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Induced gravity with a nonminimally coupled scalar field on the brane
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We present the four-dimensional equations on a brane with a scalar field nonminimally coupled to the
induced Ricci curvature, embedded in a five-dimensional bulk with a cosmological constant. This is a
natural extension to a brane-world context of scalar-tensor (Brans-Dicke) gravity. In particular we
consider the cosmological evolution of a homogeneous and isotropic (FRW) brane. We identify low-
energy and strong-coupling limits in which we recover effectively four-dimensional evolution. We find de
Sitter brane solutions with both constant and evolving scalar field. We also consider the special case of a
conformally coupled scalar field for which it is possible (when the conformal energy density exactly
cancels the effect of the bulk black hole) to recover a conventional four-dimensional Friedmann equation
for all energy densities.
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I. INTRODUCTION

Over recent years there has been a great deal of interest
in higher-dimensional models of space-time where matter
fields are restricted to a lower-dimensional brane in a
higher-dimensional bulk space-time: the simplest case
being a 3-brane of codimension one in a five-dimensional
(5D) bulk.

This raises the possibility that the four-dimensional (4D)
gravity we observe is the projection of a higher-
dimensional gravity. In particular Randall and Sundrum
[1] discovered that conventional 4D gravity can be recov-
ered at large scales (low energies) on a Minkowski brane-
world embedded in a 5D anti-de Sitter space-time. Even if
there is no 4D Einstein-Hilbert term in the classical theory
then such a term should be induced by loop-corrections
from matter fields [2]. Dvali, Gabadadze and Porrati [3]
argued that in this case 4D gravity can then be recovered at
small scales (high energies) on a Minkowski brane-world
in 5D Minkowski space-time. More generally one can
consider the effect of an induced gravity term as a quantum
correction in any brane-world model such as the Randall-
Sundrum model.

Cosmology is a natural arena in which to put to the test
alternative theories of gravity. In particular the DGP model
admits late-time accelerating solutions. The cosmology of
induced gravity corrections to Randall-Sundrum type mod-
els have been considered by several authors [4–9].

In this paper we will consider the effect of an induced
gravity term which is an arbitrary function of a scalar field
on the brane. Scalar fields play an important role both in
models of the early universe and late-time acceleration.
They also provide a simple dynamical model for matter
fields in a brane-world model. In the context of induced
gravity corrections it is then natural to consider a non-
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minimal coupling of the scalar field to the intrinsic (Ricci)
curvature on the brane that is a function of the field. The
resulting theory can be thought of as a generalization of
Brans-Dicke type scalar-tensor gravity in a brane-world
context.

The layout of this paper is as follows. In Sec. II we
present the five- and four-dimensional terms in the action
and then use the geometrical approach of Shiromizu,
Maeda and Sasaki [10] to give the effective Einstein equa-
tions projected onto the brane. Although in general these
equations are not closed, due to the presence of the pro-
jected 5D Weyl tensor, the symmetries of a homogeneous
and isotropic brane cosmology are sufficient to determine
the evolution of the projected Weyl tensor on the brane
[11–13]. In Sec. III we identify two regimes in which we
expect to recover effectively 4D behavior and in Sec. IV
we show that this is indeed the case for cosmological
(homogeneous and isotropic) branes. We discuss static
(de Sitter or Minkowski) brane solutions in Sec. V and
then consider the special case of a conformally coupled
scalar field on the brane in Sec. VI. The rather complicated
form of the modified Friedmann equation on the brane is
somewhat simpler for a conformally coupled field and we
show that it is even possible to recover a conventional four-
dimensional Friedmann equation, at all energies, as a
special case. Finally we summarise our results in Sec. VII.

II. INDUCED SCALAR-TENSOR GRAVITYACTION

A. 5D gravity

We consider a brane, described by a 4D hypersurface (b ,
metric g), embedded in a 5D bulk space-time (B, metric
g�5�), whose action is given by

S �
Z
B
d5X

������������
�g�5�

q �
1

2�25
R�g�5�� �L5

�
�

Z
b
d4X

�������
�g

p
�
1

�25
K �L4

�
; (2.1)
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where �25 is the 5D gravitational constant, R�g�5�� is the
Ricci scalar in the bulk and K the extrinsic curvature of the
brane in the higher-dimensional bulk, corresponding to the
York-Gibbons-Hawking boundary term [14]. Thus we have
5D Einstein gravity with a 4D boundary.

We will consider the simplest case of a constant vacuum
energy density on the bulk, L5 � �U, i.e., a cosmological
constant. In this case the bulk geometry is given by an
Einstein space with constant scalar curvature

GMN�g
�5�� � ��25Ug

�5�
MN: (2.2)
B. 4D induced gravity

For simplicity we will assume a Z2-symmetry at the
brane (which is also motivated by specific M-theory con-
structions [15,16]). In practice one can easily generalize to
non-Z2-symmetric branes [17]. The effective Einstein
equation on the brane is then [10]

G���g� � �
1

2
�25Ug�� � �4

5��� � E��; (2.3)

where g is the induced metric on the brane. ��� is the
quadratic energy-momentum tensor [10]

��� � �
1

4
����

�
� �

1

12
���� �

1

8
g��

�
����

�� �
1

3
�2
�
;

(2.4)

and ��� is the total energy-momentum tensor for fields on
the brane defined by

��� � �2
�L4

�g��
� g��L4: (2.5)

E�� is the (trace-free) projected Weyl tensor on the brane.
The trace-free property determines the isotropic effective
pressure of this projected Weyl tensor in terms of its
effective density, but the anisotropic effective pressure
due to this nonlocal term cannot in general be determined
without some additional information about the 5D gravi-
tational field.

The most general scalar field Lagrangian L4 for a scalar
field, �, confined on the brane can be written as

L 4 � �
1

2
g��r��r��� V��� � ����R�g�; (2.6)

where r� is the covariant derivative associated with the
induced metric on the brane g. Previous studies of scalar
fields in induced brane-world gravity [8] are restricted to
the case � � constant. Here we include a coupling be-
tween the scalar field� and the induced gravity term on the
brane, given by ����. In this case, substituting (2.6) into
(2.5), the total energy-momentum tensor on the brane
becomes
024010
��� � r��r���
1

2
g���r��2 � g��V���

� 2�G���g;��: (2.7)

This includes the ‘‘Einstein-Brans-Dicke’’ tensor

G���g; �� 
 G���g� �
1

�
�g��g

�� � g��g�� ���
0r�r��

� �00r��r���; (2.8)

due to the nonminimal coupling, ����, between the scalar
field� and the scalar curvature R�g�. In this expression the
prime denotes derivative with respect to �.

We can thus split the total energy-momentum tensor as
follows

��� � T���
�� � T���

�� � 2�G���g�; (2.9)

where the canonical (minimally coupled) scalar field
energy-momentum tensor is given by

T���
�� 
 r��r���

1

2
g���r��2 � g��V���; (2.10)

and the extra terms arising from the dependence of the
induced gravity term upon � are given by

T���
�� 
 �2�g��g�� � g��g�� ���0r�r��� �00r��r���:

(2.11)

Using the 5D Codacci equation one can show that the
total energy-momentum tensor ��� must be conserved on
the brane [10]

r���� � 0: (2.12)

C. Scalar field wave equation

Finally, the equation of motion for the scalar field reads

r�r�� � V 0 � �0R�g�: (2.13)

This is the same as the standard equation of motion for a
nonminimally coupled scalar field in 4D, but it is often
rewritten using the Einstein-Brans-Dicke equations to give
R in terms of the trace of the energy-momentum tensor.
Here we must take the trace of the effective Einstein
equations on the brane (2.3) to give

R � 2�25U� �45�
�
�; (2.14)

where

��
� �

1

4
������ �

1

12
�2: (2.15)

Although the wave equation (2.13) is sufficient to deter-
mine the evolution of the scalar field � given the induced
metric on the brane, the effective Einstein equation (2.3)
is not in general sufficient to determine the evolution of
the induced metric given �. This is due to the presence
of the nonlocal term E��, representing the bulk gravita-
-2
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tional field. Nonetheless if we restrict our analysis to
homogeneous and isotropic brane-worlds these symme-
tries restrict the bulk solution to either (anti-)de Sitter or
Schwarzschild-(anti-)de Sitter and the equations become
closed [11].

III. EQUATIONS IN LOW-ENERGY AND STRONG-
COUPLING LIMITS

A. Low-energy limit

In order to obtain the effective Einstein equations (2.3)
in a low-energy limit close to the Randall-Sundrum solu-
tion [1] it is helpful to define a ‘‘renormalized’’ energy-
momentum tensor on the brane

	� �� � ��� � �g��; (3.1)

where � is a constant brane tension. The quadratic tensor
��� defined in Eq. (2.4) then becomes

��� � �
1

12
�2g�� �

1

6
� 	��� � 	���; (3.2)

where 	��� is the quadratic energy-momentum tensor (2.4)
formed from 	��� instead of ���.

Substituting Eq. (3.2) for ��� into Eq. (2.3) gives

G���g� � ��4g�� �
�45�
6

	��� � �45
	��� � E��; (3.3)

where we have defined

�4 �
�2
5

2
U�

�4
5�

2

12
: (3.4)

For U < 0 we can choose � �
�������������������
�6U=�25

q
so that �4 � 0,

but in principle we can work with any value of� and hence
�4.

The energy-momentum tensor on the right-hand-side of
Eq. (3.3) includes a contribution from the Einstein tensor,
so ultimately we can rewrite the induced gravity equations
on the brane as

2�loG���g;�lo� � �
6�4

�45�
g�� � 	T���

��

�
6

�45�
��4

5
	��� � E���; (3.5)

where G���g;�lo� is the Einstein-Brans-Dicke tensor (2.8)
for the effective Brans-Dicke field

�lo��� 

3

�45�

�
1�

�45�

3
����

	
: (3.6)

Thus at low energies, if we can neglect the quadratic ten-
sor 	�, and in a conformally flat bulk (E�� � 0), we will
recover the usual Brans-Dicke equations for a nonmini-
mally coupled scalar field in four-dimensions. Moreover,
for � � constant we recover Einstein gravity with a mini-
024010
mally coupled scalar field on the brane and an effective
gravitational coupling �24 � �2�lo�

�1 � constant.
The effective potential for � can be written as

Vlo��� � V��� �
�
2
�

3U

�25�
; (3.7)

and the effective Brans-Dicke parameter is

!lo 

�lo

2��0
lo����

2 �
3

2�4
5��

02

�
1�

�45�
3
����

	
: (3.8)
B. Strong-coupling limit

There is an alternative limiting case to consider where
the 5D curvature is negligible, or the induced coupling �
is large. In this case we expect the conventional 4D
Lagrangian L4 given in Eq. (2.6) to dominate in the action
(2.1). In this case we have the standard 4D Einstein-Brans-
Dicke equation

2�G���g; �� � T���
�� ; (3.9)

with effective Brans-Dicke field

�hi��� 
 ����; (3.10)

effective potential

Vhi��� � V���; (3.11)

and dimensionless Brans-Dicke parameter

!hi��� �
�

2�02 : (3.12)

Note that this coincides with the limiting form of Eq. (3.8)
in the strong-coupling limit, i.e., for �4

5��� 1.
IV. DYNAMICS OF A HOMOGENEOUS AND
ISOTROPIC BRANE

In the present section we will consider the cosmological
evolution of a Friedmann-Robertson-Walker (FRW) brane
with a nonminimally coupled scalar field. In the special
case of an isotropic brane geometry the projected Weyl
tensor E�� necessarily has a vanishing anisotropic stress
and the projected field Eqs. (2.3) and (2.13) form a closed
set of evolution equations for scalar field and metric on the
brane. Indeed, it can be shown that for an expanding FRW
brane the unique bulk space-time (in Einstein gravity in
vacuum, as we assume here) is 5D Schwarzschild-anti de
Sitter space-time [11,18].

The trace-free property of the projected Weyl tensor
implies that it acts like a ‘‘dark radiation’’ [12,13] and
hence

_E 0
0 � 4HE0

0 � 0; (4.1)

where a dot denotes derivatives with respect to proper
cosmic time and H is the Hubble rate. Thus E�� evolves
-3
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like a radiation fluid with E0
0 � C=a4, where C is an

integration constant.
After some lengthy but straightforward calculations, the

modified Friedmann equation on the brane can be obtained
from Eq. (2.3) as

3
�
H2 �

K

a2

�
�
�2
5U

2
�
�4
5

12

�
�� 6�

�
H2 �

K

a2

�	
2
�
C

a4
;

(4.2)

where K � 1; 0 depending on the geometry of the spatial
three-dimensional sections on the brane. The modified
Friedmann equation can be rewritten as

H2 �
K

a2
�

1

6�

�
��

3

�4
5�

�
1



�����������������������������������������������������������������
1�

2

3
�4
5���� �25�U� 2�

C

a4
�

s 	�
; (4.3)

which shows the existence of two branches of solution for
H2 as a function of �. The modified Raychaudhuri equa-
tion is�
1�

�45
3
�
�
�� 6�

�
H2 �

K

a2

�	��
_H �

K

a2

�
� �

�45
12

��� P�
�
�� 6�

�
H2 �

K

a2

�	
�

2

3

C

a4
: (4.4)

Thus the modified Einstein equations can be written in
exactly the same form as obtained for constant � [7].
The effect of the nonminimal coupling of the � field is
hidden in the definition of the effective energy density, �,
of the scalar field which includes nonminimal terms. In the
limit �! 0 we recover the modified Einstein equations of
the Randall-Sundrum model [13] with a minimally coupled
scalar field on the negative branch (lower sign in Eq. (4.3)).

Following the notation introduced in Eq. (2.9) we will
write

� � ���� � ����; (4.5)

P � P��� � P���: (4.6)

The effective energy density and pressure of the scalar field
has been split into a part associated with the canonical
scalar field energy-momentum tensor, given from
Eq. (2.10) as

���� 
 �T0���
0 �

1

2
_�2 � V���;

P��� 
 Ti���i �
1

2
_�2 � V���;

(4.7)

and a part due to the nonminimal coupling, given from
Eq. (2.11) as
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���� 
 �T0���
0 � �6�0H _�;

P��� 
 Ti���i � 2��0 ��� 2H�0 _�� �00 _�2�;
(4.8)

where i � 1; . . . ; 3 labels the spatial coordinates on the
brane.

The equation of motion (2.13) for the scalar field, �, in
the FRW geometry is

��� 3H _�� V 0��� � �0R�g�; (4.9)

where the intrinsic Ricci scalar for a FRW brane is

R�g� � 6
�
_H � 2H2 �

K

a2

�
: (4.10)

In conventional 4D scalar-tensor gravity the Ricci scalar is
often eliminated from the scalar field equation of motion in
favor of the trace of the energy-momentum tensor, using
the contracted Einstein-Brans-Dicke equation for the
Einstein tensor. In our brane-world scenario the contracted
effective Einstein Eq. (2.3) yields a more complicated
expression for the Ricci scalar.

The nonminimal coupling of the scalar field to the Ricci
curvature on the brane through ���� leads to the non-
conservation of the scalar field effective energy density

_�� 3H��� P� � 6�0 _�
�
H2 �

K

a2

�
: (4.11)

This equation can be deduced from the definition of �
and P [see Eqs. (4.5), (4.6), (4.7), and (4.8)] and the
equation of motion for � (4.9). We see that � and P are
conserved whenever � is constant, i.e., when � is a mini-
mally coupled scalar field. For this particular case, � and P
reduce to ���� and P��� [see Eq. (4.7)], respectively.

In general, although the scalar field effective energy
density � is not conserved, it is always possible to con-
struct a total energy density from the total energy-
momentum tensor ���, defined in Eq. (2.5),

�tot � ���� � ���� � 6�
�
H2 �

K

a2

�
; (4.12)

which is locally conserved on the brane, in accordance with
Eq. (2.12).

A. Low-energy regime

In order to analyze the different possible regimes for the
effective Friedmann equation on the brane, we introduce an
(arbitrary) constant brane tension �, as in Eq. (3.1) so that

	� � �� �; 	P � P� �: (4.13)

If we then expand the quadratic term on the right-hand side
of the modified Friedmann equation (4.2), we obtain
-4
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3
�
H2 �

K

a2

�
� �4 �

�45�

6

�
	�� 6�

�
H2 �

K

a2

�	
�
�4
5

12

�
	�� 6�

�
H2 �

K

a2

�	
2
�
C

a4
; (4.14)

where �4 is given by Eq. (3.4).
We can identify a low-energy regime corresponding to�������� 	�� 6�

�
H2 �

K

a2

���������� �; (4.15)

where we recover from (4.14) an effective 4D Friedmann
equation

3
�
1�

�4
5��
3

��
H2 �

K

a2

�
’ �4 �

�4
5�
6

	��
C

a4
: (4.16)

with the effective gravitational coupling given by Eq. (3.6).
If we choose � �

�����������
�6U

p
=�5, i.e., set �4 � 0, and con-

sider an anti-de Sitter bulk (C � 0) then the constraint
Eq. (4.16) allows us to express the low-energy condition
(4.15) as

	�� �
�
1�

�45��
3

�
: (4.17)
B. Strong-coupling regime

In order to identify the strong-coupling regime we re-
write the modified Friedmann (4.2) equation as�
1�

�

6��H2 � K
a2�

	
2
�

1

�45�
2�H2 � K

a2�

�
1�

�25U

6�H2 � K
a2�

�
C

3a4�H2 � K
a2�

	
: (4.18)

We identify a strong-coupling regime where

�2 �
1

�45�H
2 � K

a2�

�
1�

�25U

6�H2 � K
a2�

�
C

3a4�H2 � K
a2�

	
;

(4.19)

in which case we recover from Eq. (4.18) an effective 4D
Friedmann equation

6�
�
H2 �

K

a2

�
’ �; (4.20)

with the effective gravitational coupling given by
Eq. (3.10).

Consistency of the last two equations implies that
strong-coupling also requires a lower bound on the energy
density

��
6

�45�

��������1� �24�U
�

�
2�C

a4�

��������: (4.21)
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Note that the strong-coupling form for the Friedmann
equation, (4.20), can also be obtained from the low-energy
regime, Eq. (4.16), for �4

5��� 1 and �4 � C � 0.

C. Intermediate energy and weak coupling regime

Having shown that one recovers two effectively 4D
regimes in the limits of low-energy or strong-coupling, it
is interesting to consider whether or not one can recover an
essentially 5D regime where H2 / �2 as is found in
Randall-Sundrum cosmology (where � � 0) at high ener-
gies [13,19].

The high-energy regime in the Randall-Sundrum model
corresponds to

�� �RS; (4.22)

where �RS �
����������
6jUj

p
=�5 corresponds to the brane tension

required for a static Minkowski brane. In the induced
gravity model we must add the additional condition

��

��������6�
�
H2 �

K

a2

���������: (4.23)

Thus we require both high-energy and weak coupling. In
this case, the modified Friedmann Eq. (4.2) reads

3
�
H2 �

K

a2

�
’
�4
5

12
�2 �

C

a4
: (4.24)

Substituting Eq. (4.24) into the inequality (4.23) requires

�� � �� ��; (4.25)

where

� �

�������� 3

�45�

�
1

��������������������������
1�

4�45�
2C

3a4

s ���������: (4.26)

For this intermediate regime to exist requires both

�45�
2C

a4
� 1; (4.27)

and

�45j�j�� 1: (4.28)

Finally combining (4.22) and (4.28) we obtain the con-
sistency condition

�RS � ��
1

�45j�j
; (4.29)

which only exists for sufficiently weak coupling

j�j �
1

�45�RS
: (4.30)

V. DE SITTER AND MINKOWSKI BRANES

In this section, we describe some maximally symmetric
branes that can be obtained in the framework given in
-5
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Sec. IV. In particular, we will obtain inflationary branes
with de Sitter geometry or purely Minkowski space-times
on the brane. We consider that the bulk is given by a 5D
maximally symmetric space-time and therefore the pro-
jected Weyl tensor on the brane is zero. For simplicity we
will use the spatially flat coordinate chart on the brane so
that K � 0 and the Ricci scalar R � 12H2 � constant.

From the Friedmann Eq. (4.2) we see that we require
�� 6�H2 � constant. In addition, the last condition and
the continuity Eq. (4.11) implies that P � �� for H � 0.
Note however that unlike 4D general relativity, we do not
necessarily require � � constant.

Eqs. (4.5) and (4.6) for the density and pressure of the
nonminimally coupled scalar field give

�� P � �1� �00� _�2 � 2�0� ���H _��: (5.1)

The scalar field Eq. (4.9) and the condition P � �� then
gives the first-order constraint

�1� 2�00� _�2 � 2�0�12�0H2 � 4H _�� V 0� � 0: (5.2)

If the scalar field does not evolve in time ( _� � 0) and �0 �

0, then we require V0 � 12H2�0, i.e., the potential gradient
is balanced by the nonminimal coupling to the scalar
curvature. The scalar field has to be at an extremum of
the potential (V 0 � 0) if � is constant in time and H � 0.

For a Minkowski brane H � 0, the Raychaudhuri
Eq. (4.4) requires either �� P � 0 or � � 0. For � � 0
we must have U � 0 from the Friedmann Eq. (4.2), but we
may in principle have P � 0. Equation (5.1) together with
the equation of motion (4.9) then yields for � � 0

P � �1� 2�00� _�2 � 2�0V0: (5.3)

However, in the following we will restrict our discussion to
de Sitter or Minkowski branes with P � ��.

A. De Sitter branes with _� � 0

In the following, we will describe the fixed points of the
theory, i.e., values of the scalar field, � � �c such that
_� � �� � 0 and _H � 0, where H � Hc corresponds to the

Hubble parameter for � � �c. For _� � �� � 0 we neces-
sarily have � � �P � Vc, where Vc � V���.

Using Friedmann Eq. (4.2) and the equation of motion of
the scalar field (4.9), we obtain

H2
c �

1

6�c

�
Vc �

3

�45�c

�
1



�����������������������������������������������������
1�

2

3
�45�c��

2
5�cU� Vc�

s 	�
; (5.4)

V 0
c � 12H2

c�0
c; (5.5)

where V 0
c, �c and �0

c correspond to V 0��c�, ���c�
and �0��c�, respectively. Note that we require
2�45�c��

2
5�cU� Vc�< 3 for H2 to be real.
024010
To obtain a Minkowski brane with Hc � 0 requires [see
Eq. (4.2)] the usual Randall-Sundrum fine-tuning between
the 5D cosmological constant and the potential

V2��c� � �
6U

�2
5

� 0: (5.6)

In addition �c must coincide with an extremum of the
potential, V 0

c � 0. The Minkowski brane is only obtained
for the branch corresponding to the upper choice of sign in
Eq. (5.4) for �45�cVc � 3 � 0 or lower sign for �45�cVc �
3 � 0. Only for �c � �3=�4

5Vc do we obtain Hc � 0 for
both branches.

In the following, we see under which conditions the
fixed points correspond to stable solutions. The potential
V��� and the coupling ���� can be approximated near �c
by

V��� ’ Vc � V 0
c����c� �

1

2
V 00
c ����c�

2; (5.7)

���� ’ �c � �0
c����c� �

1

2
�00
c ����c�

2; (5.8)

where V 00
c and�00

c are V00��c� and�00��c�, respectively. The
equation of motion (4.9) for a small perturbation �� �
���c, to first-order in �� becomes

� ��� 3Hc� _�� �V 00
c � 12H2

c�
00
c ��� � �0

c�R; (5.9)

where �R � R��c � ��� � 12H2
c . If �R is negligible, we

have that a fixed point is stable when V 00
c � 12H2

c�00
c > 0.

However, in general the perturbed Ricci scalar (4.10) can
be calculated using the Friedmann and Raychaudhuri
Eqs. (4.2) and (4.4), which gives

�R � �
�45�Vc � 6�cH

2
c�

1� �1=3��45�c�Vc � 6�cH2
c�
��0

c� ��

� 3�0
cHc� _�� 4�0

cH2
c���: (5.10)

Substituting this into the equation of motion of ��,
Eq. (5.9), we obtain (for �45��c � 3�02

c ��Vc � 6�cH2
c� �

�3) the canonical equation of motion for a field perturba-
tion in a de Sitter background

� ��� 3Hc� _��m2
eff�� � 0; (5.11)

where the effective mass

m2
eff 


V00
c � 12H2

c�00
c � 4%H2

c

1� %
> 0; (5.12)

with

% �
�4
5�

02
c �Vc � 6�cH2

c�

1� ��c=3��
4
5�Vc � 6�cH

2
c�
: (5.13)

The general solution to Eq. (5.11) is given by

�� � C� exp�&�t� � C� exp�&�t�; (5.14)
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where

& �
�3Hc 

���������������������������
9H2

c � 4m2
eff

q
2

: (5.15)

Thus the stability condition for the fixed point is simply
m2

eff > 0. For a constant (minimal) coupling (�0
c � �00

c �
0) this stability condition takes the usual form V00

c > 0. But
nonminimal coupling can stabilize the fixed point even for
V 00
c < 0. For example, for a Minkowski brane withHc � 0,

the stability condition m2
eff > 0 reduces to �c being a

maximum (or minimum) of the potential for 1� % nega-
tive (or positive).

a. Quadratic model As an illustration, we apply the
previous analysis to the following simple quadratic model
for the nonminimal coupling and potential:

���� � �0 �
1

2
�2�2; (5.16)

V��� � V0 �
1

2
m2�2; (5.17)

where �0, �2, V0 and m2 are constants.
Imposing the condition (5.5), yields two possible fixed

points for the model:

(i) �
c � 0. The square of the Hubble parameter is

given by Eq. (5.4) with Vc � V0 and �c � �0.
The parameter % � 0 and the effective massm2

eff �
m2 � 12�2H

2
c . The fixed point is stable as long as

m2 >
2�2

�0

�
V0 �

3

�45�0

�
1



�����������������������������������������������������
1�

2

3
�4
5�0��2

5�0U� V0�

s 	�
: (5.18)
(ii) �
c � 0. This fixed point is obtained for �2 � 0
when the Hubble constant satisfies H2

c �
m2=12�2. The square of the Hubble parameter is
given by Eq. (5.4) with �c given by �0 �
�1=2��2�2

c. From Eq. (4.2) we obtain

�2
c �

2�0

�2
�

4V0

m2 
4

�2
5m

2

���������������������������
3m2

�2
� 6�25U

s
:

Thus this fixed point only exists for m2 >
�2�2�

2
5U. From Eq. (5.12) we find m2

eff �
�4%H2

c=�1� %� and hence this fixed point is stable
as long as �1 � %< 0.
B. De Sitter branes with _� � 0

We cannot find the general solution of the constraint
Eq. (5.2) for _� � 0 without specifying the form of V���
and����. Adopting the simple quadratic model introduced
in Eqs. (5.16) and (5.17) it can be shown that there are
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solutions to the scalar field equation of motion (4.9) with
_� � 0, which satisfy Eq. (5.2), when the mass of the scalar

field satisfies

m2

H2
�

2�2�1� 6�2��3� 16�2�

�1� 4�2�
2 : (5.19)

In this case we have a solution to the equation of motion
(4.9) where the scalar field evolves exponentially with
respect to cosmic time

� � �0 exp��Ht�; (5.20)

where the dimensionless parameter � is given by

� �
2�2

1� 4�2
: (5.21)

For �1=4<�2 < 0 this describes the decay of the scalar
field to the fixed point with � � 0, but for �2 > 0 or <�
1=4 the � � 0 fixed point is clearly unstable.

This limiting behavior where �! 0 is consistent with
linear perturbations (5.14) studied in the previous subsec-
tion about the � � 0 fixed point for the particular case
(5.19). The Hubble parameter, which remains constant for
all �, is thus given by the corresponding solution to
Eq. (5.4) for � � 0:

H2 �
1

6�0

�
V0 �

3

�45�0

�
1



�����������������������������������������������������
1�

2

3
�4
5�0��

2
5�0U� V0�

s 	�
; (5.22)

which is real so long as 2�45�0��25�0U� V0�< 3.
The effective energy density � and the pressure P of the

evolving scalar field, �, can be expressed as

� � �P � V0 � 3�2H
2�2; (5.23)

which will be time-dependent for �2 � 0. On the other
hand, it can be checked that,

�� 6�H2 � V0 � 6�0H
2 � constant: (5.24)
VI. CONFORMALLY COUPLED SCALAR FIELD
ON THE BRANE

An interesting model to consider is the case of a con-
formally coupled scalar field on the brane, with conformal
coupling

� � �0 �
1

12
�2; (6.1)

where �0 is a positive constant, and a vanishing potential
V � 0.

It is known in 4D General Relativity that the trace of the
effective energy-momentum tensor of a conformally
coupled scalar field is zero. Therefore, the behavior of a
spatially homogeneous conformally coupled field can be
-7
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effectively described as a radiation fluid [20]. We will show
that this remains true in brane-world models.

We split the energy-momentum tensor (2.7) as follows

��� � bT�� � 2�0G��; (6.2)

where, from Eq. (2.9) we have

T̂ �� � T���
�� � T���

�� �
1

6
�2G��: (6.3)

The scalar field equation (2.13) then ensures that T̂�� is
traceless for the conformal coupling given by Eq. (6.1). We
recover the usual 4D result because we only use the scalar
field equation on the brane (2.13) and this is formally the
same as in 4D General Relativity case. This result remains
true if we include a quartic self-interaction potential for the
scalar V � &�4, but for simplicity we will consider here
the case of a non-self-interacting field (& � 0).

In the following, we will consider cosmological solu-
tions where the brane is homogeneous and isotropic. For
convenience, we define a dimensionless scalar field ( �
�=a. Now, the scalar field equation of motion (4.9) can be
rewritten as

d2(

d)2
� K( � 0; (6.4)

where ) �
R
dt=a corresponds to the conformal time on

the brane and K is the spatial curvature. In addition, we
have that the effective energy density �̂ and pressure P̂,
described by bT��, are given by

�̂ � 3P̂ �
1

2a4

��
d(
d)

�
2
� K(2

	
: (6.5)

Using Eq. (6.5) and the first integral of the scalar field
equation of motion (6.4), we obtain �̂ � B=a4, where B is
an integration constant.

If in addition, we consider a nonvanishing, but constant
potential V � V0 on the brane, we have that bT�� is no
longer trace-free. On the other hand, the evolution of the
scalar field ( is unchanged and given by Eq. (6.4), while �̂
and P̂ are shifted such that

�̂ �
B

a4
� V0; (6.6)

P̂ �
B

3a4
� V0: (6.7)

The cosmological evolution of the brane is given by
Eqs. (4.2) and (4.4), where now �, P and � are substituted
by �̂, P̂ and �0, respectively. The Hubble parameter (4.3)
thus reads
024010
H2 � �
K

a2
�

1

6�0

�
B

a4
� V0 �

3

�4
5�0

�
1



����������������������������������������������������������������������������������������
1�

2

3
�45�0

�
��2

5�0U� V0 �
B� 2�0C�

a4

�s 	�
:

(6.8)

This Friedmann equation is the same as that found in [7]
for a radiation filled brane-world universe with a nonvan-
ishing brane tension.

We note that it is possible to recover the conventional
evolution for a 4D cosmology filled with radiation and an
effective vacuum energy density with a fine-tuning of the
parameters of the solution. This is possible, when the
energy density of the conformally coupled scalar field on
the brane exactly cancels the effect of the projected Weyl
tensor on the brane, i.e.,

B � 2�0C: (6.9)

Then the Friedmann Eq. (6.8) becomes

3
�
H2 �

K

a2

�
�

B

2�0a
4 ��; (6.10)

where the effective cosmological constant is given by

� �
1

2�0

�
V0 �

3

�45

�
1

�����������������������������������������������������
1�

2

3
�45�0��25�0U� V0�

s 	�
:

(6.11)

A vanishing cosmological constant on the brane requires
the usual Randall-Sundrum fine-tuning V2

0 � �6U=�25.
We then obtain � � 0 for ��45�0V0� � 0.

Going back to the projected Einstein equations (2.3) we
can see that it is possible to recover the standard 4D
Einstein equations

G�� � ��4g�� �
1

2�0
Tc:c:
�� ; (6.12)

for the special case of a conformally coupled field with
(trace-free) energy-momentum tensor if it exactly matches
the projected Weyl tensor

Tc:c:
�� � �2�0E��: (6.13)

In this case the conformally coupled field and the projected
Weyl tensor exactly cancel out in the total effective energy-
momentum tensor (6.2) on the brane, ��� � �2�0�4 �

V0�g��, and hence ��� / g�� in Eq. (2.4). The confor-
mally coupled energy-momentum tensor, Tc:c:

�� (or equiva-
lently the projected Weyl tensor, E��) then only appears
linearly in the induced Einstein equations (2.3).
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VII. DISCUSSION

In this paper we have studied the field equations for a
scalar field living on a 4D brane embedded in 5D vacuum
space-time, including the effect of a nonminimal coupling
of the field to the 4D scalar curvature on the brane. This is
a natural generalization of previous studies of the dynamics
of minimally coupled scalar fields on the brane, just as
Brans-Dicke scalar-tensor models are a natural general-
ization of minimally coupled fields in 4D general relativity.
Such a nonminimal coupling would be expected to arise
as a quantum correction for any self-gravitating field, but
in the present paper we have just considered the classi-
cal dynamics of an effective theory with nonminimal
coupling.

In a 4D scalar-tensor gravity theory with a nonminimally
coupled scalar field it is always possible to perform a
conformal transformation [21] g�� ! �2���g�� to recast
the theory as Einstein gravity plus a minimally coupled
field, in what is known as the Einstein frame [22]. This is
no longer possible in a brane-world context with a non-
minimally coupled scalar field on the brane, as the bulk
gravity already defines a ‘‘5D Einstein frame’’ [23]. The
nonminimal coupling of the scalar on the brane results in
the Einstein-Brans-Dicke tensor (2.8) appearing as a source
term in the total energy-momentum tensor on the brane. If
one attempts to simplify this by a conformal transforma-
tion to the ‘‘4D Einstein frame’’ on the brane, then this
simplifies the total energy-momentum source term on the
brane, but results in more complicated effective gravita-
tional field equations in the bulk. There seems to be no easy
way to avoid the rather messy gravitational field equations
for a nonminimally coupled scalar field on the brane.

We identify two different regimes in which the evolution
reduces to the usual 4D form. At low energies (relative to
the brane tension �) the projected 5D Einstein equations
reduce to an effective 4D gravity theory (3.5), which is a
generalization of the Randall-Sundrum model [1]. The
nonminimal coupling ���� leads to a correction to the
effective gravitational constant on the brane (3.6). On the
other hand, if the nonminimal coupling term is large so that
the effects of the bulk gravity is negligible, we recover an
effective 4D scalar-tensor gravity theory (3.9) where ����
describes the gravitational coupling (3.10).

We give the form of the modified Friedmann equation
for homogeneous and isotropic cosmologies with a non-
minimally coupled scalar field. For a FRW brane moving in
5D anti-de Sitter space-time it is then possible to give
expressions for the 4D low-energy and strong-coupling
regimes in terms of the energy density. Only for suffi-
ciently weak coupling (4.30) is it possible to recover an
intermediate ‘‘5D’’ regime where the Hubble expansion is
linearly proportional to the scalar field energy density on
the brane [19].

We have given the projected field equations on the brane
following the approach of Shiromizu, Maeda and Sasaki
024010
[10] where the nonlocal effect of bulk gravity is described
by the projection of the 5D Weyl tensor. The most general
5D vacuum solution respecting the symmetries of a homo-
geneous and isotropic (FRW) brane is 5D Schwarzschild-
anti-de Sitter where the projected Weyl tensor acts like a
radiation fluid.

An interesting special case is that of a conformally
coupled scalar field on the brane. As in 4D gravity, one
can use the scalar field equation of motion to define a trace-
free energy-momentum tensor (6.3) for a conformally
coupled field on the brane. In general this obeys the same
modified Friedmann equation as found previously [5,7] for
a radiation fluid on a brane with fixed induced gravity
coupling �0. But for particular values of the conformal
field’s energy density it is possible for it to exactly cancel
out the nonlocal effect from the projected Weyl tensor and
we recover a standard 4D Friedmann equation for a con-
formal field.

We also identify de Sitter brane solutions with constant
H. We find solutions with a constant scalar field displaced
from the minimum of the potential, where the potential
gradient is balanced by the gradient of the nonminimal
coupling term. But for some scalar field Lagrangians it is
also possible to find de Sitter solutions with constant 4D
Ricci scalar, but nonconstant scalar field.

It is natural to consider extending previous analyses
of slow-roll inflation due to a self-interacting scalar field
on the brane [24] to include the effect of a nonmini-
mal coupling for the scalar field to the induced Ricci
curvature on the brane. Several authors have considered
the spectrum of scalar metric perturbations produced
by quantum fluctuations of an inflaton field on the brane
in the presence of a constant induced gravity correc-
tion [8,9]. Indeed we have recently shown that the 4D
consistency relation for the tensor-scalar ratio from infla-
tion remains true with a constant induced gravity correc-
tion. It would be interesting to see whether this remains
true for a scalar field with nonminimal coupling ����.
However our ability to relate the scalar metric pertur-
bations produced during inflation to observables at late
times may be limited due to the nonconservation of the
scalar field energy density � in Eq. (4.7). Only the total
effective energy density �tot in Eq. (4.12) is locally con-
served and so we require strictly adiabatic perturbations in
this total effective energy density in order for the scalar
curvature perturbation to remain constant in the large scale
limit [25]. We leave this interesting question for future
work.
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