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Axi-dilaton gravity in D � 4 dimensional space-times with torsion
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I. INTRODUCTION

Gravitational interactions are formulated on a space-
time manifold M equipped with a metric tensor field g
and a metric compatible connection r defined on the
bundle of orthonormal frames. Most commonly, interac-
tions coupled with gravity are studied in a geometry where
the connection r is constrained to be the unique torsion-
free Levi-Cività connection. In this context, massive test
particles are postulated to follow timelike geodesics asso-
ciated with space-time metric and torsion-free connection.
On the other hand a metric compatible connection with
torsion provides new independent degrees of freedom. It
has been shown that the scalar field interactions coupled
with gravity can yield connections with nonzero torsion
[1]. In that case, a space-time history of particles may be
determined by the autoparallels of a connection with tor-
sion [2– 4]. We know that the independent variation of any
action with respect to connection determines space-time
torsion. In particular, the bosonic part of effective super-
string interactions can produce a torsion that is propor-
tional to the gradient of the dilaton (scalar) field. Hence, it
would be of interest to formulate such types of interactions
in frames where torsion exists.

It is an exciting conjecture that all superstring models
belong to an 11 dimensional M theory that accommodates
their apparent dualities. M theory as a classical theory can
be considered in a low-energy limit where only the low-
lying excitation modes contribute to an effective field
theory. As such it would be the same as D � 11 dimen-
sional supergravity theory. A subsequent Kaluza-Klein
reduction to D � 10 dimensions would bring it to a string
model whose gravitational sector consists of space-time
metric tensor g, dilaton scalar �, and the axion potential
�p� 1�-form A that would minimally couple to p branes.
We call such an effective gravitational field theory an axi-
dilaton gravity in D dimensions. Axi-dilaton gravity theory
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can be studied in the Einstein frame. However, by working
out the theory in the Brans-Dicke frame [5], one can see the
difference between formulation of theory with a torsion-
free connection and formulation with a connection with
torsion. In the latter case, we vary the action treating the
metric and the connection as independent variables. We
have shown that the corresponding field equations in both
cases with or without torsion are equivalent provided a
shift in the Brans-Dicke coupling parameter ! is allowed.
We further assume a direct coupling of the kth power of the
dilaton scalar with the axionic kinetic term. The conformal
scaling properties are examined in both geometries. In
Sec. III we investigate a class of static, spherically sym-
metric solutions which depend on the coupling parameters
! and k in dimensions D � 4. In particular, we point out a
new class of conformal black hole solutions obtained for
the scale invariant parameter values.
II. AXI-DILATON GRAVITY IN D DIMENSIONS

We start with an action

I�g;�; A� �
Z
M
L; (1)

where the Lagrangian density D-form L is given in the
Brans-Dicke frame in a geometry based on the Riemannian
formulation, by imposing as a constraint that the connec-
tion is Levi-Cività:

L �
�
2
Rab ^ 
�ea ^ eb� �

!
2�

d� ^ 
d��
�k

2
H ^ 
H:

(2)

Here the basic gravitational variables are the coframe 1-
forms ea in terms of which the space-time metric g �
�abe

a � eb where �ab � diag�� �����   �. The
Hodge 
 map is defined so that the oriented volume form

1 � e0 ^ e1 ^    ^ eD�1. Levi-Cività connection 1-
forms �0�!a

b are obtained from the first Cartan structure
equations

dea � �0�!a
b ^ eb � 0; (3)
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where the metric compatibility requires �0�!ab � ��0�!ba
and corresponding curvature 2-forms are obtained from the
second Cartan structure equations

�0�Rab � d�0�!ab � �0�!a
c ^

�0�!cb: (4)

� is the dilaton 0-form and H is a �p� 2�-form field that is
derived from the axion potential �p� 1�-form A so that
H � dA. ! and k are real coupling parameters. Coframe ea

variations of this action lead to the Einstein field equations

1

2
��0�Rab ^ 
�ea ^ eb ^ ec� � �

!
2�

�c��� �
�k

2
�c�H�

� �0�D��c�
d���; (5)

where dilaton and axion stress-energy �D� 1�-forms are
given, respectively, by

�c��� � �cd� ^ 
d�� d� ^ �c�
d�� (6)

and

�c�H� � �cH ^ 
H � ��1�pH ^ �c�
H�: (7)

� variation of (2) yields

1

2
�0�Rab ^ 
�ea ^ eb� � �!d

�

d�
�

�
�

!

2�2 d� ^ 
d�

� k
�k�1

2
H ^ 
H: (8)

We trace (5) by considering its exterior multiplication by
ec and multiply (8) by �D� 2��. The resulting two equa-
tions are then subtracted side by side to obtain the dilaton
field equation�

!�
D� 1

D� 2

�
d 
 d� �

�k

2
�H ^ 
H; (9)

where � � �2p� �D� 4�=�D� 2�� � k. Finally, inde-
pendent axion potential A variations lead to

d��k 
H� � 0 (10)

together with dH � 0.
Next we consider the following action in which connec-

tion 1-forms are varied independently of the metric of
space-time:

L �
�
2
Rab ^ 
�ea ^ eb� �

c
2�

d� ^ 
d��
�k

2
H ^ 
H:

(11)

Coframe variations of this action give the Einstein field
equations

1

2
�Rab^�ea^eb^ec���

c
2�

�c����
1

2
�k�c�H�; (12)

where �c��� and �c�H� are as given by (6) and (7), re-
spectively. Scalar field variations of the action give
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1

2
Rab ^ �ea ^ eb� � �cd

�

d�
�

�
�

c

2�2 d� ^ 
d�

� k
�k�1

2
H ^ 
H: (13)

When we trace (12) and compare it with (13) multiplied by
�D� 2��, we obtain the dilaton field equation

cd 
 d� �
�
2
�kH ^ 
H: (14)

Independent connection variations of (11) lead to

D
�
�
2

 �ea ^ eb�

�
� 0 (15)

from which we can readily solve for the torsion 2-forms:

Ta � ea ^
d�

�D� 2��
: (16)

We can decompose the connection 1-forms in a unique way
according to

!a
b �

0!a
b � Ka

b; (17)
where the contortion 1-forms Ka

b satisfy

Ka
b ^ eb � Ta: (18)

Substitution of (16) into (18) gives

Ka
b �

1

�D� 2��
�ea�bd�� eb�ad��: (19)

Curvature 2-forms Rab can be similarly decomposed as

Rab � �0�Rab � �0�DKab � Ka
c ^ Kcb; (20)

where
�0�DKab � dKab � �0�!b

c ^ Kac � �0�!a
c ^ Kcb: (21)

Then we calculate

Rab ^ 
�ea ^ eb ^ ec� � �0�Rab ^ 
�ea ^ eb ^ ec�

�
2

�
�0�D��c�
d���

�
2�D� 1�

�D� 2��2 d� ^ �c�
d��

�
D� 1

�D� 2��2 �c�d� ^ 
d��

(22)
and

Rab ^ 
�ea ^ eb� � �0�Rab ^ 
�ea ^ eb� �
2�D� 1�

�D� 2�

�

�


d�
�

�
�

D� 1

�D� 2��2 d� ^ 
d�:

(23)
If we insert (23) into (11), action density reduces to

L �
1

2
��0�Rab ^ 
�ea ^ eb� �

�
c�

D� 1

D� 2

�
1

2�
d�

^ 
d��
�k

2
H ^ 
H (24)

up to a closed form. Substituting (22) into the Einstein field
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equations (12), we obtain
1

2
��0�Rab ^ 
�ea ^ eb ^ ec� � �

�
c�

D� 1

D� 2

�
1

2�
�c���

�
�k

2
�c�H� � 0D��c�
d���:

(25)
Similarly, substituting (23) into the dilaton field equation
(13), we obtain

1

2
�0�Rab^
�ea^eb��

�c�D�1
D�2�

2�2 d�^
d��

�
c�

D�1

D�2

�

�
1

�
d�
d���k

�k�1

2
H^
H: (26)

We have thus shown that provided the coupling constants
are identified as

! � c�
D� 1

�D� 2�
; (27)

the coupled field equations (25) and (26) are equivalent to
the field equations (5) and (8).

Let us now consider conformal rescalings of the metric
induced by the coframe rescalings

ea ! e��x�ea: (28)

These imply the transformation

�0�!ab !
�0�!ab � eb�ad�� �bd�ea (29)

of the Levi-Cività connection 1-forms. If we also postulate
the following rescaling of the Brans-Dicke scalar field

� ! e��D�2���; (30)

then a straightforward calculation shows that the action (2)
is scale invariant for ! � ��D� 1�=�D� 2� and k �
��2p� 4�D�=�D� 2�, or for c � 0 and � � 0. In
terms of the geometry described by the action (11), the
above rescaling rules imply the transformation

Kab ! Kab � �ad�eb � �bd�ea (31)

so that the connection with torsion does not scale:

!ab ! !ab: (32)

Hence

Rab ! Rab (33)

and

Ta ! e��Ta � d� ^ ea�: (34)

We can reformulate our axi-dilaton gravity in the so-
called Einstein frame by adopting the coframes

~e a �

�
�
�0

�
1=�D�2�

ea; (35)

where �0 is a constant. The new coframes ~ea become
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orthonormal with respect to space-time metric

~g �

�
�
�0

�
2=�D�2�

g: (36)

In terms of this metric the associated Hodge dual is de-
noted by ~
. For an arbitrary frame independent p-form �,


� �

�
�
�0

�
�2p�D�=�D�2�

~
�: (37)

In the reformulation of action (2) in terms of ~g, new
connection fields ~!ab can be written in terms of �0�!ab as

~!ab � �ab ��0� !ab; (38)

where

�ab �
1

�D� 2��
�ea�bd�� eb�ad��: (39)

The corresponding curvature 2-forms become

~R ab � �0�Rab � �0�D�ab � �ac ^ �c
b: (40)

In terms of ~g, (2) becomes

L �
1

2
�0

~Rab ^ ~
�~ea ^ ~eb� �
c
2
�0

1

�2 d� ^ ~
d�

�
��

2
��k���

0 H ^ ~
H; (41)

up to a closed form. Introducing a massless scalar field
 � lnj �

�0
j, (41) reads

L �
1

2
�0

~Rab ^ ~
�~ea ^ ~eb� �
c
2
�0d ^ ~
d

�
1

2
��0�

k exp���H ^ ~
H: (42)

Einstein field equations obtained by coframe variations of
(42) are

1

2
�0

~Rab ^ ~
�~ea ^ ~eb ^ ~ec� � �
c
2
�0~�c�� �

1

2

���0�
ke�~�c�H�; (43)

where

~� c�� � ~�cd ^ ~
d� d ^ ~�c�~
d� (44)

and

~� c�H� � ~�cH ^ ~
H � ��1�pH ^ ~�c�~
H�: (45)

On the other hand variations with respect to connection 1-
forms ~!ab yield

D� ~!��~
�~ea ^ ~eb�� � 0; (46)

from which we obtain ~Ta � 0. Finally, we give the scalar
field equation
-3
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c�0d�~
d� �
1

2
��0�

k�e�H ^ ~
H; (47)

and the axion field equation

d�e�~
H� � 0: (48)

Interestingly, by another conformal rescaling of the
coframes in the Einstein frame, we can obtain the so-called
string frame action. Applying the transformation

ê a � exp
�

2

D� 2

�
~ea; (49)

where êa are assumed to satisfy the torsion-free structure
equations

dêa � !̂a
b ^ êb � 0; (50)

the action density (42) becomes

L � e�2

�
1

2
�0R̂

ab ^ 
̂�êa ^ êb� �
1

2
�0k̂d ^ 
̂d

�

�
�0

k

2
exp��0�H ^ 
̂H; (51)

up to a closed form where coupling parameters are rede-
fined as

�0 � �2p� 4�D�
3

D� 2
� k (52)

and

k̂ � c�
4�D� 1�

�D� 2�
: (53)

Action density (51) is called the string frame action in D
dimensions. We would like to remark that it is possible to
start directly from (51) and make independent coframe êa

and connection !̂ab variations. Independent connection
variations yield

D�!̂��e�2
̂�êa ^ êb�� � 0 (54)

from which we can obtain torsion 2-forms T̂a � 2
D�2d ^

êa [6]. Coframe variations on the other hand yield

1

2
�0e

�2R̂ab ^ 
̂�êa ^ êb ^ êc�

� �
1

2
�0k̂e

�2�̂c�� �
1

2
��0�

ke�0�̂c�H�; (55)

where

�̂ c�� � �̂cd ^ 
̂d� d ^ �̂c�
̂d� (56)

and

�̂ c�H� � �̂cH ^ 
̂H � ��1�pH ^ �̂c�
̂H�: (57)

The scalar field  variation of (51) gives
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�0e
�2R̂ab ^ 
̂�êa ^ êb� � �0k̂e

�2d ^ 
̂d

� k̂�0d�e
�2
̂d� �

1

2

���0�
k�0e

�0H ^ 
̂H:

(58)

We consider the exterior multiplication of (55) by êc and
then multiply the equation by 2

2�D . If we subtract the
resulting equation from (58) and use (52), we obtain the
scalar field equation

�0k̂d�e�2
̂d� �
1

2
��0�

k�e�0H ^ 
̂H: (59)

Finally, the gauge field A variation yields

d�e�0
̂H� � 0: (60)

The field equations without torsion in the string frame can
be determined exactly in the same way we explained
above.

III. STATIC, SPHERICALLY SYMMETRIC
SOLUTIONS

In this section we investigate a class of static, spherically
symmetric solutions of the axi-dilaton field equations (10),
(12), and (14) in the Brans-Dicke frame with p � D� 4.
Such solutions were studied previously in the Einstein and
string frames [7–10] in Riemannian geometries. We em-
phasize again that classical solutions of the coupled field
equations given in the Brans-Dicke, Einstein, and string
frames, whether we consider a space-time geometry with
or without torsion, are all conformally equivalent to each
other. However, the scale invariant case can be most con-
veniently studied in the Brans-Dicke frame [11]. In terms
of spherical polar coordinates �t; r; �i; i � 1; 2; 3; . . . ; D�
2�, we take the metric

g � �f2�r�dt � dt� h2�r�dr � dr� R2�r�d�D�2:

(61)

A convenient choice of the coframe 1-forms is

e0 � f�r�dt; eD�1 � h�r�dr; (62)

e1 � R�r�d�1; e2 � R�r� sin�1d�2; . . . ;

eD�2 � R�r� sin�1    sin�D�3d�D�2:

The axion field �D� 2�-form

H � g�r�e1 ^ e2 ^ e3 ^    ^ eD�2 (63)

and the dilaton scalar

� � ��r�: (64)

Case: c � 0, k � � D�4
D�2 .

Asymptotically flat solutions are given by the metric
functions [11]
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R�r� � r
�
1�

�
C1

r

�
D�3

�
�3

;

f�r� �
�
1�

�
C2

r

�
D�3

�
�4
�
1�

�
C1

r

�
D�3

�
�5

;

h�r� �
�
1�

�
C2

r

�
D�3

�
�2
�
1�

�
C1

r

�
D�3

�
�1

;

(65)

together with

��r� �
�
1�

�
C1

r

�
D�3

�
2#=�

(66)

and

g�r� �
Q

RD�2 ; (67)

where the exponents are related by

�1 � #
�

1

�D� 3�
�

2

�D� 2��

�
�

1

2
; �2 � �

1

2
;

�3 �

�
1

�D� 3�
�

2

�D� 2��

�
#;

�4 �
1

2
; �5 �

1

2
�

�
1�

2

�D� 2��

�
#:

Here, we introduced a new parameter

# �
�D� 2��2

4c�D� 3� � �D� 2��2 (68)

and set

c � !�
D� 1

D� 2
: (69)

The integration constants C1 and C2 are both taken positive
and should satisfy

Q2 �
4c�C1C2�

D�3�D� 3�2

�2 : (70)

The following identification of the physical constants can
be made:

2M � lim
r!1

rD�3�1� f2�

� �C2�
D�3 �

�
1�

4#
�D� 2��

� 2#
�
�C1�

D�3 (71)

is the Arnowitt-Deser-Misner (ADM) mass;

� � lim
r!1

�0

�
rD�2 � 2�D� 3��C1�

D�3 #
�

(72)

is the scalar charge, and

Q � lim
r!1

grD�2 � Q (73)

is the magnetic charge.
Depending on the values of the coupling constants, M

can take either negative or positive signs. We will take the
parameters # and � to be positive and since
024016
1�
4#

�D� 2��
� 2# �

4c�D� 3� � 4�� �D� 2��2

4c�D� 3� � �D� 2��2 ;

(74)

it turns out that for

�2�D� 2� � 4� � 4c�D� 3� (75)

the mass M becomes strictly positive. By eliminating
�C2�

D�3 from the mass equation (71) and substituting
into (70) above, we obtain an algebraic relation satisfied
by �C1�

D�3, namely,

Q2�
4c�C1�

D�3�2M��1� 4#
�D�2���2#��C1�

D�3��D�3�2

�2 :

(76)

Then both C1 and C2 being real, we obtain the following
BPS inequality between the mass and the magnetic charge:

M �
�

2c1=2�D� 3�

��������������������������������������������������������������
4c�D� 3� � 4�� �D� 2��2

4c�D� 3� � �D� 2��2

s
jQj:

(77)

At this point, let us assume that C2 >C1. Then the curva-
ture scalar of the Levi-Cività connection

�0�R �
1

r2�D�2�

��
D� 4

D� 2
�

�D� 1��
c�D� 2�

�

�Q2

�
1�

�
C1

r

�
D�3

�
f�2�k�1�#=���2�D�2��3g

�!
�
2#
�

�C1�
D�3�D� 3�

�
2
�
1�

�
C1

r

�
D�3

�
�2�2�1

�

�
1�

�
C2

r

�
D�3

��
(78)

is finite at r� � C2. That is, for Q � 0, the metric func-
tions admit an outer horizon at r� � C2. The calculation of
the corresponding quadratic curvature invariant on the
other hand yields


�Rab ^ 
Rab� �

�
1�

�
C1

r

�
D�3

�
�4�4�1

r�4�D�2�; (79)

which shows that r � 0 is an essential singularity. We
should also discuss the nature of the singularity of solu-
tions on the inner surface r� � C1. If the following con-
ditions

�2� 2�1 � �
2�k� 1�#
�D� 3��

� 1 � 0 (80)

and

2�k� 1�#
�

� 2�D� 2��3 � �
2�k� 1�#

�
� 0 (81)

are met, the curvature scalar would be finite at r� � C1.
For this to hold, it is sufficient to examine the positivity of
(80). The positivity of (81) will follow. It is clear from our
-5
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definitions that condition (80) does not hold for k � 1. We
checked after a tedious calculation that it does not hold for
k < 1 either. Therefore r� � C1 is a singular surface for
any value of k . Nevertheless, we can conclude that our
solutions describe the exterior of black holes when r >
C2 >C1.

It is also interesting to see what happens if the geometry
of space-time is equipped with a connection with torsion.
Then the corresponding curvature scalar

R �
1

r2�D�2�

��
D� 4

D� 3

�

�Q2

�
1�

�
C1

r

�
D�3

�
f�2�k�1�#=���2�D�2��3g

� c
�
2#
�

�C1�
D�3�D� 3�

�
2
�
1�

�
C1

r

�
D�3

�
�2�2�1

�

�
1�

�
C2

r

�
D�3

��
(82)

is again finite at r� � C2 while r� � C1 is singular. r � 0
is still an essential singularity. Hence, the nature of the
outer horizon and the inner singularities are not affected by
torsion.

Case: c � 0, k � � D�4
D�2 .

A class of asymptotically flat solutions to conformally
scale invariant theory has the following form:

R�r� � r
�
1�

�
E1

r

�
D�3

�
�(=�D�2�

;

f�r� �
�
1�

�
E1

r

�
D�3

�
�1=2���(=�D�2��

�
1�

�
E2

r

�
D�3

�
1=2

;

h�r� �
�
1�

�
E1

r

�
D�3

�
��1=2���(=�D�2��

�
1�

�
E2

r

�
D�3

�
�1=2

��r� �
�
1�

�
E1

r

�
D�3

�
(
; g�r� �

Q

RD�2 ; (83)

where E1 and E2 are constants that satisfy

�E2E1�
D�3 �

Q2

�D� 2��D� 3�
: (84)

( is a free parameter proportional to the scalar charge. The
special case of parameter values Q � 0 and E2�0 brings
(83) to the Einstein-conformal scalar field solution of
Bekenstein [12]. Bekenstein proposed a black hole inter-
pretation of this solution based on the study of conformal
world lines [13]. The scalar particles are postulated to
follow geodesic world lines in Brans-Dicke theory. On
the other hand, if space-time geometry is equipped with a
connection with torsion, the history of particles would be
an autoparallel of a connection with torsion [3]. It has been
shown that the conformal world lines are nothing but the
autoparallel curves in the non-Riemannian reformulation
of the Brans-Dicke theory [2]. In this case, the scalar
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curvature of the connection with torsion is calculated as

R c �
D� 4

D� 2
Q2

�
1�

�
E1

r

�
D�3

�
2(=�D�2� 1

r2�D�2�
: (85)

We again specify the integration constants E2 and E1 to
be positive and consider the ADM mass

2Mc � �E2�
D�3 �

�
1�

2(
�D� 2�

�
�E1�

D�3: (86)

This is strictly positive for ( � �D�2�
2 . Using

�E2E1�
D�3 �

Q2

�D� 2��D� 3�
(87)

and Eq. (86) above, we obtain the following BPS bound
between the mass Mc and magnetic charge Q:

Mc �

��������������������������������������������������������������
1

�D� 2��D� 3�
�1�

2(
�D� 2�

�

s
jQj: (88)

Let us examine the singularity of solutions in this case. The
curvature scalar (85) is regular at r� � E2. Contrary to the
previous case, it is also nonsingular at r� � E1 for ( � 0.
We still have an essential point singularity at r � 0.
Therefore, we conclude that our conformally scale invari-
ant solutions describe black holes with two regular event
horizons provided 0 � ( � �D�2�

2 .
IV. CONCLUSION

In this paper we have studied axi-dilaton gravity theories
in D � 4 dimensional space-times. We have shown by
making use of the conformal rescaling properties of the
space-time geometry, the equivalence of the variational
field equations obtained in the Brans-Dicke, Einstein, and
string frames, with or without torsion.

We have investigated a class of asymptotically flat,
static, spherically symmetric solutions in the Brans-Dicke
frame. The black hole configurations found in the case of
nonscale invariant axi-dilaton gravity generalize the well-
known D � 4 Janis-Newman-Winicour solutions of the
Einstein-Maxwell-massless scalar field equations [14].
The fact that we are working in the Brans-Dicke frame is
essential to our discussion of the solutions of the scale
invariant axi-dilaton gravity in D dimensions. The solu-
tions found in this case generalize the conformal black hole
solutions of Bekenstein [12,13] of D � 4 Einstein-
conformal scalar field theory.
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edges partial support by the Turkish Academy of Sciences
(TÜBA).
-6



AXI-DILATON GRAVITY IN D � 4 DIMENSIONAL . . . PHYSICAL REVIEW D 71, 024016 (2005)
[1] T. Dereli and R. W. Tucker, Phys. Lett. 110B, 206 (1982).
[2] D. Burton, T. Dereli, and R. W. Tucker, gr-qc/0107017.
[3] T. Dereli and R. W. Tucker, Mod. Phys. Lett. A 17, 421

(2002).
[4] H. Cebeci, T. Dereli, and R. W. Tucker, Int. J. Mod. Phys.

D 13, 137 (2004).
[5] C. H. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).
[6] T. Dereli and R. W. Tucker, Classical Quantum Gravity 4,

791 (1987).
[7] G. W. Gibbons and K. Maeda, Nucl. Phys. B298, 741

(1988).
024016
[8] G. T. Horowitz and A. Strominger, Nucl. Phys. B360, 197
(1991).
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