

F��k2�

k2
� F1 > 0: (13)
Apart from these assumptions we do not need to specify the
dispersion relation any further. For convenience, we shall
choose units in which kcutoff � 1 and omit it in the follow-
ing equations.
III. ANALYTICAL DERIVATION

A. Complex Plane and Asymptotics

After a separation of variables, the Laplace transformed
wave Eq. (10) can be cast into the following form

@
@s

ln�s2 e�!� �
F�s2� � 2�i!� ��s

2�s2
: (14)

Up to an irrelevant prefactor due to the integration con-
stant, its solution reads

e�!�s� �
s�i!=�

s
exp

(Z
ds

F�s2�

2�s2

)
: (15)

Since F�s2�=s2 is analytic, the Laplace transform e�!�s�
has a singularity at s � 0 and a branch cut from s � 0 to
infinity—but no further singularities at finite values of s.
We choose the negative real axis =�s� � 0 and <�s�< 0
for the branch cut since this choice will be most convenient
for deriving Hawking radiation—for an alternative choice,
see Sec. V.
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As in the usual Fourier transform, we choose a contour
that approaches infinity along the imaginary axis s � ik. In
this case, the overall exponent in Eq. (9) is purely imagi-
nary and behaves for large jsj � jkj as

exp

(
xs�

Z
ds

F�s2�

2�s2

)
� exp



xs�

sF1
2�

)
; (16)

according to assumption (13). Hence the exponential func-
tion is rapidly oscillating at large jsj and thus yields (again
at large jsj) no contribution to the integral in Eq. (9). The
k-integral over expfik�x� F1=�2���g gives ��2�x� F1�
and hence vanishes since �jxj 	 1. (As we shall see below,
the same result can be obtained by deforming the contour
of integration in the complex plane.) From a physical point
of view, this result is not very surprising since—given a
nontrivial dispersion relation—one would not expect mo-
menta which are much larger than the cut-off to contribute.
(This expectation is however false for F � 0.) The signifi-
cant contributions will be found by the stationary phase
method, or, after deforming the contour, the saddle-point
method.

B. Saddle Point Method

In order to apply the saddle point method, let us rewrite
the Laplace transformation in Eq. (9) as

�!�x� �
Z

C
dsg�s�exf�s�; (17)

with the two auxiliary functions

g�s� �
s�i!=�

s
; (18)

and

f�s� � s�
1

x

�Z
ds

F�s2�

2�s2

�
: (19)

The saddle points s
 of f�s� are determined by�
df
ds

�
s�s


� 0�2�s2
x� F�s2
� � 0: (20)

Many cut-off lengths away from the horizon jxj��1 (but
still �jxj 	 1), we can approximate the integral in Eq. (9)
by the saddle-point expansion

�!�x� �

��������������������
2�

�xf00�s
�

s
exf�s
�g�s
�; (21)

where a sum over multiple saddle points is implied with
proper orientation. The next terms of the saddle-point
expansion are suppressed by a factor of order

g00�s
�
g�s
�xf

00�s
�
� O

�
1

xs


�
; (22)

and can be neglected if x is sufficiently large to overcome
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FIG. 2. Landscape plot (top) of the real part of the logarithm of
the integrand in Eq. (9) for a subluminal dispersion relation and
the case x � �5 and ! � � � 1=30 as well as contour in the
complex plane (bottom). The black square denotes the singular-
ity and the zig-zag line is the branch cut. The behavior of the
landscape near the imaginary axis is generic, but the structure
away from that axis (e.g., existence of further saddle points)
depends on the particular form of the (subluminal) dispersion
relation (here F�s2� � s4).
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the smallness of s
, which depends on the small quantity
�x via Eq. (20).

Along the imaginary axis s
 � ik
, the possible saddle
points are given by

F��k2
� � 2�xk2
 � �1� v2�k2
 �O��2�; (23)

i.e., they exactly coincide with the solutions of the disper-
sion relation (see Fig. 1) for k � !

k2
 � F��k2
� � �!� vk
�
2 � v2k2
; (24)

since ! � O��� and jxj��1.

C. Contour for x < 0

Since the solutions of the dispersion relation and hence
the saddle points depend on the sign of x, i.e., on which
side of the horizon is considered, it is convenient to choose
different contours in the complex plane for x > 0 and x < 0
making sure that they are deformable to each other as x
goes through zero. Let us first study the case x < 0, i.e., the
solution of the wave equation beyond the horizon cf.
Figure 2.

Along the imaginary axis s � ik the exponent in
Eq. (21) is purely imaginary

<ff�ik�g � 0; (25)

whereas its derivative is purely real and positive

f0�ik� � 1�
F��k2�

2�xk2
> 0; (26)

because x < 0 and F��k2� � 0 cf. assumption (12). As a
result j expfxf�s�gj decreases rapidly (x < 0) with increas-
ing <fsg and there are no saddle points on the imaginary
axis s � ik. Hence we can deform the contour into the
valley at <fsg> 0 until we hit possible saddle points at

<fs
�x < 0�g> 0; (27)

with values

<ff�s
�x < 0��g> 0: (28)

Since the coefficients in the Laurent/Taylor expansion of
F�s2� are of order one, the real part of the saddle point
satisfying 2�s2
x� F�s2
� � 0 is mainly determined by the
small quantity �x	 1. Again we assume that the size of
x��1 overcomes the smallness of �x 	 1 and conse-
quently obtain a solution

�!�x < 0� �

��������������������
2�

�xf00�s
�

s
exf�s
�g�s
�; (29)

which decays exponentially fast beyond the horizon.
Note that, even if we encounter no saddle points, the

contour can still be deformed such that the contributions
are exponentially small cf. Fig. 2. In this way the chosen
contour yields basically no contribution beyond the hori-
024028
zon x < 0—which is exactly what we want for the deriva-
tion of the outgoing Hawking radiation.

D. Contour for x > 0

In order to derive the solution outside the horizon x > 0,
another contour is needed for applying the saddle point
method cf. Figure 3. The exponent in Eq. (21) is still purely
imaginary along the imaginary axis s � ik, but the slope

f0�ik� � 1�
F��k2�

2�xk2
; (30)
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FIG. 3. Landscape plot (top) of the real part of the logarithm of
the integrand in Eq. (9) for a subluminal dispersion relation and
the case x � �5 and ! � � � 1=30 as well as contour in the
complex plane (bottom). The black square denotes the singular-
ity, the black dots are the saddle points, and the zig-zag line is the
branch cut. The behavior of the landscape near the imaginary
axis is generic, but the structure away from that axis (e.g.,
existence of further saddle points) depends on the particular
form of the (subluminal) dispersion relation (here F�s2� � s4).
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changes its sign at saddle points s�
 � �ik
. The condition
(11) ensures the existence of exactly two (symmetric)
saddle points along the imaginary axis—i.e., solutions of
the dispersion relation with finite values of f00�s
�—but the
analysis can easily be generalized to the case of more than
two saddle points.

For small k 	 1, the first term dominates according to
Eq. (11)

F��k2 " 0� 	 k2�1�
F��k2�

2�xk2
� 1; (31)
024028
and hence the valley is on the side <fsg< 0 of the imagi-
nary axis—whereas for k2 > k2
, the slope f0�ik� is nega-
tive and thus the valley is on the other side <fsg> 0.
Hence the contour must cross these two saddle points (cf.
Figure 3) and pick up the corresponding contributions

��
!�x > 0� �

���������������������
2�

�xf00�s�
 �

s
exf�s

�

 �g�s�
 �

�

��������������������������
2�

�xf00��ik
�

s
exf��ik
�g��ik
�

�

����������������������
2�

�xf00�ik
�

s
e�xf�ik
�g��ik
�: (32)

As f�ik
� is purely imaginary, the only difference in the
absolute values of the two contributions is determined by
the branch cut in g�s�
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� e�!=�: (33)

Ergo, the two saddle points at s�
 � �ik
 yield two rapidly
(x��1) and oppositely oscillating contributions, whose
absolute values satisfy the above relation (which will be-
come important later on).

E. Branch Cut

Between the two saddle points �k
 < k< k
, the valley
lies on the same side <fsg< 0 of the imaginary axis as the
branch cut does cf. Fig. 3. If it was not for the branch cut,
the contour (originating from infinity) could be closed in
this valley after crossing the two saddle points at s�
 �
�ik
 such that all additional contributions (possibly fur-
ther saddle points) are exponentially smaller than those of
the saddle points at s�
 � �ik
. However, the branch cut
demands that we integrate along it to s � 0 from both sides
(with the proper orientation) and in circumventing the
branch cut, we pick up the difference in the values of g�s�

g�=�s� # 0� � g�=�s� " 0� � 2 sinh
�
�!
�

�
jsj�i!=�

s
: (34)

In this way, we obtain an additional contribution

�rest
! �x� � 2 sinh

�
�!
�

�Z ds
s
jsj�i!=�

� exp


xs�

Z
ds

F�s2�

2�s2

�
; (35)

where the integral runs from 0 along the negative real axis
up to the intersection point of the contour with the branch
cut. In view of x��1, we can omit the second term in the
integrand and extend the interval to �1

�rest
! �x > 0� � 2 sinh

�
�!
�

�Z �1

0

ds
s

expfxsg

jsji!=�
: (36)

Outside the horizon x > 0—the region we are interested
-5
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FIG. 4. Superluminal dispersion relation (not to scale). The
points of intersection (black circles) with the two lines for v > 1
(i.e., x < 0) and v < 1 (i.e., x > 0) determine the solutions of the
dispersion relation for a given !. As in the subluminal case, the
out-modes are the low-wavenumber solutions corresponding to
the outgoing particles of the Hawking radiation (x > 0) and their
infalling partners (x < 0). However, the high-wavenumber in-
modes k�
 have group velocities exceeding v and hence are
approaching the horizon from the inside x < 0.
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in—we may substitute � � jxsj and obtain

�rest
! �x > 0� � �2 sinh

�
�!
�

�
xi!=�

Z 1

0

d�
�

e��

�i!=�
; (37)

which is just an integral representation of the �-function,
i.e.,

�rest
! �x > 0� � �2 sinh

�
�!
�

�
�
�
�

i!
�

�
xi!=�: (38)

Together with the contributions in Eq. (32), this completes
the (approximate) solution of the wave equation outside the
horizon—for the case that the solution basically vanishes
beyond the horizon. Of course, we can only draw this
conclusion if the two contours for x > 0 and x < 0 in
Figs. 2 and 3 are deformable to each other as x crosses
zero. This property is ensured by assumption (11) since the
part of the complex plane covered during the deformation
of the contours (�jxj 	 1�js
j 	 1) is well inside the
radius of convergence of order one.

F. Bogoliubov Coefficients

Let us identify the various parts of the solution. The
contribution generated by the branch cut �rest

! �x� is the
wavefunction of an outgoing particle with a low wave-
number k � O�!� (e.g., Hawking radiation). The saddle
point contributions ��

!�x�, on the other hand, are rapidly
oscillating, since the largeness of x��1 is supposed to be
stronger than the smallness of s
��x�.

As one can observe in Fig. 1, the group velocity of the
low-energy mode �rest

! �x� exceeds v�x�, as one should
expect for an outgoing particle—whereas the group veloc-
ity of the rapidly oscillating modes ��

!�x� is smaller than
v�x�. Hence these are the in-modes �in

�.
Furthermore, the frequencies of the rapidly oscillating

modes in the freely falling frame �� � !� vk
 have
different signs because k
 � ! (although ! > 0 for both
modes). As a result, the low-energy outgoing particle (e.g.,
Hawking radiation) is a mixture of positive and negative
frequency (with respect to the freely falling frame) in-
modes—which can be described in terms of the
Bogoliubov coefficients

�out
! � �!�in

� � �!�in
�: (39)

A nonvanishing Bogoliubov �!-coefficient of course cor-
responds to the phenomenon of particle creation—i.e., the
in-vacuum with respect to the freely falling frame is con-
verted into a quantum state containing particles (Hawking
radiation) by the horizon. The ratio of the Bogoliubov
coefficients is determined by Eq. (33)

j�!j � e��!=�j�!j; (40)

which is the well-known relation leading to the thermal
Hawking spectrum. E.g., applying the unitarity relation of
the Bogoliubov coefficients � � �y � � � �y � 1, we im-
024028
mediately obtain the thermal spectrum hN̂!i � j�!j
2 /

1=�e2�!=� � 1�.
Note that the quantum state generated by the time-

evolution of the in-vacuum also contains particles with
low wavenumbers beyond the horizon (see Fig. 1). As
required by energy conservation and unitarity, for each
outgoing particle of the Hawking radiation, there is a
corresponding partner particle with negative energy (as
measured from infinity) inside of the black hole—but
this does not alter presented calculation cf. [3]. There
are, however, correlations between the outgoing Hawking
particle and its partner beyond the horizon—which gen-
erate the true thermal character (mixed state instead of pure
state) of the Hawking radiation for any outside observer
(thermo-field formalism [4,9]), see Sec. V below.

The branch cut in the complex plane caused by the
horizon turns out to be a main ingredient for deriving the
Hawking effect—it generates the contribution �rest

! �x� as
well as the ratio in Eq. (33)—which are both essential
features.
IV. SUPER-LUMINAL DISPERSION

So far, we restricted our attention to a subluminal dis-
persion relation only. As we shall see now, the case of a
superluminal dispersion as in Fig. 4 can be treated in
-6
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FIG. 5. Landscape plot (top) of the real part of the logarithm of
the integrand in Eq. (9) for a superluminal dispersion relation
and the case x � �5 and ! � � � 1=30 as well as contour in
the complex plane (bottom). The black square denotes the
singularity and the zig-zag line is the branch cut. The behavior
of the landscape near the imaginary axis is generic, but the
structure away from that axis (e.g., existence of further saddle
points) depends on the particular form of the (superluminal)
dispersion relation (here F�s2� � �s4).
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basically the same way. The steps and derivations from
Eq. (1) to Eq. (11) are identical, and we choose the same
branch cut. Of course, for a superluminal dispersion rela-
tion we have to modify assumptions (12) and (13) accord-
ingly in order to ensure a vanishing asymptotical
contribution at the imaginary axis s � ik. The derivations
in Secs. IIIA and IIIB apply in the same way, but now the
solutions of the dispersion relation with large wavenum-
bers (the in-modes) are superluminal, i.e., they originate
from inside the black hole, see Fig. 4.

A. Contour for x > 0

Let us first consider the solution outside the black hole,
see Fig. 5. In contrast to the subluminal case, the function
f�s� in the exponent has a positive slope for all k-values

f0�ik� � 1�
F��k2�

2�xk2
> 0; (41)

because F��k2�< 0, and, consequently, the valley is now
situated at negative real parts of s. Deforming the contour
into the valley, all contributions become exponentially
small—but (again) we have to circumvent the branch
cut. The contribution of the branch cut yields the same
result as in Sec. IIIE. Ergo, outside the black hole, we have
only the outgoing Hawking particle—which is exactly
what one would expect in the superluminal case.

B. Contour for x < 0

For x < 0, i.e., beyond the horizon, the slope f0�ik�
changes its sign at the saddle points (i.e., the solutions of
the dispersion relation with large wavenumbers) and the
contour has to cross the imaginary axis picking up the
saddle point contributions cf. Fig. 6. For those contribu-
tions, we basically obtain the same results as in Eq. (32)
and hence in Eq. (33), because the branch cut is identical.

Therefore, we reach the same conclusion as in Sec. IIIF
where now the in-modes originate from inside the black
hole. Hence we reproduce Hawking radiation also for a
superluminal dispersion—provided that the in-modes
(large wavenumbers) are initially in their ground state
with respect to the freely falling frame.

V. ENTANGLEMENT

So far, we restricted our attention to the decomposition
of the outgoing Hawking radiation in terms of the in-modes
cf. Eq. (39). However, a full description of the evolution of
the quantum state requires a complete set of out-modes,
i.e., the outgoing Hawking particles as well as their infal-
ling partners. Fortunately, it turns out that the Bogoliubov
coefficients of the infalling partners can be inferred in
complete analogy to the previous Sections if we choose
the branch cut in the opposite way, i.e., along the positive
real axis =�s� � 0 and <�s�> 0. Circumventing this
branch cut then reproduces the wavefunction of the infal-
024028
ling partner particles as in Sec. IIIE (but with x ! �x),
and, consistently, this contribution only occurs for x < 0,
i.e., beyond the horizon. Again, for both cases (sub- and
superluminal), one obtains basically the same relation

�partner
! � �partner

! �in
� � �partner

! �in
�: (42)

Note that we have interchanged the role of the creation and
annihilation operators and hence �partner and �partner here
because the energy of the infalling partner particles is
negative as measured from infinity and their pseudonorm
is negative for positive !. The opposite direction of the
branch cut implies the inverse relation compared to
Eq. (33) and together with the above interchange, we
-7
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derive the same ratio as in Eq. (40)

j�partner
! j � e��!=�j�partner

! j: (43)

The knowledge of the complete set of out-modes (Hawking
radiation �Hawking

! plus their infalling partners �partner
! )

facilitates the decomposition of the in-modes in terms of
the out-modes

�in
� � �inv

! �partner
! � �inv

! �Hawking
! : (44)

In view of the relations (40) and (43) as well as unitarity
� � �y � � � �y � 1, the inverse Bogoliubov coefficients
024028
satisfy an analogous condition

j�inv
! j � e��!=�j�inv

! j: (45)

Consequently, the in-vacuum defined via âinj0ini � 0 will
be annihilated by a linear combination of the operators
corresponding to the out-modes

�âpartner
! � e��!=��âHawking

! �y�j0ini � 0; (46)

where an irrelevant phase has been absorbed by the rede-
finition of âpartner

! . This well-known relation (see, e.g., [10])
induces the entanglement between the particles of the
Hawking radiation âHawking

! and their infalling partners
âpartner
!

j0i!in / expfe��!=��âpartner
! âHawking

! �ygj0i!out; (47)

which in turn generates the thermal density matrix after
averaging over the unobservable infalling partners.

VI. UNIVERSALITY

The derivation presented in the previous Sections dem-
onstrates that the Hawking effect does (to lowest order) not
depend on the details of the dispersion relation at high
wavenumbers—given the model assumptions discussed
above. Let us try to identify more general conditions under
which the Hawking should remain unchanged by the de-
tails of the physics at large wavenumbers. For convenience,
we shall assume that the cut-off scale coincides with the
Planck scale and use the terms sub-Planckian for effects
according to the known laws of physics (e.g., linear dis-
persion) and trans-Planckian for new physics (e.g., non-
linear dispersion).

First of all, we assume that the JWKB (geometric optics
or eikonal) approximation breaks down (thereby allowing
for the phenomenon of particle creation) in the vicinity of
the horizon only, where the gravitational red-shift induces
a transition of trans-Planckian into sub-Planckian modes.
An example where this assumption does not apply will be
discussed in Sec. VIB.

Given that assumption, the crucial point is the quantum
state of the modes when they leave the Planckian regime. If
the modes leave the Planckian regime (’’are born’’) in their
ground state with respect to freely falling observers near
the horizon, then one obtains Hawking radiation cf.
[10,11]. Let us review the standard argument leading to
that conclusion. In terms of the Regge-Wheeler tortoise
coordinate r
, the 1� 1 dimensional Schwarzschild metric
can be cast into the conformally flat form

ds2 �
�
1�

2M
r

�
�dt2 � dr2
� ’ exp



r

2M

�
�dt2 � dr2
�;

(48)

where the ’ applies near the horizon. The trajectory of a
freely falling observer is given by (A and B are integration
constants)
-8
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r
�t " 1� ’ �t� A exp


�

t
2M

�
� B; (49)

and its proper time d$2 � ds2�t; r
�t�� accordingly reads

$! exp


�

t
2M

�
: (50)

Hence the freely falling observers would define their
ground state via the positive frequency solutions

Fin
!�U� �

1�����������
4�!

p e�i!U; (51)

with respect to the Kruskal coordinate

U � �4Me�u=�4M� � �4Me��t�r
�=�4M�: (52)

The doubly exponential behavior of these modes—when
expressed in terms of the coordinates t; r of an outside
observer—lead to the thermal particle content.

The remaining issue is, of course, to determine in which
cases the modes do indeed leave the Planckian regime in
their ground state with respect to freely falling observers
(near the horizon). As a very natural example, one could
ensure this property by means of the following three as-
sumptions:
(a) F
reely falling frame If we assume that the usual
local Lorentz invariance is broken at the Planck
scale via the introduction of preferred frames (where
preferred frames are the frames in which Planckian
physics displays maximal symmetry under time-
inversion, for example) then the freely falling frame
should be preferred (instead of the rest frame of the
black hole, for example).
(b) G
round state The Planckian excitations are as-
sumed to start off in their ground state (with respect
to the freely falling frame, see point above) subject
to possible constraints such as conservation laws
etc.
(c) A
diabatic evolution Finally the evolution of the
modes is supposed to be adiabatic—, i.e., the
Planckian dynamics is supposed to be much faster
than all external (sub-Planckian) variations (e.g.,
experienced by a traveling wavepacket). This con-
dition demands the absence of level crossing and
long time-scales in Planckian physics.
E.g., for the sonic black hole analogues (’’dumb holes’’)
such as a fluid flowing trough a Laval nozzle (accelerated
from subsonic to supersonic speed), the freely falling
frame corresponds to the local rest frame of the flowing
fluid, whereas the rest frame of the walls of the nozzle is
analogous to the global rest frame of black hole. Of course,
one can easily imagine situations where at least one of the
above assumptions fails. E.g., for a superluminal disper-
sion relation, the modes with large wavenumbers originate
from inside the black hole, i.e., ultimately from the singu-
larity (of from a turbulent regime), and it is not obvious
024028
why they should be in their ground state. Further examples
for the failure of the above assumptions, where the refer-
ence frame for Planckian physics is not the local freely
falling frame but the global rest frame of black hole; or
where the adabaticity breaks down, are the subject of the
next Sections.

A. Miles Instability

As an example, in which the aforementioned set of
assumptions fails and which does not reproduce Hawking
radiation, let us consider the following fluid model: Apart
from a deviation from the usual dispersion relation as
described by a k-dependent phase velocity v2

ph�k�, we
suppose a coupling to a reservoir of Planckian degrees of
freedom in the rest frame of the black hole (i.e., not the
freely falling frame) manifesting itself as an effective
dissipation term in the dispersion relation

�!� vflk�
2 � k2v2

ph�k� � 2i!'�k�: (53)

The k-dependence of the damping term '�k� ensures that it
is completely negligible at sub-Planckian wavenumbers.

In flat space-time (fluid at rest vfl � 0), the damping
term just implies a decay of the Planckian modes (as one
would expect). For a black hole, the Planckian modes
giving rise to Hawking radiation, however, behave in a
different way. As one can easily perceive from Figs. 1 and
4, for solutions of the dispersion relation with large
(Planckian) wavenumbers, we have

jv2
ph�k� � v2

flj 	 1: (54)

Expanding the relevant solution of Eq. (53) for ! in powers
of this small quantity, we obtain

!� �
k2

2

v2
ph�k� � v2

fl

vflk� i'�k�
: (55)

Assuming a real wavenumber, the imaginary part of the
frequency changes its sign if the fluid velocity exceeds the
phase velocity

=�!�> 0; (56)

which indicates an instability. This phenomenon is basi-
cally the Miles instability—which is responsible for the
generation of water waves by wind, for example [12].

If k and ' are of order one (in Planckian units), the
imaginary part of ! is of the same order as the real part

=�!� � O�<�!��; (57)

and since ! � O��� corresponds to the inverse size of the
black hole, there can be enough time for the instability to
develop and to excite the modes. Note that positive fre-
quency (trans-Planckian) modes with v2

ph�k�> v2
fl are

damped but negative frequency modes with v2
ph�k�< v2

fl

are amplified. Hence this effect destroys the balance in
-9



WILLIAM G. UNRUH AND RALF SCHÜTZHOLD PHYSICAL REVIEW D 71, 024028 (2005)
Eq. (40) which generates the thermal spectrum of the
Hawking radiation.

However, the above analysis based on classical solutions
of the dispersion relation cannot be applied directly, i.e.,
without respecting the fluctuation-dissipation theorem, for
example, to the quantum fluctuations that generate the
Hawking radiation. In order to turn our attention to the
quantum theory, let us consider the following Lagrangian
density corresponding to a superluminal dispersion v2

ph �

1� k2

L �
1

2
�� _�� v � r��2 � �r��2 � �r2��2�: (58)

For a stationary metric, i.e., v�x�, a conserved energy
density with respect to global rest frame of black hole
can be derived by means of the Noether theorem

E �
1

2
� _�2 � �r��2 � �r2��2 � �v � r��2�: (59)

Evidently the energy density is not positive definite for
v2 > v2

ph, i.e., beyond the horizon (superluminal disper-
sion). The local energy density with respect to the local
freely falling frame is of course positive definite. After a
normal mode expansion into wavepackets, the total
Hamiltonian is split up into nearly independent positive
and negative energy modes (with respect to global rest
frame of black hole). Obviously, the negative energy
modes can be strongly excited by a comparably weak
interaction with further Planckian degrees of freedom at
the global rest frame of the black hole. In this way, these
modes would not be in their ground state—even with
respect to freely falling observers—and, consequently,
one would not reproduce Hawking radiation.

For example, let us consider fermionic fields where the
quantum states of all trans-Planckian modes are maximally
excited, i.e., j1i instead of the ground state j0i. In that
situation, the usual relation �! � e��!=��! implies

h1jN̂!j1i � j�!j
2 /

1

1� e�2�!=�
; (60)

i.e., not a thermal spectrum. Note that, for fermions, the
unitarity relation is � � �y � � � �y � 1 instead of � �
�y � � � �y � 1 leading to the Fermi-Dirac spectrum
1=�e2�!=� � 1� for the usual Hawking radiation. If the
occupation number (i.e., j0i or j1i) depends on the history
of the mode—e.g., the frequency !—then one would
obtain another (in general nonthermal) spectrum. With an
appropriate mixture of j0i and j1i, one could even obtain a
state with no outgoing particle content (Hawking radiation)
at all (Boulware vacuum).

In summary, an interaction with a reservoir at the Planck
scale with respect to the rest frame of the black hole can
invalidate Hawking’s derivation. In that argument, the rest
frame of the black hole is a crucial point—a damping term
with respect to the freely falling frame 2i�!� vflk�'�k�
024028
would not induce a positive imaginary part of !. A similar
phenomenon occurs in the so-called ‘‘ black hole laser’’
where wavepackets bounce back and forth between the
inner and outer horizons—which also generates deviations
from the Hawking effect [13]. This quasireflection mecha-
nism also singles out the rest frame of the black hole
(location of the two horizons) as a preferred frame for
the Planckian modes. In contrast to the Miles instability,
this phenomenon displays more similarities to the Pierce
instability [14].

B. Breakdown of Adiabaticity

In the previous subsection VIA, the assumption (a) of
Sec. VI and hence also (b) failed. Let us now give an
example for the breakdown of the adiabaticity condition
(c), which is closely related to the assumption that geo-
metric optics is valid everywhere except in the vicinity of
the horizon.

One version of the adiabatic theorem states that if the
dynamics of all internal degrees of freedom is much faster
than any external time dependence, then a system being
initially in its ground state basically remains in the (time-
dependent instantaneous) ground state. (Of course, for this
theorem to apply we have to assume that quantum theory is
still valid at the Planck scale.)

As a counter-example, where the system does not stay in
its ground state, consider the dispersion relation

!2 � sin2k�m2; (61)

which has minima at k 2 �N (Planckian units). If we
assume a weakly time-dependent metric far away from
the black hole ds2 � a2�t��dt2 � dx2�, the wave equation
reads after a normal mode expansion

"� k � �sin2k� a2�t�m2��k � 0; (62)

since the mass term breaks the conformal invariance.
Therefore, it very easy to create Planckian (k � �N) par-
ticles (e.g., via parametric resonance) by means of com-
parably small and slow (sub-Planckian) variations of a�t�
with with a characteristic scale corresponding to m (instead
of the Planck mass).

As a result of this breakdown of the geometric optics
approximation far away from the horizon, the Planckian
modes falling towards the black hole are not in their ground
state—and hence one will again obtain deviations from the
Hawking effect. Note that a similar effect (occupation of
Planckian modes) can occur during inflation if we assume a
dispersion relation like the above.

VII. CONCLUSIONS

A. Summary

The Hawking effect is not a priori independent of the
laws of physics at the Planck scale, but it can be made so by
imposing the three assumptions a) Freely falling frame,
-10
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b) Ground state, and c) Adiabatic evolution, explained in
more detail in Sec. VI. As one example, we generalized the
analytical method of Ref. [3] to arbitrary dispersion rela-
tions subject to some rather general assumptions.

However, we have also demonstrated counter-examples,
which do not appear to be unphysical or artificial, display-
ing deviations from Hawking’s result. Therefore, whether
real black holes emit Hawking radiation or not remains an
open question and gives nontrivial information about
Planckian physics.

B. Outlook

Another example, where sub-Planckian phenomena
have their origin in trans-Planckian modes, is the genera-
tion of inhomogeneities during the cosmic epoch of infla-
tion (according to our present standard model of
cosmology) from quantum fluctuations of the inflaton field.
In this case, the investigation of the universality, or, con-
versely, the dependence of this mechanism on Planckian
024028
physics including higher-order corrections has an addi-
tional aspect, because observations of the cosmic micro-
wave background, for example, might yield signatures of
Planckian physics, see, e.g., [15,16]. E.g., a dispersion
relation with minima for large k-values as in Sec. VIB
potentially allows particle creation leading to a change in
the spectrum, see [15].
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