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Probing anisotropies of gravitational-wave backgrounds with a space-based interferometer:
Geometric properties of antenna patterns and their angular power
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We discuss the sensitivity to anisotropies of stochastic gravitational-wave backgrounds (GWBs)
observed via space-based interferometer. In addition to the unresolved galactic binaries as the most
promising GWB source of the planned Laser Interferometer Space Antenna (LISA), the extragalactic
sources for GWBs might be detected in the future space missions. The anisotropies of the GWBs thus play
a crucial role to discriminate various components of the GWBs. We study general features of antenna
pattern sensitivity to the anisotropies of GWBs beyond the low-frequency approximation. We show that
the sensitivity of space-based interferometer to GWBs is severely restricted by the data combinations and
the symmetries of the detector configuration. The spherical harmonic analysis of the antenna pattern
functions reveals that the angular power of the detector response increases with frequency and the
detectable multipole moments with effective sensitivity heff � 10�20 Hz�1=2 may reach ‘� 8–10 at f�
f� � 10 mHz in the case of the single LISA detector. However, the cross correlation of optimal
interferometric variables is blind to the monopole (‘ � 0) intensity anisotropy, and also to the dipole
(‘ � 1) in some case, irrespective of the frequency band. Besides, all the self-correlated signals are shown
to be blind to the odd multipole moments (‘ � odd), independently of the frequency band.
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I. INTRODUCTION

Space-based gravitational-wave detectors retain many
possibilities of providing access to new gravitational-
wave sources that are not covered by ground-based
gravitational-wave detectors. The Laser Interferometer
Space Antenna (LISA) is such a planned gravitational-
wave observatory aimed at detecting and studying low-
frequency gravitational waves in the band 0:1 mHz�
0:1 Hz. The constellation of the LISA and the next gen-
eration detectors, e.g., DECIGO/BBO [1–3], will consist
of three spacecrafts keeping a triangle configuration.

Compared to ground-based detectors, a space-based
gravitational-wave detector is characterized by many dif-
ferent features. For instance, the LISA introduces compli-
cations unknown to ground-based detectors, such as the
complex signal and noise transfer functions. The compli-
cations block the analytical characterization of the detector
[4–8] and, in particular, the response of an interferometer
becomes complicated for gravitational waves shorter than
the arm length of the detector. Only in the low-frequency
limit, the response of the LISA detector is very simplified.
The three arms of the LISA function like a pair of two-arm
detectors, and it is well known that the pair is equivalent in
the low-frequency limit to two 90� interferometers which
are rotated by �=4 with respect to each other (e.g., [9]).

An important ingredient of a space-based detector is
analysis of time-delayed combinations of data streams,
which provide laser-noise-free interferometric variable.
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The technique to synthesize data streams is known as
time-delay interferometry (TDI) [10–13]. Several TDI
signals, such as Michelson-like and Sagnac-like signals
which are free from the laser frequency noise, will have
different responses to secondary phase noise sources and to
incoming gravitational waves. Starting with the original
TDI observables for stationary-array combinations, the
TDI observables have been developed until recently (see
[14], and references therein).

Space-based gravitational-wave detectors could be the
most suitable devices to study and search for stochastic
gravitational-wave signals. Examples of stochastic gravi-
tational waves are those produced by large populations of
galactic [15–17] and extragalactic binaries [18–20] and a
primordial gravitational-wave background produced by
several cosmological mechanisms (see [21] for a review).
Stochastic gravitational waves are expected to be aniso-
tropic, and an important issue is to identify unambiguously
the anisotropy to get insights into the origin and underlying
physics of them.

A method to explore an anisotropy of gravitational-wave
background has been recently proposed based on the time
modulation of the single data stream [22–26] and/or the
two data streams [24,27,28], which allow us to extract the
individual coefficients of multipole moments related to a
distribution of gravitational waves on the sky. Hence,
provided all the coefficients of multipole moments obser-
vationally, one can, in principle, make the sky map of the
gravitational-wave backgrounds [24,25]. It was demon-
strated in the low-frequency limit that the LISA is blind
to the whole set of odd multipole moments and sensitive
only to monopole (‘ � 0), quadrupole (‘ � 2), and octu-
-1  2005 The American Physical Society



HIDEAKI KUDOH AND ATSUSHI TARUYA PHYSICAL REVIEW D 71, 024025 (2005)
pole (‘ � 4) anisotropy [24,26]. Actually, the multipole
moments ‘ � 2; 4 and their mth harmonics of the galactic
distribution of binaries would be observable with suffi-
ciently high signal-to-noise ratios, except for some multi-
pole harmonics [27]. The restricted sensitivity to the
multipole moments is an immediate outcome of the low-
frequency approximation, but what is the underlying phys-
ics that determines the limitation? As discussed in this
paper, it is intimately associated with the geometric prop-
erties of the spacecraft configuration.

So far most of the works aimed at probing the anisotropy
of gravitational-wave background by means of space-
based interferometers have been restricted to the low-
frequency approximation. One reason is that a confusion
gravitational-wave background formed by the superposi-
tion of many galactic binaries comes in the low-frequency
band of the LISA as the dominant source [15]. However,
there are many expected sources of gravitational-wave
backgrounds that spread outside the low-frequency region
[18–20,29,30]. Thus it is an interesting problem to create
maps of the gravitational-wave background in a very wide
range of frequency. For that purpose we need to know the
general response and properties of space-based interfer-
ometer over a wide range of frequency.

In this paper we are interested in general features of
response function for space-based detectors. The sensitiv-
ity of space-based detectors to multipole moments of a
gravitational-wave distribution is in general restricted by
symmetries of a response function independently of fre-
quency. For example, symmetries of a response function
tell us that a self-correlated data is blind to the odd multi-
pole moments of anisotropy irrespective of frequency band
(Sec. IV C). Other interesting features independent of fre-
quency can be also derived based on symmetries of a
detector’s response and geometric configuration of the
spacecrafts.

The paper is organized as follows. After briefly review-
ing the detection method of an anisotropy by the correla-
tion analysis in the next section, detector response
functions for space-based interferometers are given in
Sec. III. In Sec. IV, we develop spherical harmonic analysis
of antenna pattern functions and derive various fundamen-
tal properties of multipole moments. Based on those fun-
damental properties, in Sec. V, we examine the directional
sensitivity of space interferometer. Angular power and
effective sensitivity curves are discussed there, specifically
focusing on the LISA detector. Section VI concludes the
paper with a brief summary. Below the speed of light is set
equal to unity (c � 1).
1In the case of the space interferometer, while the various data
streams can be constructed combining the signals extracted from
respective spacecrafts, most of them are dominated by a corre-
lated noise. Thus, the optimal data combinations which cancel
the correlated noise are required to work with the correlation
analysis.
II. DETECTION OF ANISOTROPY THROUGH THE
CORRELATION ANALYSIS

We begin by discussing how one can prove the anisot-
ropy of gravitational-wave background based on the cor-
relation analysis. A stochastic background of gravitational
024025
waves can be expressed as a random superposition of plane
waves propagating along an � � �n direction with sur-
faces of constant phase 
�x� � t� n 	 x. Then the metric
perturbation in transverse-traceless gauge h is expressed as

h �t;x� �
X

A��;


Z 1

�1
df

Z
d� ei2�f
 ~hA�f;�� eA���;

(1)

where
R
d� denotes an integral over the sphere and

~hA��f� � ~h�A�f� are the Fourier amplitudes of the gravi-
tational waves for each polarization mode. The Fourier
amplitude hA is assumed to be characterized by the
Gaussian random process:

h~hA�f;��i � 0;

h~h�A�f;��~hA0 �f0;�0�i �
1

2
��f� f0�

�2��;�0�

4�

 �AA0Sh�jfj;��; (2)

where Sh�jfj;�� is the power spectral density of gravita-
tional waves. The polarization tensors eA��� appearing in
Eq. (1) may be explicitly given as follows:

e���� � u � u� v � v; e
��� � u � v� v � u;

(3)

where the unit vectors u, v are expressed in an ecliptic
coordinate as

u � cos�E cos�Ex� cos�E sin�Ey � sin�Ez;

v � sin�Ex� cos�Ey;

n � sin�E cos�Ex� sin�E sin�Ey � cos�Ez � ��: (4)

The detection of a gravitational-wave background is
achieved through the correlation analysis of two data
streams. The output signal for the detector I denoted by
sI�t� is described by a sum of the gravitational-wave signal
hI�t� and the detector noise nI�t�:

sI�t� � hI�t� � nI�t�:

We assume that the noise nI�t� is treated as a Gaussian
random process with zero mean and spectral density Sn�f�:

h~nI�f�i � 0; h~n�I �f�~nJ�f
0�i �

1

2
��f� f0��IJSn�jfj�:

Here, we further assume that the noise correlation between
the two independent detectors is neglected1.

On the other hand, in addition to the information of a
gravitational-wave background, the output signal hI�t�
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contains the time variation of the detector response caused
by the detector motion. For example, the rotation of the
Earth sweeps the ground-based interferometer across the
sky. As for the space interferometer, LISA, the antenna
pattern sweeps over the sky as the LISA constellation
orbits around the sun with a period of one sidereal year.
These effects induce the signal modulation, which can be
used to extract the information of anisotropy of
gravitational-wave backgrounds.
024025
According to Ref. [28], we introduce two time scales,
�T and T0: the light travel time �T between the two
detectors (spacecrafts) and the period of the detector mo-
tion T0. Since �T � T0, it is possible to choose the
averaging time scale � as �T � �� T0 appropriately.
Then, one can safely employ the correlation analysis be-
tween two detectors as a function of time averaged over the
period �. Keeping this situation in mind, the output signal
hI�t� may be written as
hI�t� �
X

A��;


Z �1

�1
df

Z
d�DI��; f; t�:eA���~hA�f;��ei2�f
�xI�; (5)
where the colon denotes the double contraction, i.e., D:e �
Dije

ij [31]. The quantity D is detector’s response function,
whose explicit expression will be presented in next section.
Note that the response function depends on time due to the
detector motion.

Provided the two output data sets, the correlation analy-
sis is examined depending on the strategy of data analysis,
i.e., self-correlation analysis only using the single data
stream or cross-correlation analysis using the two indepen-
dent data stream:

C�t� � hsI�t�sJ�t�i � hhI�t�hJ�t�i � hnI�t�nJ�t�i

�
Z 1

�1

df
2

Z d�
4�

Sh�jfj;��F E
IJ�f;�; t�

� �IJ
Z 1

�1

df
2
Sn�jfj�;

where F E
IJ is the antenna pattern function defined in an

ecliptic coordinate, which is expressed in terms of detec-
tor’s response function and an optimal filter:

F E
IJ�f;�; t� � ei2�f�	�xI�xJ�=L

X
A��;


FA�I ��; f; t�


 FAJ ��; f; t� ~Q�f�;

FAI ��; f; t� � DI��; f; t�:eA���;

(6)

with ~Q�f� being the Fourier transform of the optimal filter.
Note that the phase factor ei2�f�	�xI�xJ�=L arises due to the
differences between the arrival time of the signal at each
detector. The above expression implies that the time series
data C�t� as observable is given by the all-sky integral of
the spectral density Sh, or luminosity distribution of gravi-
tational waves convolving with the antenna pattern func-
tion. To see this more clearly, for the moment, we neglect
the noise contribution and set the optimal filter as ~Q�f� �
1. Keeping the assumption �T � t� T0, the detector
output C�t� is written as
C�t� �
Z 1

�1

df
2
~C�t; f�

�
Z 1

�1

df
2

Z d�
4�

Sh�jfj;��F E
IJ�f; t;��: (7)

We then decompose the antenna pattern function F E
IJ and

the luminosity distribution into spherical harmonics in an
ecliptic coordinate, i.e., sky-fixed frame. We have

Sh�jfj;�� �
X
‘m

�pE‘m�f��
�Y�

‘m���;

F E
IJ�f;�; t� �

X
‘m

aE‘m�f; t�Y‘m���:
(8)

Substituting (8) into (7) becomes

~C�t; f� �
1

4�

X
‘m

�pE‘m�f��
�aE‘m�f; t�: (9)

Note that the time dependent multipole coefficient aE‘m
appears due to the detector motion, which can be elimi-
nated by further employing the harmonic expansion in
detector’s rest frame ��;��. We denote the multipole co-
efficients of the antenna pattern in detector’s rest frame by
a‘m [see Eq. (26)]. The transformation between the detec-
tor rest frame and the sky-fixed frame is described by a
rotation matrix by the Euler angles � ;#;’�, whose ex-
plicit relation is expressed in terms of the Wigner D
matrices [25,28,32]:

aE‘m�f; t� �
X‘
n��‘

e�in d‘nm�#�e
�im’a‘n�f�: (10)

Here the Euler rotation is defined to perform a sequence of
rotation, starting with a rotation by  about the original z
axis, followed by rotation by # about the original y axis,
and ending with a rotation by ’ about the original z axis.
Note that the Euler rotation conserves the multipole mo-
ment ‘, but mixes mth harmonics.

For illustration, let us envisage the orbital motion of the
LISA constellation. The LISA orbital motion can be ex-
pressed by  � �!t, # � ��=3, ’ � !t, where ! �
2�=T0 is LISA’s orbital frequency (T0 � 1 sidereal year).
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Since the antenna pattern function is periodic in time due to
the orbital motion, one can naturally perform the Fourier
transformation of the detector output by [22,24]:

~C k�f� �
1

T0

Z T0

0
dte�ik!t ~C�t; f�:

Using the relation (10), we finally obtain

~C k�f� �
1

4�

X1
‘�0

X‘�k
m��‘

�pE‘m�f��
�d‘

�m�k�;m�#�a‘;�m�k��f�;

(11)

for k � 0. The above equation shows how the detector
output depends on the multipole coefficients a‘m in detec-
tor’s rest frame for a given luminosity distribution of a
gravitational-wave background, pE‘m�f�. Given the output
data ~Ck�f� experimentally, the task is to solve the linear
system (11) with respect to pE‘m�f� if we know the antenna
pattern function. As discussed by Cornish [24], this decon-
volution problem is typically either over constrained or
under constrained depending on the antenna pattern. In this
sense, the understanding of the general properties of an-
tenna pattern functions is primarily important and would
shed light on the deconvolution problem. It might be
further helpful to characterize the directional sensitivity
024025
to the sky map of the gravitational-wave background. The
detailed investigation for the spherical harmonic analysis
of antenna pattern will be presented in Sec. IV. Before
developing the analysis, we briefly review the detector
response functions for space interferometers.

III. DETECTOR RESPONSE FUNCTION FOR
SPACE INTERFEROMETER

In this section, according to the treatment based on the
coordinate-free approach in Refs. [6,33], we derive various
types of detector response functions for space interferome-
ter, which will be used to analyze the sensitivity to an
anisotropy of gravitational-wave background.

A. One-arm detector tensor

Following the Doppler tracking calculations described
in Ref. [31], the optical-path length between spacecraft i
and spacecraft j is formally written as

‘ij�ti� �
Z j

i

������������������������
g-.dx-dx.

q
; (12)

where g-. is spacetime metric. According to Ref. [6], the
optical-path variation in the presence of the gravitational
waves is given by
�‘ij�ti� � ‘ij�ti�
Z 1

�1
df

Z
d� D�f; ti;n�:~h�f;��ei2�f�ti�n	xi�; (13)
FIG. 1 (color online). Configuration of the spacecraft constel-
lation in detector’s rest frame.
where the one-arm detector tensor D and the transfer
function T are

D �f; ti;n� �
1

2
�rij�ti� � rij�ti��T �w; ti;n�; (14)

T �f; ti;n� � sinc
�
f
2fij

�1� n 	 rij�ti��
�


 exp
�
i
f
2fij

�1� n 	 rij�ti��
�
; (15)

where rij�ti� is the unit vector pointing from the spacecraft
i at the time of emission ti to the spacecraft j at the time of
reception tj, i.e., rij�ti� � fxj�tj� � xi�ti�g=lij�ti�. The
function sinc�x� is defined by sinc�x� � sinx=x and the
variable fij � �2�‘ij�tj���1 means the characteristic trans-
fer frequency.

B. Detector response function

The calculation of the one-arm detector tensor can be
applied to derive the response function for a space inter-
ferometer via Doppler tracking method. The constellation
of the planned space interferometer, LISA and also the next
generation detectors DECIGO/BBO constitute three space-
crafts and each of them is separated in an equal-arm length
(Fig. 1). Note cautiously that the detector arm length varies
in time, mainly due to the intrinsic variation by the
Keplerian motion of three spacecrafts and the tidal varia-
tion caused by the gravitational force of solar system
-4
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planets [34,35]. The caveats concerning these effects have
been already mentioned [36] and their influences were
recently investigated. As long as the low-frequency gravi-
tational waves with frequencies comparable or lower than
the characteristic frequency fij are concerned [6,35,37],
the so-called rigid adiabatic approximation [35], in which
the three spacecrafts rigidly orbit around the sun under
keeping their configuration, really works.

Keeping these remarks in mind, we adopt the rigid
adiabatic approximation to give an analytic expression
for response functions. For the sake of the brevity, we
work with the static and the equal-arm limit of the detector
response. In this case, one writes L � lij and f� � fij �
024025
1=�2�L�. Thus, the interferometric signals combining with
the six data streams can be generally expressed as function
of

f̂ �
f
f�
: (16)

Specifically, for LISA detector, the arm length is L � 5

106 km, yielding f� ’ 10 mHz.

Based on the configuration in Fig. 1, a signal of
Michelson interferometers extracted from the spacecraft
1 is [6,33]:
hM1
�t� �

1

2L
��‘12�t� 2L� � �‘21�t� L� � �‘13�t� 2L� � �‘31�t� L��

�
Z 1

�1
df

Z
d� DM1

��; f�:~h�f;��ei2�f
�x1�; (17)

where DM1
��; f� is the detector tensor. The explicit form of the detector tensor is given by

DM1
��; f� �

1

2
f�a � a�T M�a 	�; f� � �c � c�T M��c 	�; f�g;

T M�u 	�; f� � e�if̂
�
sinc

	
f̂�1� u 	��

2



e��i=2�f̂�1�u	�� � sinc

	
f̂�1� u 	��

2



e��i=2�f̂��1�u	��

�
:

(18)

The directional unit vectors for the three spacecrafts are denoted by a;b; c (Fig. 1). Note that the above expression
possesses the symmetry, i.e., DM��;�f� � DM��; f��.

Unfortunately, the simple Michelson interferometry with unequal armlengths does not cancel the laser frequency noise,
which is thought to be one of the most dominant sources in the instrumental noises. Thus, the Michelson signal might not
be a viable interferometric variable. Instead, a number of so-called TDI variables that cancel the laser frequency noise even
when the armlengths are unequal have been proposed [11]. These signals are built by combining time-delayed Michelson
signals so as to reduce the overall laser frequency noise down to a level of other noises. A particular example of a TDI
variable is the X signal:

hX1�t� �
1

4L
��‘12�t� 2L� � �‘12�t� 4L� � �‘21�t� L� � �‘21�t� 3L� � �‘13�t� 2L� � �‘13�t� 4L�

� �‘31�t� L� � �‘31�t� 3L��: (19)

This signal is expressed by a superposition of the Michelson signal, sX1�t� �
1
2 �s

M
1 �t� � sM1 �t� 2L��. Thus, the detector

tensor for the interferometer variable is DX � 1
2 �1� e�2if̂�DM.

Another useful combination comes from comparing the phase of signals that are sent clockwise and counterclockwise
around the triangle. Such a combination is named the Sagnac signal. The Sagnac signal extracted from spacecraft 1 is

hS1�t� �
1

3L
��‘13�t� 3L� � �‘32�t� 2L� � �‘21�t� L� � �‘12�t� 3L� � �‘23�t� 2L� � �‘31�t� L��

�
Z 1

�1
df

Z
d� DS1��; f�:~h�f;��e2�if
�x1�; (20)

where the detector tensor DS1 is expressed as
-5
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DS1��; f� �
1

6
f�a � a�T a�f� � �b � b�T b�f� � �c � c�T c�f�g;

T a�f� � e�3if̂=2
�
e��1=2�if̂��2�a	��sinc

�
f̂
2
�1� a 	��

�
� e��1=2�if̂�2�a	��sinc

�
f̂
2
�1� a 	��

��
;

Tb�f� � e��1=2�if̂�3��a�c�	��

�
sinc

�
f̂
2
�1� b 	��

�
� sinc

�
f̂
2
�1� b 	��

��
;

T c�f� � e��3=2�if̂
�
e��1=2�if̂�2�c	��sinc

�
f̂
2
�1� c 	��

�
� e�1=2�if̂�2�c	��sinc

�
f̂
2
�1� c 	��

��
:

(21)
2The last equality comes directly from the properties of the
respective detector tensors, and thus it holds only among the
same types of TDI variables, e.g., F SISJ and FMIMJ

.

The three Sagnac signals extracted from spacecrafts 1, 2,
and 3 are often quoted as 1;2, and 3 in the literature (e.g.,
[11]). Combining these variables, a set of optimal data
combinations free from the noise correlations is con-
structed [13] (see also [14]):

hA �
1���
2

p �hS3 � hS1�; hE �
1���
6

p �hS1 � 2hS2 � hS3�;

hT �
1���
3

p �hS1 � hS2 � hS3�: (22)

It is worthwhile to note that in the low-frequency limit
f̂ � 1, the detector tensor for the Michelson, the X, and
the Sagnac signal can be simply expressed as

if̂DM1
� DX1 �

3

2
DS1 �

if̂
2
�a � a� c � c� �O�f̂2�:

(23)

Using the above expression, the detector tensors for opti-
mal combinations A, E, and T, respectively, become

DA �
if̂

3
���
2

p ��a� a� b� b� 2c� c�;

DE �
if̂���
6

p �a� a� b� b�;

DT �
f̂2

12
���
3

p f�a 	��a� a� �b 	��b� b� �c 	��c� cg:

(24)

Note that the expression for detector tensor DT is higher-
order in f̂, compared to the other detector tensors.

IV. SPHERICAL HARMONIC ANALYSIS OF
ANTENNA PATTERN FUNCTION

The correlation analysis described in Sec. II reveals that
the signal modulation induced by detector motion can be
used to extract the information of the anisotropy of the
gravitational-wave background. One important remark is
that the map-making capability crucially depends on the
antenna pattern and/or the detector response function in
detector’s rest frame. We then wish to clarify the relation-
ship between the antenna pattern functions and the direc-
tional sensitivity to the gravitational-wave backgrounds.
024025
To investigate this issue, the spherical harmonic analysis of
the antenna pattern function is employed and the general
rules for multipole coefficients are derived based on the
geometric properties of the antenna pattern.

A. Angular power of antenna pattern function

Similar to expression (6), the antenna pattern function F
defined in the detector’s rest frame is written as

F IJ�f;�� � eif̂�	�xI�xJ�
X

A��;


FA�I ��; f�FAJ ��; f� ~Q�f�;

FAI ��; f� � DI��; f�:eA���: (25)

The multipole coefficient a‘m for (25) is

a‘m�f̂� �
Z �

0
d�

Z 2�

0
d� sin�Y�

‘m��;��F �f̂; �; ��; (26)

with f̂ being defined in (16). We are primarily concerned
with how the directional sensitivity depends on the choice
of the interferometric variables. For this purpose, the opti-
mal filter ~Q�f� appearing in the antenna pattern function
(6) is ignored hereafter. Using the fact that the relations
F ��f̂;�� � F ��f̂;�� � F �f̂;��� always hold2, one
obtains

a‘;m�f̂; t� � ��1�ma�‘;�m��f̂; t� � ��1�m�‘a�‘;�m�f̂; t�;

(27)

where we used Y‘�m��;�� � ��1�mY�
‘m��;��.

Here and in what follows, we consider the detector
configuration in a specific coordinate system shown in
Fig. 1 to calculate the multipole coefficients. Unless other-
wise stated, the unit vectors a;b, and c are specifically
chosen as

a � �

���
3

p

2
x�

1

2
y; b � �y; c �

���
3

p

2
x�

1

2
y:

(28)

While the explicit form of the multipole coefficients a‘m
depends on the coordinate system (28), a convenient quan-
tity invariant under a Euler rotation of the coordinate
-6
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system can be exploited:

42‘�f̂� �
1

2‘� 1

X‘
m��‘

ja‘m�f̂�j
2; (29)

which characterizes the contribution of ‘th moment to the
antenna pattern function. Thus, under the rigid adiabatic
approximation, the angular power of the antenna pattern in
the ecliptic frame is equivalent to that in detector’s rest
frame: X

m

ja‘m�f̂�j2 �
X
m

jaE‘m�f̂; t�j
2: (30)

We use this coordinate invariant quantity to quantify the
directional sensitivity of the antenna pattern.

B. Low-frequency limit

Consider first the simplest case, f̂ � f=f� � 1. In this
case, only the ‘ � 0, 2, and 4 moments for antenna pattern
function become nonvanishing. This is mostly general
except for the fully symmetrized signals such as the
T variable.

In the low-frequency limit, the detector response func-
tions derived in the previous section generally becomes of
the form [see Eqs. (23) and (24)]:

D ���! T a�a � a� �T b�b � b� �T c�c � c�; (31)

except for the T variable. While the factors T a;b;c may be
written as functions of frequency, they do not depend on
the directional angle �. Thus, the detector tensor D loses
the directional dependence. This means that the directional
dependence of the antenna pattern function F arises only
through the polarization tensor, eA���. Since the polariza-
tion tensor is described by the quadrature of direction
vectors u and v [Eq. (4)], the antenna pattern can be
generally written as the forth order polynomials of
�cos�; sin�� and �cos�; sin��. For example, the low-
frequency limit of the self-correlated signal for
Michelson and Sagnac interferometries extracted from
spacecraft 1 is

f̂2FM1M1
�
9

4
F S1S1 !

f̂�1 3

4

�
1

4
�3� cos4��cos2�

� �1� cos4��cos2�sin2�
�
f̂2 �O�f̂4�: (32)

Applying the spherical harmonic expansion (26), nonvan-
ishing components of the multipole coefficients become

aM1M1
00 �

3
����
�

p

5
; aM1M1

20 �
6

7

����
�
5

r
; aM1M1

40 �

����
�

p

70
;

aM1M1
4;�4 � �

1

2

������
�
70

r
:

The coordinate-free quantity 4l�f̂� is thus evaluated as
024025
4M1M1
0 �

3
����
�

p

5
; 4M1M1

2 �
6

����
�

p

35
; 4M1M1

4 �

����
�

p

35
(33)

for self-correlated Michelson signals. The angular power
of self-correlated Sagnac signals are related to that of the
Michelson signals by 4S1S1‘ � �4=9�f̂24M1M1

‘ . As for the
cross-correlated signal extracted from 1 and 2, the antenna
pattern function is explicitly written as

f̂ 2FM1M2
�
9

4
F S1S2 !

f̂�1 �3

512
�35� 28 cos2�� cos4�

� 8�cos4��
���
3

p
sin4��sin4��f̂2 �O�f̂3�:

(34)

We then obtain the nonvanishing multipole coefficients

aM1M2
00 � �

3
����
�

p

10
; aM1M2

20 � �
3

7

����
�
5

r
;

aM1M2
40 � �

����
�

p

140
; aM1M2

4;�4 �
1� i

���
3

p

4

������
�
70

r
;

Correspondingly, the invariant quantity 4‘ becomes

4M1M2
0 �

3
����
�

p

10
; 4M1M2

2 �
3

����
�

p

35
;

4M1M2
4 �

1

140

���������
47�
3

s (35)

for Michelson signals and the same relation 4S1S2‘ �

�4=9�f̂24M1M2

‘ holds for cross-correlated Sagnac signals.
The above examples show that the multipole coefficients

a‘m higher than ‘ � 4 vanish at the leading order in f̂.
Further, the lower multipole moments ‘ � 1 and 3 also
vanish because the antenna pattern F ��� is even function
of ��;��. This is irrespective of the choice of the coordi-
nate system. Indeed, the same properties hold for the
optimal combinations A, E and T, since these are con-
structed from the linear combination of Sagnac variables.

In Appendix A, the angular power of the optimal com-
binations are calculated analytically up to the forth order in
f̂. It is shown that the lowest order calculation for self-
correlated signal 4AA‘ exactly coincides with that for 4EE‘ ,
which is related to the self-correlated Michelson signal as
4AA‘ � 4EE‘ � �2=3�f̂24M1M1

‘ . On the other hand, the low-
est order contribution to the self-correlated signal for T
variable becomes vanishing due to the symmetric combi-
nation of Sagnac variables. That is, the higher-order con-
tribution of O�f̂4� terms becomes dominant in the angular
power of antenna pattern. While the resultant nonvanishing
components for4TT‘ are ‘ � 0; 4, and 6, it turns out that the
dominant noise contribution for T variable appears as
O�f̂2� (see Sec. V C). Therefore, the self-correlated signal
for T variable is dominated by the instrumental noise in the
-7
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low-frequency limit and the gravitational-wave signal
could not be resolved [11,13,33].

C. Parity invariance in antenna pattern

Apart from the low-frequency limit as simple limiting
approximation, the analytical calculation of 4‘ becomes
intractable and the perturbative expansion for f̂ generally
breaks down. In contrast to the ground-based detectors, the
difficulty in the space interferometers arises from the trans-
fer function T that appears in Eq. (14), which explicitly
exhibits both the frequency and the angular dependences.
Thus, to evaluate the directional sensitivity, the numerical
treatment is required for spherical harmonic analysis.
Nevertheless, some important properties in the multipole
coefficients of an antenna pattern can be still drawn ana-
lytically, from symmetric properties of an antenna pattern,
which is closely linked with the parity invariance of a
detector response.

Let us introduce two operators, Q:�! �� � and
P:�! �� �. A composite operator PQ represents the
parity transformation. The transformation properties of the
spherical harmonics Y‘m��;�� for the operators are
PY‘m � ��1�mY‘m and QY‘m � ��1�‘�mY‘m, and so the
parity transformation property is PQY‘m � ��1�‘Y‘m. If
the response function is parity invariant, Eq. (26) can be
written as

a‘m �
Z �

0
d� sin�

Z �

0
d�Y�

‘m�F � ��1�‘PQF �: (36)

Then we see that a‘m becomes vanishing for all odd multi-
poles (‘ � odd) if a response function is parity invariant.
A similar argument holds for the respective operators P
and Q. If a detector response function is invariant under the
operation P, then a‘m vanishes for m � odd moment. For
response function invariant under the operation Q, the
multipole coefficients a‘m vanish when ‘�m � odd.
Here, we summarize these results3:

a‘m � 0 for PF � F ; m � odd; (37a)

a‘m � 0 for QF � F ; ‘�m � odd; (37b)

a‘m � 0 for QPF � F ; ‘ � odd: (37c)

Note that while the symmetric property of the antenna
pattern itself is a coordinate-free notion, the results pre-
sented in Eqs. (37a) and (37b) depend on a choice of the
coordinate system, since the mode m can be mixed by the
3There is another interesting property of the multipole coeffi-
cient. Equation (27) tells us that the multipole coefficients of ‘ �
even�odd� modes are even (odd) functions of f̂:

a‘m��f̂� � ��1�‘a‘m�f̂�:

We will see this property explicitly through the low-frequency
approximation in the following sections.

024025
Euler rotation. On the other hand, the property (37c) that
only depends on ‘ preserves under the Euler rotation.

Keeping this remark in mind, based on the specific
configuration and the coordinate system shown in Fig. 1
and Eq. (28), several useful formulas related to the parity
transformation are derived in Appendix B. Using these
results, one finds that the antenna pattern functions for
the self-correlated signals of Michelson, Sagnac, and the
optimal TDI variables are invariant under the following
three transformations:

QPF II � F II; PF II � F II;

QF II � F II �I � Mi; Si;A;E;T�:
(38)

Thus, the multipole moments of antenna pattern functions
for self-correlated signals follow rule (37). This is gener-
ally true in detector’s rest frame under both the static and
the equal-arm length limit. The antenna pattern function
for the cross-correlated Sagnac signals obeys

QPF IJ � �F IJ�
�; PF IJ � �F IJ�

�;

QF IJ � F IJ �I; J � Si�:
(39)

Several remarks concerning the optimal combinations
are in order at this point. First recall that the antenna
pattern functions constructed from the signals A, E, and
T can be represented by a sum of the self-correlated and the
cross-correlated Sagnac signals [see Eqs. (A2) and (A3)].
Thus, owing to the fact (39) and the property �F SiSj�

� �

F SjSi , it can be shown that the property (38) holds for the
self-correlated signals F AA, F EE, and F TT, while the
cross-correlated signals F AE, F AT, and F ET only possess
the symmetry, QF � F . Hence, the cross-correlated data
may generally contain the ‘ � odd moments. Note, how-
ever, that in the low-frequency limit, the appreciable multi-
poles are the l � 0, 2, and 4 modes. This readily implies
that the contribution of the ‘ � odd modes becomes sig-
nificant at f̂ � f=f� � 1, which will be explicitly shown in
Sec. V [see angular power in Fig. 5 and effective sensitivity
curves in Fig. 6].

D. Geometric relation between optimal combinations
of TDIs

In a specific case with signals constructed from the
optimal combinations (A,E,T), a further important prop-
erty is obtained combining with the geometric relationship
among the three spacecrafts.

Let us start with the property of the Wigner D matrices
(10). For specific choice of the angles # � 0 and # � �,
the Wigner D matrix becomes d‘nm�0� � �nm and
d‘nm��� � ��1�‘�m�n;�m, respectively [32]. Thus a rota-
tion  with # � ’ � 0 transforms the coefficients a‘m to
a0‘m as

a0‘m � e�im a‘m �# � ’ � 0�: (40)
-8
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On the other hand, a rotation  followed by the rotation
# � ’ � � transforms the coefficients as

a0‘m � ��1�meim �a‘m�� �# � ’ � ��: (41)

From the spacecraft constellation shown in Fig. 1, the
antenna pattern functions of the self-correlated Sagnac
TABLE I. Symmetric propertie

Combination of variables Condition

All low-frequency limi
All Self-correlati
(A,A), (E,E)
(A,E)
(A,T), (E,T)

aThe details of the proof are presented in Append
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signals F S2S2 and F S3S3 are related to F S1S1 by the Euler
rotation angles  � 2�=3 and  � 4�=3 (# � ’ � 0),
respectively. Similarly, all multipole coefficients of cross-
correlated Sagnac signals are related to aS1S2‘m as indicated
by (40) and (41). These relations are summarized as fol-
lows:
aS2S2‘m � e�im�aS1S1‘m ; aS3S3‘m � e�2im�aS1S1‘m ;

aS2S3‘m � e�im�aS1S2‘m ; aS3S1‘m � e�2im�aS1S2‘m ;

aS1S3‘m � ��1�m�aS1S2‘m ��; aS2S1‘m � ��1�me�4im��aS1S2‘m ��; aS3S2‘m � ��1�me�2im��aS1S2‘m ��;

(42)

where � � 2�=3, and we have used (27). This means that the antenna patterns for all the possible combinations of (A,E,T)
can be represented by a sum of the primary multipole moments of the Sagnac signals, aS1S1‘m and aS1S2‘m . In this sense, the
optimal combinations of TDIs are not strictly independent.

Based on the relations (42), with a help of the expressions (A2), the multipole moments for self-correlated signals F AA

and F EE can be rewritten with

aAA‘m � C�1�
m e�im�a

S1S1
‘m � C�2�

m fe�i2m�aS1S2‘m � ��1�m�aS1S2‘m ��g;

aEE‘m � D�1�
m e�im�a

S1S1
‘m �D�2�

m fe�i2m�aS1S2‘m � ��1�m�aS1S2‘m ��g;
(43)

where the coefficients C�i�
m and D�i�

m become

C�1�
m � cos�m��; C�2�

m �
1

2
; D�1�

m �
1

3
f2� cos�m��g; D�2�

m �
1

6
f4 cos�m�� � 1g:
Now recall from the properties (37) and (38) that the non-
vanishing components of the multipole moments (43) are
the ‘ � even and m � even modes. Then the comparison
between the coefficients C�i�

m and D�i�
m leads to the relation

aAA‘m � aEE‘m for m � 0;�6;�12;�18; 	 	 	 and aAA‘m �
�aEE‘m for m � �2;�4;�8; 	 	 	 . Thus, one finds

4AA‘ � 4EE‘ : (44)

The similar identity also holds for the cross-correlated
signals F AT and F ET. Applying the relation (42) to the
expressions (A3), one obtains

aET‘m � �
2

���
2

p

3
e�im�sin2

	
m�
2



faS1S1‘m � aS1S2‘m

� ��1�m�aS1S2‘m ��g

� �
i���
3

p tan
	
m�
2



aAT‘m: (45)
Thus, both of the multipole moments aAT‘m and aET‘m become
vanishing when m � 0;�3;�6; 	 	 	 . Further, for all the
nonvanishing components, the absolute value of the pre-
factor becomes unity. This immediately yields the relation:

4AT‘ � 4ET‘ : (46)

Note that while the relations (44) and (46) are derived in a
specific choice of the coordinate system (28), the final
results do not depend on the coordinates.

Finally, we note a quite remarkable fact for the cross-
correlated signals, F AE, F AT, and F ET. It is shown in
Appendix C that the multipole moments ‘ � 0 and 1 for
the antenna pattern F AE are exactly zero, while the mono-
pole mode (‘ � 0) vanishes for the cross-correlated signals
F AT and F ET, over the whole frequency range:

40�f� � 0; 41�f� � 0 for AE correlation;

40�f� � 0 for AT;ET correlation:
(47)
s of antenna pattern function.

Properties of 4‘�f�

t �f̂ � 1� 4‘ � 0 for ‘ � 0; 2; 4
on 4‘ � 0 for 8‘ � odd

4AA‘ � 4EE‘
4‘ � 0 for ‘ � 0; 1a

4‘ � 0 for ‘ � 0a, 4AT‘ � 4ET‘

ix C.

-9
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Here, the important properties of the antenna pattern func-
tions derived from the parity invariance and geometric
argument are summarized in Table I.

V. ANGULAR POWER AND DIRECTIONAL
SENSITIVITY OF SPACE INTERFEROMETER

While several important properties for directional sensi-
tivity of the space interferometer were found in previous
section, it remains still unclear how the multipole moments
of the antenna pattern functions quantitatively depend on
the frequency and the combinations of data streams. In this
section, based on the previous remarks, the spherical har-
monic analysis of the antenna pattern function is carried
out analytically and numerically in specific choices of the
data combinations. For a relevant range of the frequencies
beyond the low-frequency approximation, the directional
sensitivity to the antenna pattern is estimated in the LISA
case, taking into account the instrumental noises.

A. Toy model example

As noted in Sec. IV C, the frequency and angular de-
pendences of the transfer function T in Eq. (14) make it
024025
difficult to treat the spherical harmonic analysis of the
antenna pattern. If we set T � 1, however, the spherical
harmonic expansion of the antenna pattern can be analyti-
cally evaluated, the results of which are compared with the
realistic cases without invoking the assumption T � 1.

For computational purpose in this subsection, we set the
directional unit vectors for three spacecrafts as
a � z; b �

���
3

p

2
y �

1

2
z; c � �

���
3

p

2
y �

1

2
z;

(48)
and consider the antenna pattern for Michelson signal.
Table I suggests that a number of nonvanishing multipole
moments is severely restricted in the case of the self-
correlated signals, since the assumption T � 1 roughly
corresponds to the low-frequency limit. An interesting case
is therefore to take the cross correlation between the sig-
nals extracted from the vertices 1 and 2. In this case, the
response function at the rest frame becomes
F 12�f;�� � eif̂�	a
X

A��;


FA1 ��; f�F
A
2 ��; f�;

�
FA1 � 1

2 �a � a� c � c�:eA���;
FA2 � 1

2 �b � b� a � a�:eA���:

With the specific choice of the coordinate system (48), the explicit expression for the antenna pattern becomes

F 12�f;�� � �
3

64
�3cos4�� 2sin2�cos2�� 3sin4�� cos2�sin2�f�2� 5 cos2�� 2 cos2�� 3cos2�sin2�g�e�if̂ cos�:

(49)
Note that the function (49) possesses the following sym-
metry:

Q PF 12 � �F 12�
�; PF 12 � �F 12�;

QF 12 � �F 12�
�:

(50)

This indicates that the antenna pattern is sensitive to both
the even and the odd modes, while the multipole moments
a‘m with m � odd become vanishing. Since the relation
(27) always holds, it is sufficient to treat the case form � 0
only. Substituting the explicit expression (49) into the
definition (26), the integral over � is first performed.
Writing cos� by u, we have

a‘m�f̂� �

��������������������������������������
�2‘� 1�

4�
�‘�m�!
�‘�m�!

s Z 1

�1
du e�if̂uPm‘ �u�gm�u�;

(51)

where the function gm�u� can be expressed as polynomial
series as
gm�u� �
X2
N�0

c�m;N�u2N�1� u2�jmj=2: (52)

The coefficients c�m;N� are the numerical constants, which
are summarized in Appendix D. Note that the function gm
are nonvanishing only for m � 0;�2;�4, indicating that
the nonvanishing components of a‘m are obtained only
when m � 0;�2;�4. From (51) and (52), the remaining
integrals become of the form:

I N
‘m �

Z 1

�1
du e�if̂uu2N�1� u2�jmj=2Pm‘ �u�: (53)

This integral is analytically performed according to
Ref. [28]. Using the formula for Legendre polynomials,
Pm‘ �u� � ��1�m�1� u2�m=2�d=du�mP‘�u� for m � 0, re-
peating the integration by parts yields

I N
‘m �

Z 1

�1
duP‘�u�

dm

dum
�e�if̂uu2N�1� u2�m�

�
X2�m�N�
s�0

g�m;N�s �f̂�
Z 1

�1
duP‘�u�u

se�if̂u: (54)
-10
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The quantities g�m;N�s �f̂� are the polynomial function of f̂ up to the forth order and are listed in Appendix D. The integral in
the last line is expressed in terms of the spherical Bessel function j‘:Z 1

�1
duP‘�u�u

se�if̂u � is
ds

df̂s
Z 1

�1
duP‘�u�e

�if̂u � 2��1�‘i‘�s
ds

df̂s
j‘�f̂�: (55)

Thus, substituting the results (52), (54), and (55) into (51), one finally obtains the analytic expression for multipole
coefficients:

a‘m�f̂� �

��������������������������������������
�2‘� 1�

�
�‘�m�!
�‘�m�!

s X2
N�0

X2�m�N�
s�0

��1�‘i‘�sc�m;N�g�m;N�s �f̂�
ds

df̂s
j‘�f̂�; �m � 0�: (56)

While the above expression is the outcome based on the coordinate (48), the invariant quantity4‘�f̂� can be evaluated from
(56), which is depicted in Fig. 2 as a function of ‘ and f̂. Also using (56), the nonvanishing components of 4‘ in the low-
frequency limit are explicitly calculated as

40 �
3

����
�

p

10
�

����
�

p

28
f̂2; 41 �

�������
2�

p

14
f̂�

17
�������
2�

p

2520
f̂3; 42 �

3
����
�

p

35
�

�
������
30

p
� 6�

����
�

p

960
f̂2;

43 �
1

42

���������
19�
10

s
f̂�

43

1848

��������
�
190

r
f̂3; 44 �

1

140

���������
47�
3

s
�
19

264

���������
19�
141

s
f̂2

(57)
up to the third order in f̂. The leading order terms in 4‘
rigorously match the results in Eq. (35).

Figure 2 shows that the higher multipole moments ap-
pear as increasing the frequency, and an oscillatory behav-
ior is found in the frequency domain f̂ * 1, which are also
indicated from the low-frequency expansion in Eq. (57).
0
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FIG. 2 (color online). Angular power 4‘�f̂� of the antenna
pattern function for the toy model as a function of ‘ and f̂.
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From the analytic expression (56), we readily see that the
quantity 4‘ higher than ‘ * 4 scale as O�f̂‘�4� in the low-
frequency limit and asymptotically behaves as 4‘ / f̂

�1 in
the high-frequency limit. The resultant angular power de-
picted in Fig. 2 implies that the resolution of anisotropy in
the stochastic background of gravitational waves can reach
‘ & 10� 15 for a relevant frequency range 0 � f̂ & 10.
This result is comparable to the angular resolution of
gravitational-wave background measured from the
ground-based detectors [24,28], since the assumption ne-
glecting the frequency and the directional dependences of
transfer function T can be validated for the response
function of Fabry-Perot interferometer.

B. Influence of transfer function

We now calculate the angular power of the antenna
pattern fully taking into account the frequency and the
angular dependences of the transfer function T . The re-
sults are then compared with the toy model example. For
this purpose, the spherical harmonic expansion of the
antenna pattern function is numerically carried out using
the SPHEREPACK 3.1 package [38]

Figure 3 shows the angular power of the antenna pattern
function for the self-correlated Michelson signals FM1M1

(left) and the cross-correlated Michelson signals FM1M2

(right). Relaxation of the assumption T � const:, i.e., low-
frequency approximation, leads to the nonvanishing com-
ponents for even modes with ‘ � 6. However, the resultant
higher multipole moments turn out to be highly sup-
pressed. While the sensitivity to the higher multipole mo-
ments is slightly improved in the case of the cross-
correlated Michelson signals, comparing it with Fig. 2
reveals that the frequency dependence of the transfer func-
-11
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FIG. 3 (color online). Angular power 4‘�f̂� of the antenna pattern function for the self-correlated Michelson signals FM1M1
(left)

and the cross-correlated Michelson signals, FM1M2
(right).

HIDEAKI KUDOH AND ATSUSHI TARUYA PHYSICAL REVIEW D 71, 024025 (2005)
tion T significantly reduces the angular power in both the
lower and the higher multipole moments. The numerical
evaluation of spherical harmonic expansion implies that
the nonvanishing components of the angular power asymp-
totically decrease as 4‘ / f̂

�2 in the high-frequency re-
gion, even faster than that of the toy model example.

The behaviors of the angular power are qualitatively
similar to the case adopting the Sagnac variables that
cancel the laser frequency noise (Fig. 4). Apart from the
low-frequency limit, where the antenna pattern function for
Sagnac signals behaves as F SiSj � f̂2 [see Eqs. (32) and
(34)], the angular power is highly suppressed at the fre-
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FIG. 4 (color online). Angular power 4‘�f̂� of the antenna pattern f
cross-correlated Sagnac signals F S1S2 (right).
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quency f̂ * 1 even in the relatively lower multipole mo-
ments ‘ & 6. Thus, the directional sensitivity of the space
interferometer to a stochastic background of gravitational
waves is severely limited by the frequency dependence of
the transfer function. This fact is irrelevant to the choice of
the interferometric variables.

C. Directional sensitivity for optimal combinations of
TDI variables

To elucidate a more quantitative aspect of the directional
sensitivity to the gravitational-wave background, it will
need to take into account effects of detector noises. To
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unction for the self-correlated Sagnac signals F S1S1 (left) and the
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investigate this, rather than using the Michelson and
Sagnac signals, a set of optimal TDIs (A,E,T) free from
the noise correlations should be applied to the correlation
analysis of the gravitational-wave signals.

Figure 5 plots the quantity 4‘ for various combinations
of the optimal TDIs. Note that the angular power of the
antenna pattern function F EE (F ET) coincides with that
obtained from F AA (F AT), although the sky patterns
themselves differ from each other. For the self-correlated
signals, the amplitude 4‘ of F AA is quite similar to that of
the self-correlated Sagnac signals F S1S1 , while the low-
frequency part of the angular power for F TT is highly
suppressed, which can be deduced from the low-frequency
approximation presented in Appendix A. As for the cross-
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FIG. 5 (color online). Angular power 4‘�f̂� of the antenna pattern
magnitude 4‘ in the self-correlated cases F AA (left) and F TT (right)
cross-correlated signals F AE (left) and F AT (right). Note that the ang
of F AA and F AT.
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correlation signals, the monopole and the dipole moments
for the antenna pattern function F AE are exactly canceled
and the monopole moment for F AT further vanishes
(Table I and Appendix C). Apart from these facts, the
magnitude 4‘ at frequency f̂ * 1 shows a rich structure
with many peaks, indicating that the directional sensitivity
could be improved at f̂ * 1. As shown in Fig. 5, the
angular power of the cross-correlated signals is 1 order
of magnitude smaller than that of the self-correlated sig-
nals, however, this does not directly imply that the self-
correlated signals are more sensitive to an anisotropy of a
gravitational-wave background.

Based on these results, let us now quantify the direc-
tional sensitivity of the antenna pattern function. Assuming
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functions for the optimal TDI variables. The top panels show the
, while the bottom panels represent the results obtained from the
ular powers of antenna pattern F EE and F ET coincide with those
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that the laser frequency noise can be either canceled or
sufficiently reduced by the TDI technique with the use of
the recently proposed laser self-locking scheme [39,40],
the dominant noise contributions to detector’s output
would be the acceleration noise and the shot noise.
According to Ref. [33], the noise spectral densities for
optimal TDIs are calculated as (see also [13]):

SAAn �f� � SEEn �f�

� sin2�f̂=2�f8�2� cosf̂�Sshot�f� � 16�3� 2 cosf̂

� cos2f̂�Saccel�f�g;

STTn �f� � 2�1� 2 cosf̂�2fSshot�f� � 4sin2�f̂=2�Saccel�f�g:

(58)

Note that the cross-correlated noise spectra are exactly
canceled. Here we specifically adopt the noise functions
for the LISA detector: Sshot�f� � 4:84�42 Hz�1 and
Saccel�f� � 2:31�40 �mHz=f�4 Hz�1 [33]. We then define
the effective sensitivity for the multipole moment ‘, h�‘�eff�f�,
which characterizes the rms amplitude of the noise-to-
angular power ratio:
FIG. 6 (color online). Effective sensitivity curves defined in (59) a
variables: AA correlation (top-left); TT correlation (top-right); AE co
the cross-correlation signals depicted in bottom panels, the observat
are assumed. The characteristic frequency is f� ’ 10 mHz.

024025
h�‘�eff�f� � �4��1=4
������������
Sn�f�
4‘�f�

s
(59)

for self-correlation signals. Setting ‘ � 0, the above defi-
nition recovers the usual meaning of sensitivity curve.
Thus, the quantity h�‘�eff�f� may be regarded as the effective
power of ‘th moment relative to the monopole moment as a
reference sensitivity. For the cross-correlated signals, on
the other hand, the absence of noise correlation implies that
the signal-to-noise ratio can be improved by optimally
filtering the cross-correlated signals. The resultant form
of the signal-to-noise ratio shows the explicit dependence
on the observation time T [41]. According to Ref. [33], the
effective sensitivity for cross-correlated signals may be
written as

h�‘�eff�f� �
	
4�
T�f



1=4

�
Sn;1�f�Sn;2�f�

42‘�f̂�

�
1=4
; (60)

where �f denotes the frequency resolution for actual out-
put data.

Figure 6 shows the effective sensitivity curves for the
self-correlated and cross-correlated optimal TDIs as func-
nd (60) for the self-correlated and cross-correlated optimal TDI
rrelation (bottom-left); AT correlation (bottom-right). In cases of

ion time of T � 1 year and the frequency resolution �f � f=10
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tions of f̂ � f=f�. In plotting these curves, we used the
characteristic frequency f� ’ 10 mHz for the LISA detec-
tor. The different lines in each panel indicate the effective
strain sensitivity for each multipole moment. Clearly, the
directional sensitivity to a gravitational-wave background
is not so good in the case of the self-correlated signals. As
anticipated from Fig. 5 and the noise spectra (58), the
effective sensitivity in the low-frequency limit scales as
h�‘�eff / f

�2 for ‘ � 0; 2, and 4 of AA correlation and h�‘�eff /
f�3 for ‘ � 0; 4, and 6 of TT correlation. At the frequency
around the characteristic frequency f�, the directional
sensitivities may reach at a maximal level and the higher
multipole moment can be observed in both AA and
TT correlations, however, the detectable multipole mo-
ments are still limited to ‘ � even mode with ‘ & 6 for
the sensitivity h�‘�eff � 10�18 Hz�1=2.

The situation might be improved if we consider the
cross-correlation signals. In bottom panels of Fig. 6, the
observation time of T � 1 year and the frequency resolu-
tion with interval�f � f=10 are assumed. In this case, the
sensitivity reaches h�‘�eff � 5
 10�21 Hz�1=2 in both AE
and AT correlations (and also the ET correlation), and
the detectable multipole moments become, say, ‘ & 10
or even higher multipole moments in both ‘ � odd and
even modes. At the frequency f=f� � 3, the effective
sensitivity for the higher multipole moments becomes
comparable to that for the lower multipole and shows a
complicated oscillatory behavior. Although the antenna
pattern for cross-correlation signals is completely insensi-
tive to the ‘ � 0 mode, improvement of the sensitivity is
noticeable, which might be useful to distinguish between
the gravitational-wave backgrounds from galactic origin
and those from extragalactic origin.
VI. CONCLUSION AND DISCUSSIONS

In this paper, we discussed the directional sensitivity to
the anisotropy of gravitational-wave background observed
via space-based gravitational-wave detector. While the
detection of anisotropic gravitational-wave background
could be achieved utilizing the modulated signals of
cross-correlated data induced by the detector motion, the
directional sensitivity and the angular resolution crucially
depend on the antenna pattern function and/or the detector
response in detector’s rest frame. In contrast to the ground-
based detector, the space interferometer with long base-
lines gives a rather complicated response to the
gravitational-wave signals.

We have performed the spherical harmonic analysis of
antenna pattern function for space interferometer and
studied the general features of antenna pattern sensitivity
beyond the low-frequency approximation. We have shown
that the sensitivity to the multipole moments of an aniso-
tropic gravitational-wave background is generally re-
024025
stricted by the geometry of the detector configuration
and symmetries of the data combinations (see Table I,
Sec. IV C and IV D). The numerical analysis of the antenna
pattern functions reveals that the angular power of the
detector response increases with frequency and shows the
complicated structures. To characterize the directional
sensitivity, we introduced the effective sensitivity h�‘�eff�f�
for each multipole moment and evaluated it in the case of
the LISA detector specifically. Using the cross-correlated
data of optimal TDIs, i.e., AE, AT, and ET correlations, we
found that the detectable multipole moments with effective
sensitivity h�‘�eff � 10�20 Hz�1=2 may reach ‘ � 8� 10 or
even higher multipoles at f� f� � 10 mHz, which would
be useful to discriminate between the gravitational-wave
backgrounds of galactic origin and those of the extragalac-
tic and/or the cosmological origins, recently discussed by
several authors (e.g., [18–20]).

Although the improvement of the directional sensitivity
beyond the low-frequency approximation is remarkable,
the sensitivity of the space interferometer is still worse than
the one achieved by the cosmic microwave background
experiments, like the COBE (cosmic background explorer)
and WMAP (Wilkinson microwave anisotropy probe). The
one main reason is that the wavelength of the gravitational
waves to which the space interferometer is sensitive is
comparable to or longer than the arm length of the detector.
Because of this, the response to the gravitational-wave
background becomes simpler and most of the directional
information is lost, as seen in Sec. IV B. The directional
sensitivity can be improved as increasing the frequency,
however, the sensitivity beyond the characteristic fre-
quency f� is limited by the instrumental noises. Another
important aspect is that the phases of the gravitational-
wave backgrounds are, in nature, random. Thus, the infor-
mation of phase modulation induced by the detector
motion cannot be used. This is marked contrast to the
signals emitted from the point source, in which the angular
resolution can reach at a level of a square degree or even
better than that [2,9,42– 44].

Further notice the important issues concerning the map-
making capability of the gravitational-wave backgrounds.
As discussed in Sec. II, provided the time series data, the
task is to solve the linear system (11) under a prior knowl-
edge of the antenna pattern functions for the space inter-
ferometer. The crucial remark is that the antenna pattern
functions for the cross-correlation signals taken from the
optimal TDIs (A,E,T) are not independent (see Sec. IV D).
This fact implies that Eq. (11) constructed from the three
cross-correlation data (AE,AT,ET) is generally degenerate.
Thus, the deconvolution problem given in (11) would not
be solved rigorously. Rather, one must seek a best-fit
solution of pE‘m�f� from (11) under assuming a specific
functional form of the luminosity distribution pE‘m�f�. The
analysis concerning this issue is now in progress and will
be presented elsewhere.
-15



HIDEAKI KUDOH AND ATSUSHI TARUYA PHYSICAL REVIEW D 71, 024025 (2005)
ACKNOWLEDGMENTS

We would like to thank Y. Himemoto and T. Hiramatsu for valuable discussions and comments. This work is supported
by the Grant-in-Aid for Scientific Research of Japan Society for Promotion of Science (JSPS) (No. 14740157). H. K. is
supported by the JSPS.

APPENDIX A: SPHERICAL HARMONIC EXPANSION IN THE LOW-FREQUENCY APPROXIMATION

In this appendix, employing the perturbative approach based on the low-frequency approximation f̂ � f=f� � 1, the
spherical harmonic expansions for several antenna patterns are presented, which partially verify the properties summarized
in Table I and Eq. (37).

1. Sagnac interferometers

The angular powers 4‘ of the self-correlated Sagnac signal F SiSi and the cross-correlated Sagnac signal F SiSj in the
low-frequency approximation are summarized as follows:
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2. Optimal combinations of time-delay interferometry

From Eq. (22) the antenna pattern functions of the self-correlated optimal TDIs can be written down in terms of the
antenna pattern for the Sagnac signals:

F AA �
1

2
fF 33 �F 11 �F �1;3�g; F EE �

1

6
fF 11 � 4F 22 �F 33 �F �1;3� � 2F �1;2� � 2F �2;3�g;

F TT �
1

3
fF 11 �F 22 �F 33 �F �1;3� �F �1;2� �F �2;3�g;

(A2)

where the round brackets are an abbreviation for the symmetrization, F �1;3� � F 13 �F 31 for instance, and F ij stands for
F SiSj . The antenna pattern functions of the cross-correlated signals, F AE, F AT, and F ET, are

F AE �
1

2
���
3

p fF 33 �F 11 �F 31 �F 13 � 2F 12 � 2F 32g; F AT �
1���
6

p fF 33 �F 11 �F 31 �F 13 �F 32 �F 12g;

F ET �
1

3
���
2

p fF 11 � 2F 22 �F 33 �F 12 � 2F 21 �F 32 � 2F 23 �F �1;3�g: (A3)

Under the configuration in a specific coordinate (28), the low-frequency approximation of the multipole coefficients of
the self-correlated optimal variables are given as follows:
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m< 0 modes are given by the relation (27). The rule (37) strictly restricts the appearance of multipole moments, and of
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course the above multipole moments follow the rule (37). For the cross correlation of two data streams, one would expect
that ‘ � odd modes appear even in the low-frequency limit. However, it is not the case. A nonvanishing multipole moment
is given to order O�f̂2� by
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p
f̂2: (A5)

The ‘ � odd modes appear in the next order O�f̂3� in some multipole moments that satisfy ‘�m � even:
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The angular powers up to O�f̂4� are summarized as
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and
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APPENDIX B: PARITY TRANSFORMATION

Here, we summarize some formulae related to the parity
transformation, which are used in Sec. IV C. In general,
parity of the polarization tensor e�;
 depends on the
choice of the coordinate basis. Our choice of the basis
vectors are those defined in (3) and (4) just simply replac-
ing the variables �E;�E with �;� in detector’s rest frame.
In the following, the vector d stands for the unit vectors
a;b; c. We then obtain

P�d 	�� � �1�d 	��;

P�d � d�:eA � �1�d � d�:eA �A � �;
�
(B1)

for the operator P and

Q�d 	�� � �1�d 	��;

Q�d � d�:e� � �1�d � d�:e�;

Q�d � d�:e
 � �1�d � d�:e

(B2)

for the operator Q. As for the composite operation QP,
which is identical to the parity transformation, one has

QP�d 	�� � �1�d 	��;

QP�d � d�:e� � �1�d � d�:e�;

QP�d � d�:e
 � �1�d � d�:e
:

(B3)
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APPENDIX C: ON CANCELLATION OF
MONOPOLE AND DIPOLE MOMENTS IN

ANTENNA PATTERN FUNCTION FOR
CROSS-CORRELATED OPTIMAL TDIS

In this appendix, we will prove that the antenna pattern
function for the cross-correlated optimal TDIs has the
following symmetric properties:

40�f� � 0; 41�f� � 0 for AE correlation;
40�f� � 0 for AT;ET correlation;

(C1)

which are intimately related to the geometric properties of
both the detector configuration and the response function.
As we have explained, the antenna pattern functions F AE,
F AT, and F ET are written in terms of the antenna pattern
functions for the Sagnac signals [see Eq. (A3)]. The ex-
pressions readily imply that the multipole moments for the
antenna pattern functions, aAE‘m , aAT‘m , and aET‘m, are also
obtained from the sum of the cross-correlated Sagnac

signals, a
SiSj
‘m [see (45), for example].

Let us first consider the monopole moment a00. Since
the monopole moment is obtained through the all-sky
average of the antenna pattern function, it is, by construc-
tion, invariant under both the Euler rotation and the parity
transformation of the coordinate system. This indicates
-17
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that the monopole moments for various combinations of

the Sagnac signals a
SiSj
‘m are degenerate and there are only

two independent variables, that is,

aS1S100 � aS2S200 � aS3S300 ; a
SiSj
00 � aSkSl00 �i � j; k � l�:

(C2)

Substituting this into the spherical harmonic expansion of
the antenna pattern functions (A3), we immediately see
that the monopole component of cross-correlated optimal
signals exactly vanishes, i.e., aAE00 � aAT00 � aET00 � 0.
Accordingly, the monopole moments of angular power,
4AE0 , 4AT0 , and 4ET0 , become vanishing.

Next focus on the dipole moment of AE correlation. In a
specific choice of the coordinate system (28), all the com-
ponents in the dipole moment vanish due to Eq. (37) for the
self-correlated Sagnac signals, i.e., aSiSi1;m � 0. Also, the
dipole moment with m � 0 becomes zero for the cross-

correlated signals, i.e., a
SiSj
10 � 0. Further, the relation (27)

implies aAE1;�1 � �aAE11 �
�. Collecting these facts, the dipole

moment of angular power 4AE1 can be written as

4AE1 �

���
2

3

s
jaAE11 j �

1

3
���
2

p jaS3S111 � aS1S311 � 2aS1S211 � 2aS3S211 j:

(C3)

It is thus sufficient to consider the dipole moment with
m � �1 for the cross-correlated Sagnac signals.

From Eq. (42), the angular power 4AE1 can be solely
determined by the quantity aS1S211 . If we write aS1S211 �

r�f̂�ei��f̂�, Eq. (C3) becomes

4AE1 �f̂� �
r

3
���
2

p j2� e�i2� � �1� 2e�i2��e�i2�j��2�=3:

(C4)
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To determine the phase factor ��f̂� or amplitude r�f̂�, we
recall the fact that the dipole moment of antenna pattern
function F AA vanishes:

aAA11 �
1

2
�aS1S111 � aS3S311 � aS1S311 � aS3S111 �

� �
1

2
�aS1S311 � aS3S111 � � 0

from (22). Using the relations (42), the above equation
becomes

aAA11 �
rei�

2
�e�i2� � e�i2����2�=3 � 0;

which finally yields r�f̂� � 0 or ��f̂� � �� n�. Thus,
substituting this value into the right-hand side of
Eq. (C4) immediately leads to the conclusion that the
dipole moment of angular power 4AE1 is exactly canceled.
This means that all the dipole components for aAE‘m become
zero over the whole frequency range.
APPENDIX D: COEFFICIENTS IN ANTENNA
PATTERN FOR TOY MODEL

In this appendix, we summarize the coefficients c�m;N�

and the functions g�m;N�s �f̂� defined in (52) and (54).
For the coefficients c�m;N�, the nonvanishing components

are

c�0;0� � � 123�
256 ; c�0;1� � 135�

128 ; c�0;2� � � 219�
256 ;

c�2;0� � � 15�
128 ; c�2;1� � � 39�

128 ;

c�4;0� � � 9�
512 :

(D1)

As for the functions g�m;N�s �f̂�, the nonvanishing compo-
nents for 0 � m � 4 and 0 � N � 2 become
g�0;0�0 � 1; g�2;0�0 � �4� f̂2; g�2;1�0 � 2; g�4;0�0 � 144� 48f̂2 � f̂4;

g�2;0�1 � 8if̂; g�2;1�1 � �4if̂; g�4;0�1 � �576if̂� 32if̂3;

g�0;1�2 � 1; g�2;0�2 � 12� 2f̂2; g�2;1�2 � �24� f̂2; g�4;0�2 � �1440� 432f̂2 � 4f̂4;

g�2;0�3 � �8if̂; g�2;1�3 � 16if̂; g�4;0�3 � 1920if̂� 96if̂3;

g�0;2�4 � 1; g�2;0�4 � �f̂2; g�2;1�4 � 30� 2f̂2; g�4;0�4 � 1680� 720f̂2 � 6f̂4;

g�2;1�5 � �12if̂; g�4;0�5 � �1344if̂� 96if̂3;

g�2;1�6 � �f̂2; g�4;0�6 � �336f̂2 � 4f̂4;

g�4;0�7 � 32if̂3;

g�4;0�8 � f̂4:

Note that the other components with m � 0 do not contribute to the calculation of the multipole coefficient a‘m due to the
coefficients c�m;N� [Eq. (D1)].
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