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Codimension two branes in Einstein-Gauss-Bonnet gravity
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Codimension two branes play an interesting role in attacking the cosmological constant problem.
Recently, in order to handle some problems in codimension two branes in Einstein gravity, Bostock et al.
proposed using six-dimensional Einstein-Gauss-Bonnet (EGB) gravity instead of six-dimensional
Einstein gravity. In this paper, we present the solutions of codimension two branes in six-dimensional
EGB gravity. We show that Einstein’s equations take a factorizable form for a factorized metric tensor
ansatz even in the presence of the higher-derivative Gauss-Bonnet term. Especially, a new feature of the
solution is that the deficit angle depends on the brane geometry. We discuss the implication of the solution
to the cosmological constant problem. We also comment on a possible problem of inflation model building
on codimension two branes.
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I. INTRODUCTION

The idea of braneworlds and large extra dimensions [1]
implies that the cosmological constant problem (see
Refs. [2,3] for reviews) may be a clue of our unawareness
of the true nature of spacetime: vacuum energy may be
large, but it simply does not gravitate in the four-
dimensional braneworld in which we are living. The key
point is that the cosmological constant is a reflection of
four-dimensional spacetime geometry and thus is what is
observed directly in cosmological observations. The
puzzle arises only after we use general relativity to find
that the cosmological constant describes vacuum energy of
standard model particles. So if we modify gravity theory by
introducing higher dimensional spacetime and objects like
branes, it is possible that the four-dimensional cosmologi-
cal constant is not linked to four-dimensional vacuum
energy, but something else such as higher dimensional
vacuum energy. See, e.g., Refs. [4,5] for some earlier
endeavors in this direction.

Recently, Carroll and Guica presented an interesting
exact solution of this type [6]. They considered a factoriz-
able braneworld spacetime with two extra dimensions and
explicit brane sources. The compactification manifold has
the topology of a two-sphere, and is stabilized by both a
bulk cosmological constant and a magnetic flux. From their
solution, they found that the flat nature of the four-
dimensional geometry is independent of the brane tension.
This feature moves the cosmological constant problem
completely into the extra dimensions. Of course, this is
not a complete solution to the cosmological constant prob-
lem since it still needs fine tuning in the bulk, but it trans-
forms the nature of the problem in a suggestive way.
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The interesting feature of Carroll and Guica’s solution is
not an accident (see Ref. [7] for some other models of
codimension two branes that share the similar feature, see
also Ref. [8] for earlier ideas along this line). It can be
shown that the independence of four-dimensional geome-
try on the brane tension is a general feature of codimension
two branes in factorizable spacetime in Einstein gravity.
The following discussions will also be helpful for us to
understand the properties of codimension two branes in
Einstein-Gauss-Bonnet gravity (see Sec. II).

Let us consider a factorizable metric ansatz,

ds2 � GABdX
AdXB � g�	�x�dx

�dx	 � �ab�y�dy
adyb;

(1)

where A;B � 0; . . . ; 5, �; 	 � 0; . . . ; 3, and a; b � 4; 5.
The �ab is the metric of an Einstein manifold with curva-
ture k � �1; 0; 1. Note that due to the presence of branes,
there will be deficit angles in the extra dimensions at the
positions of the branes (see Sec. III), but this will not
influence the local geometry of the extra dimensions at
other points.

We will consider the simplest model of branes which is
also the case considered in most of the literature on brane-
world cosmology: the branes are described by Nambu-
Goto action (see Ref. [9] for an elegant review),

SNG �
Z
d6X

�������
jGj

p
Lbrane; (2)

where

L brane � �
X
i

Z
d4x

�������
jgj
jGj

s
�i�

�6��X� Xi�x��; (3)

in which i labels the branes, �i and Xi are the tension and
position of the ith brane, respectively. The energy-
momentum tensor of branes follow by varying GAB in (2)
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[9]

TbAB � �
X
i

�i����
�

p

�
g�	 0
0 0

�
��2��y� yi�; (4)

With the help of the fact that the Einstein tensor Gab �

Rab �
1
2habR vanishes identically for any two-dimensional

metric hab and denoting the bulk energy-momentum tensor
by TBAB, contracting the transverse component of the
Einstein equation gives

R�g� � �
2

M4
6

TB2 ; (5)

where TB� 
 TBab�
ab; while contracting the longitudinal

component gives

R��� �
1

2
R�g� � �

1

2M4
6

�TBg � Tb�; (6)

where TBg 
 TB�	g�	 and Tb 
 Tb�	g�	. Now, Eq. (5) tells
us that the scalar curvature of the four-dimensional space-
time is totally determined by the transverse component of
the total bulk energy-momentum tensor. Thus if we assume
the four-dimensional geometry to be maximal symmetric,
then it is determined totally by the transverse part of the
bulk energy-momentum tensor. Specifically, the four-
dimensional geometry does not depend on the brane ten-
sion. Then, after we find R�g� from Eq. (5), substituting it
into Eq. (6), we can find the bulk curvature R���. In sum,
for codimension two branes in factorizable spacetime, the
brane geometry is determined by the transverse component
of the Einstein equations and the bulk geometry is deter-
mined by the longitudinal component of the Einstein equa-
tions. Roughly speaking, we can say that Einstein
equations in factorizable spacetime are also ‘‘factoriz-
able.’’ This is the secret of codimension two branes in
Einstein gravity.

While the above discussion is exiting, unfortunately,
when considering realistic cosmological evolution of this
model, we will encounter some fundamental difficulties.
One of them is that if we assume the brane energy-
momentum tensor to be of the form as the perfect fluid,
i.e., T�	 � f�; p; p; pg��	 , then � and p must satisfy ��
p � 0, i.e., it behaves like the brane tension [10]. This
forbids us from adding dust and radiation on the brane, thus
it is cosmologically unrealistic. To remedy this and other
difficulties of codimension two branes in Einstein gravity,
recently, Bostock et al. suggested that we may add the
Gauss-Bonnet term to the six-dimensional gravitational
action [11] (however, see also Ref. [12] and reference
therein for some other suggestions to handle this problem).
It is also worth commenting that the idea that six-
dimensional Einstein-Gauss-Bonnet (EGB) gravity could
be relevant in relation to the cosmological constant prob-
lem was originally presented in Ref. [13] (see also
Ref. [14] for some subsequent related works). The
024023
Gauss-Bonnet term is quadratic in the curvature tensors
and is a topological invariant in four-dimensional manifold
(see, e.g., Ref. [15]); but in higher dimensions, it has the
well-know property that the equation of motion derived
from it remains second order differential equations of the
metric. Furthermore, considering higher-derivative terms
is also necessary to develop the braneworld scenario in a
more string theoretic setting (see, e.g., Ref. [16]).
Specifically, the Gauss-Bonnet combination arises as the
leading order for quantum corrections in the heterotic
string effective action and is the only quadratic combina-
tion of curvature tensors that is ghost free [17].

Thus, the investigation of codimension two branes in
EGB gravity is well motivated (see Ref. [18] for some
other recent discussion of codimension two branes in EGB
gravity). Of course, one of the best ways to understand the
property of a gravity theory is studying its exact solutions.
Especially in the present case, the EGB gravity is intended
to remedy the model in Einstein gravity. Thus one natural
step is to derive and compare the corresponding solutions
in EGB gravity under the same assumption of spacetime
geometry and matter content with Einstein gravity case. In
particular, it is important to check that the important prop-
erty in Einstein gravity, i.e., the independence of the four-
dimensional geometry on the brane tension, is retained in
EGB gravity. If this were not the case, considering EGB
gravity would not be so well motivated. We will see in
Sec. II that the discussion above for Einstein gravity also
applies to EGB gravity, thus EGB gravity retains the main
features of Einstein gravity. In Sec. III, we will also see that
some new features will arise in EGB gravity. The last
section, Sec. IV, is devoted to conclusions and we comment
on inflation model building in the codimension two brane
scenario.

II. EINSTEIN-GAUSS-BONNET EQUATION IN
FACTORIZABLE SPACETIME

Let us consider adding the Gauss-Bonnet term to modify
the six-dimensional gravity [11], which is described by the
action

S6 �
Z
d6X

�������
jGj

p M4
6

2
�R� �R2

GB�; (7)

where � is the Gauss-Bonnet coupling constant with di-
mension ��� � �mass��2. Following the original deriva-
tion [17], one generally assumes �  0, but in the
literature the �< 0 case is also often discussed. We will
see in Sec. III that, from the exact solution we found, the
requirement of the geometry to be nonsingular will rule out
a negative Gauss-Bonnet coupling constant. The Gauss-
Bonnet term RGB is given by

R2
GB � R2 � 4RABRAB � RABCDRABCD: (8)

Then the gravity field equation in six-dimensions is
described by the Einstein-Gauss-Bonnet equation,
-2
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GAB � �HAB �
1

M4
6

TAB; (9)

where

HAB � �
1

2
gABR

2
GB � 2RRAB � 4RACR

C
B

� 4RCDRACBD � 2RCDEA RBCDE: (10)

While the EGB equation (9) is rather complicated, it can
be shown that in factorizable spacetime, the EGB equation
can be simplified into a rather illuminating form: after
inserting the ansatz (1) into the EGB equations (9), the
transverse and longitudinal EGB equations can be simpli-
fied to give

�R2
GB�g� � R�g� � �

1

M4
6

TB� ; (11)

��R�g� � 1�R��� �
1

2
R�g� � �

1

2M4
6

�TB� � Tb�: (12)

From those two equations we can see that the main feature
of codimension two branes in Einstein gravity is retained in
EGB gravity: the scalar curvature of the four-dimensional
spacetime is still determined only by the transverse com-
ponent of the bulk energy-momentum tensor from the
transverse EGB equation (11); the bulk geometry is then
determined by the longitudinal equation (12). So the EGB
equations are still ‘‘factorizable’’ in factorizable space-
time. Thus in the EGB gravity, we still can move the
cosmological constant problem completely into the bulk.

Now we have good motivation to proceed to see how the
spacetime solutions will be modified in EGB gravity. As a
first remark, it is interesting to see from Eqs. (11) and (12)
that the Gauss-Bonnet term couples only with the four-
dimensional scalar curvature R�g�. Thus, when the four-
dimensional geometry is flat, EGB equations will always
reduce to Einstein equations (5) and (6). So in this case, the
bulk solution is the same as the one given in Ref. [6]. Thus
what is really interesting is the case when the brane ge-
ometry is not flat. In the next section, we will consider de
Sitter geometry on the brane.
III. DE SITTER BRANES IN EINSTEIN-GAUSS-
BONNET GRAVITY

From the recent cosmological observation that our uni-
verse is currently accelerating [19], we are interested in
solutions with de Sitter geometry on the brane. So we will
consider in this section the case that the geometry on the
brane is de Sitter, i.e., R�g��	 � �4g�	 and R�g� � 4�4,
where �4  0 is the four-dimensional cosmological con-
stant. Under those assumptions of spacetime geometry, it
can be seen from Eqs. (11) and (12) that the bulk energy-
momentum tensor TBAB must be constant along the bulk.
024023
Let us first discuss the four-dimensional geometry by
Eq. (11). Under the assumption of maximal symmetric, it
can be rewritten as

8

3
��2

4 � 4�4 � �
1

M4
6

TB� ; (13)

From Eq. (13), we can find that the four-dimensional
cosmological constant is given in terms of the bulk energy-
momentum tensor by

�4 �
3

4�

�
�1�

�������������������������
1�

2�

3M4
6

TB�

s 	
: (14)

Thus, the first different feature we encounter in the EGB

gravity is that, for any given TBAB, unless it satisfies TB� �
3M4

6

2� , we will have two solutions of the brane geometry.
After the brane geometry is determined, the bulk geometry
is uniquely determined by the brane geometry from
Eq. (12). Thus, generally, for any given bulk matter con-
tent, there will be two different solutions of the EGB
equation. This is obviously not a pleasant feature.
However, we will argue that the ‘‘-’’ branch of the solution
is unphysical and should be discarded. It can be seen from
Eq. (14) that for the ‘‘-’’ branch, the coefficient of R��� in
Eq. (12), i.e., 4��4 � 1, is always negative; while in
Einstein gravity, i.e., � � 0, it is always positive. This
means that for the ‘‘-’’ branch, the gravity in the transverse
dimension is repulsive: positive bulk energy density will
give rise to negative curvature and only negative tension
branes can give rise to a positive deficit angle. We think
those properties are too exotic so should be regarded as
unphysical. Thus in the following discussions, we will
discard the ‘‘-’’ branch.

Then let us discuss the bulk geometry from Eq. (12),
which now can be written as

�4��4 � 1�M4
6R��� � �

1

2
TBg � 2M4

6�4 �
2��������
j�j

p ��2��y�:

(15)

First, in the case of a vacuum bulk, i.e., TBAB � 0. From
the ‘‘+’’ branch of Eq. (14), we have �4 � 0, and Eq. (15)
will just reduce to Einstein gravity. Thus the bulk geometry
will be the same as the case discussed in Ref. [20].

Next, let us consider the presence of bulk fields.
Following Refs. [6,7,21], we expect the extra dimensions
to have the topology of a sphere S2. Thus the two-
dimensional metric �ab will be of the form

�abdyadyb � a20�d$
2 � %2sin2$d’2�; (16)

where a0 is the size of the extra dimensions and% is related
to the deficit angle � by � � 2'�1� %�.

Transforming the metric (16) into the conformal form,

�abdyadyb �  �r��dr2 � r2d’2�; (17)
-3
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where  is given by [6]

 �r� �
4%2a20

r2��r=r0�
% � �r=r0�

�%�2
; (18)

and substituting this into Eq. (15), it can be found that a0
and % are given by

a20 �
M4

6�1� 4��4�

� 1
4T

B
g �M4

6�4

; (19)

% � 1�
�

2'M4
6�1� 4��4�

: (20)

Equations (14), (19), and (20) determine the brane and bulk
geometry completely. They are the main result of this
paper. Below we will discuss mainly its application to the
scenario of Ref. [6]. Before that, two remarks are in order
about those solutions.

First, a whole new feature of the solution (20) compared
to the Einstein case is that the deficit angle in the extra
dimensions will now depend on the geometry of the branes.
From this, we can find an interesting geometric argument
in favor of a positive Gauss-Bonnet coupling constant. In
the case of a negative Gauss-Bonnet coupling constant, the
geometry will become singular when �4 >�1=�4��.
Since we expect �4 to be very large during the inflation
era, the requirement of a nonsingular geometry forces us to
rule out a negative Gauss-Bonnet coupling constant.

Second, the brane geometry in six-dimensional Einstein-
Gauss-Bonnet gravity is also discussed in Ref. [11]. The
authors actually considered only the longitudinal compo-
nent of the EGB equation and concluded that Einstein
gravity will restore on the brane. Because of our analysis,
the brane geometry is determined by the transverse com-
ponent of the EGB equation and while the longitudinal
equation looks like an Einstein equation, it actually deter-
mines the bulk geometry after the brane geometry is found
by the transverse equation. This can be seen more clearly
by the expression for the four-dimensional cosmological
constant in Ref. [11] [Eq. (21) in that reference]. Actually,
Eq. (21) in Ref. [11] is exactly Eq. (20), from which we can
see that it actually determines the deficit angle after the
four-dimensional cosmological constant is found from
Eq. (14).

Now, let us discuss a specific example of the solutions
(14), (19), and (20). A lot of the recent works on codimen-
sion two branes are motivated by the exact solution pre-
sented by Carroll and Guica [6] which shows explicitly the
independence of the four-dimensional geometry on the
brane tension. Thus we think it is most important to discuss
the corresponding solutions in EGB gravity and compare it
with that of Ref. [6]. The solution presented by Carroll and
Guica assumes a bulk cosmological constant and a mag-
netic flux, which is described by the bulk action [6],
024023
S6 �
Z
d6X

�������
jGj

p �
1

2
M4

6R� +�
1

4
FABFAB

�
; (21)

where M6 is the six-dimensional reduced Planck mass and
+ is the six-dimensional vacuum energy density. The 2-
form field strength takes the form Fab �

�������
j�j

p
B0-ab, where

B0 is a constant and -ab is the standard antisymmetric
tensor. Other components of FAB vanish identically. This
model is originally suggested to stabilize the extra dimen-
sions [20,21].

The bulk energy-momentum tensor contains contribu-
tions from both the bulk cosmological constant and the
gauge field,

TBAB � T+AB � TFAB; (22)

for which the explicit forms are

T+AB � �+�g�	00�ab�;

TFAB � �
1

2
B2
0�g�	00� �ab�: (23)

So we have TB1 � �4+� 2B2
0 and TB2 � �2+� B2

0.
At first, we generalize the flat brane solution of Ref. [6]

to de Sitter brane, which is given by

a20 �
M4

6

2+� 3M4
6�4

; (24)

% � 1�
�

2'M4
6

; (25)

M4
6�4 �

1

2
+�

1

4
B2
0: (26)

It is interesting to note that for the geometry to be
nonsingular, from Eq. (24), we must have �4 <
2+=�3M4

6�. However, from Eq. (26), this is always satisfied.
Thus the de Sitter geometry of the brane will never make
the bulk geometry singular.

From Eq. (26), we can see that the puzzle of a small four-
dimensional cosmological constant is now transformed to
the question of explaining a fine tuning between the six-
dimensional vacuum energy and the magnetic flux, which
is a purely bulk problem. Thus in this scenario the cosmo-
logical constant problem is moved completely into the
bulk. Of course, this does not solve the cosmological
constant problem, but it transforms the nature of the prob-
lem in an interesting way. At a first glance, it is tempting to
appeal to the usual supersymmetry argument [2] to set both
+ and B2

0 very small, thus avoiding fine tuning between
them. However, this cannot work. From Eq. (24), we can
see that we must require either + or B2

0 to be of the order
M6

6 so that the size of the extra dimensions can be phenom-
enologically viable. Thus, there is a real fine-tuning prob-
lem in the bulk. Currently, we still do not know whether
this fine tuning can be technically natural. Thus, it would
-4
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be very interesting that if in the EGB gravity, we can have a
way to release this fine tuning. We will see below that when
the Gauss-Bonnet coupling constant is large, this is
possible.

Then, we turn to the discussion of solutions in EGB
gravity. From Eqs. (14), (19), and (20), the corresponding
solution in EGB gravity is given by

a20 �
M4

6�1� 4��4�

2+� 3M4
6�4 �

4
3�M

4
6�

2
4

; (27)

% � 1�
�

2'M4
6�1� 4��4�

; (28)

�4 �
3

4�

0@
�����������������������������������
1�

2�
3

2+� B2
0

M4
6

vuut � 1

1A: (29)

As a first remark, while we have discussed above, a
negative � may result in a singular spacetime; for a posi-
tive�, while it is not very obvious, it still can be shown that
the geometry is always nonsingular by an argument that is
similar to the Einstein case.

Then let us discuss the cosmological constant problem
in EGB gravity as expressed by Eq. (29). Since we gen-
erally have + <M6

6 and B2
0 <M6

6, so when �M2
6 < 1, we

have ��2+� B2
0�=M

4
6 � 1. Expanding the right-hand side

of Eq. (29) to first order, we can find that �4 � �2+�
B2
0�=M

4
6. Thus, in this case we are actually facing the same

fine tuning as in Einstein gravity in order to get a small
cosmological constant. This is not a surprise, since it is
natural for the solution to reduce to the Einstein case when
� is small. So what is interesting is the case where the
Gauss-Bonnet coupling constant is large. Let us assume
2+� B2

0 �M6
6, i.e., we do not have a fine tuning in the

bulk, and when �M2
6 � 1, i.e., considering the case of a

large Gauss-Bonnet coupling constant, from Eq. (29), we
can obtain

�4 �
M6����
�

p : (30)

Thus even if we do not have a fine tuning in the bulk, for a
sufficiently large �, we still can get a small four-
dimensional cosmological constant. In this case, the cur-
rent cosmological expansion acceleration is actually driven
by the six-dimensional Gauss-Bonnet term, which is in
some sense similar to the recent model of 1=R gravity
proposed by Carroll et al. [22]: the current cosmological
expansion acceleration is driven by a 1=R term in the four-
dimensional gravitational Lagrangian. Of course, in order
for the �4 to be the order of the observational value, ��1

also needs to be fine tuned to an extremely small value.
Thus in the current case, we have actually traded the
fine tuning in the bulk to a fine tuning in the Gauss-
Bonnet coupling constant. Although this new fine tuning
also seems unnatural now, the cosmological constant prob-
024023
lem is so hard to solve that it is worth transforming it to a
new problem for further investigations. Furthermore, this
shows the qualitative feature of what will happen if we
consider higher-derivative gravity in the bulk. Maybe con-
sidering more complicated higher-derivative gravity theo-
ries such as forth order combinations of the curvature
tensor can further release the fine tuning in a more natural
way. This deserves further investigating. It is worth men-
tioning that a similar fine-tuning problem also happens in
the 1=R gravity: the coefficient of the 1=R term should also
be extremely small to account for the current cosmic
accelerating expansion [22]. In the 1=R gravity, this is
unnatural from an effective field point of view and can
lead to some inconsistencies when the theory is treated
quantum mechanically [23]. Now we still do not know
whether a similar problem will be presenting here.

As a final remark, in Ref. [24], Navarro considered using
a 4-form field in place of the 2-form field in the action (21).
By using Eqs. (14), (19), and (20), it is trivial to generalize
Navarro’s solution to the EGB gravity.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have discussed the gravitational prop-
erties of codimension two branes in Einstein-Gauss-
Bonnet gravity and their implications in addressing the
cosmological constant problems.

Although the current scenario is originally introduced to
discuss the cosmological constant problem, it is also man-
datory that cosmological models from string theory should
be reconciled with inflation, now a quite well-established
ingredient of modern cosmology [25] (see, e.g., Ref. [26]
for a recent review of braneworld inflation; inflation in
five-dimensional EGB gravity is recently discussed in
Ref. [27]). When considering inflation model building in
the present scenario, an observation is that the inflaton
must be a bulk field. This is in sharp contrast to the
discussions of the codimension 1 case, where most of the
inflation model assumes the inflaton to be confined on the
brane [26]. The reason for this is simple. Current observa-
tion of the CMB power spectrum tells us that during
inflation, the energy density of inflaton should be almost
constant [25]. Thus, if the inflaton is a field confined on the
brane, then during inflation it will behave just like the
brane tension. So the above analysis tells us that it cannot
affect the four-dimensional geometry. On the other hand, if
the inflaton is a bulk field, then its effects during inflation
are just equivalent to a renormalization of the six-
dimensional cosmological constant +.

So in the Einstein gravity case, the Hubble parameter
during inflationH2 
 �4=3 will be given from Eq. (26) by

H2 � V=M4
6; (31)

where V is the potential of the bulk inflaton field. Thus the
energy scale of the potential would be of order
�H=M6�

1=3M6 during inflation. In the original model of
-5
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large extra dimensions [1], in order to address the gauge
hierarchy problem, the six-dimensional reduced Planck
mass is assumed at most a few orders higher than the
supersymmetry breaking scale which is of order one TeV.
On the other hand, current CMB data prefers a high in-
flation scale which is at most several orders of magnitude
smaller than the GUT scale �1016 GeV [25]. Thus, the
potential V during inflation is necessarily larger thanM6. If
the inflaton is a brane field, there is nothing unnatural here.
But as we have commented above, inflaton must be a bulk
field now. So it is very unnatural for a bulk field to have an
energy scale larger than the bulk Planck mass. Therefore,
implementing a successful inflation scenario encounters
fundamental difficulties in codimension two brane scenar-
ios [28].

The situation is worse in EGB gravity. From Eq. (29),
the Hubble parameter during inflation will be given by
Eq. (31) when M2

6�� 1 and it reduces to the Einstein
case. When M2

6�� 1, from Eq. (30), the Hubble parame-
ter will be given by

H2 �
M6����
�

p
����
V

p
: (32)

Thus the energy scale of the potential would be of order
�H=M6�

2=3��M2
6�

1=6M6 during inflation. Then a higher
potential energy is needed compared with the Einstein
case (31) to implement the inflation. This makes the prob-
lem we discussed above more severe.
024023
Faced with the above problem, it is worth considering
other mechanisms of driving an inflation on the brane
rather than a bulk scalar field. A seemingly promising
candidate is the R2 inflationary model of Starobinsky
[29]. However, in order to avoid the above problem, we
assume that the R2 term is only induced on the brane, as the
case of induced gravity model given by Dvali et al. [30].
More concretely, we may consider adding to the bulk
Lagrangian (21) an induced R2 term,

Sinduced �
Z
d4x

������
jgj

q
~�R�g�2; (33)

where ~�will be of orderM�2
4 [29]. It is worth commenting

that such a term may be induced by quantum effects of
conformal fields on the brane, and R2 inflation on codi-
mension one braneworld has been discussed in Ref. [31].
This and other possibilities to handle the inflation model
building problems deserve further investigation.
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