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Dirac quasinormal frequencies in Schwarzschild-AdS space-time
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We investigate the quasinormal mode frequencies for the massless Dirac field in static four dimensional
AdS space-time. The separation of the Dirac equation is achieved for the first time in AdS space. Besides
the relevance that this calculation can have in the framework of the AdS=CFT correspondence between
M-theory on AdS4 � S

7 and SU�N� super Yang-Mills theory on M3, it also serves to fill in a gap in the
literature, which has only been concerned with particles of integral spin 0; 1; 2.
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I. INTRODUCTION

Perturbations of black holes are dominated, over inter-
mediate time-scales, by characteristic modes known as
quasinormal modes. They are similar to normal modes of
a closed system, but since the field can fall into the black
hole or radiate to infinity, the modes decay and the corre-
sponding frequencies are complex [1]. They have been
extensively studied in asymptotically flat space-times and
good reviews on the topic can be found in [2,3]. The study
of quasinormal modes in Anti-de Sitter space was first done
in [4].

More recently quasinormal frequencies have been inves-
tigated in the context of string theory in Anti-de Sitter
space [5–7]. There is a suggestion, known as AdS=CFT
correspondence, that string theory in Anti-de Sitter space is
equivalent to a conformal field theory in one dimension
fewer [8]. In the framework of this conjecture the study of
AdS black holes has a direct interpretation in terms of the
dual conformal field theory on its boundary. The duality
predicts that the retarded CFT correlation functions are in
one to one correspondence with Green’s functions on Anti-
de Sitter space with appropriate boundary conditions [9–
12]. Furthermore, as mentioned in [5], it is assumed that a
large static black hole in AdS space corresponds to a
thermal state in the CFT on the boundary. Perturbing the
black hole is equivalent to perturbing this thermal state.
The perturbed system is expected, at late times, to ap-
proach equilibrium exponentially with a characteristic
time-scale. This time-scale is inversely proportional to
the imaginary part of the poles of the correlators of the
perturbation operator. It seems that these relaxation time-
scales are quite complicated to calculate in the CFT, there-
fore their computation is conveniently replaced by the
evaluation of the quasinormal frequencies in the AdS
bulk space. In [6,7], the authors went beyond the scalar
perturbation treated in [5] and they considered electromag-
netic and gravitational perturbations. In one of the most
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recent works on the subject, Berti and Kokkotas [13]
confirm and extend previous results on scalar, electromag-
netic and gravitational perturbations of static AdS black
holes and analyze, for the first time, Reissner-Nordstrom
Anti-de Sitter black holes and calculate their quasinormal
frequencies.

The interaction of a Dirac field with a black hole has
been studied by Finster and his collaborators in a series of
papers. While they have found stable particlelike solutions
in the Einstein-Dirac- Maxwell system [14,15], they have
also proved the nonexistence of time-periodic solutions in
various black hole space-times [16,17]. This means that
Dirac particles, including electrons and neutrinos, cannot
remain on a periodic orbit around a black hole. In [18], they
also showed that there are no spherical symmetric black
hole solutions in the Einstein-Dirac-Maxwell system other
than the Reissner-Nordström one. This suggests that if a
cloud of Dirac particles undergoes gravitational collapse,
the fermionic particles either vanish inside the event hori-
zon of a black hole or escape to infinity.

The quasinormal frequencies related to the evolution of
a massless Dirac field in a Schwarzschild black hole space-
time, were studied in [19]. The quasinormal modes of the
Reissner-Nordström de Sitter black hole for Dirac fields
were studied by using the Pöshl-Teller potential approxi-
mation in Ref. [20]. In this paper we are interested in the
analysis of the modes of vibration of a massless Dirac field
in a Schwarzschild Anti-de Sitter background space and it
is for this reason that we compute the related quasinormal
mode frequencies. This calculation is relevant to the
AdS=CFT correspondence between M-theory on AdS4 �
S7 and SU�N� super Yang-Mills theory on M3, and it also
serves to fill in a gap in the literature, which, in AdS spaces,
has only been concerned with particles of integral spin
0; 1; 2:

II. DIRAC EQUATION IN STATIC ADS SPACE-
TIME

The metric for a Schwarzschild Anti-de Sitter black hole
can be written as
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ds2 � �fdt2 �
1

f
dr2 � r2�d�2 � sin2�d’2�; (2.1)

with

f � 1 �
2M
r

�
�

3
r2; (2.2)

where the parameters M, and � represent the black hole
mass, and the negative cosmological constant, respectively.

The Dirac equation in a general background space-time
can be written, according to [21], as

��ae�a �@� � ���� � 0: (2.3)

Here, �a are the Dirac matrices,

�0 �

�
�i 0
0 i

�
; �i �

�
0 �i�i

i�i 0

�
; i � 1; 2; 3;

(2.4)

while �i are the Pauli matrices,

�1 �

�
0 1
1 0

�
; �2 �

�
0 �i
i 0

�
; �3 �

�
1 0
0 �1

�
:

(2.5)

The four-vectors e�a represent the inverse of the tetrad e�a
defined by the metric g�� as,

g�� � �abea�eb�; (2.6)

with �ab � diag��1; 1; 1; 1� being the Minkowski metric.
� are the spin connection coefficients, which are given by

� �
1

8
��a; �b�e�aeb�;�: (2.7)

Here, eb�;� � @�eb� � ���eb� is the covariant derivative
of eb� and ��� is the Christoffel symbol.

We take the tetrad to be

ea� � diag
� ���
f

p
;

1���
f

p ; r; r sin�
�
: (2.8)

The spin connection � can then be expressed as

0 �
1

4
f0�0�1;1 � 0;2 �

1

2

���
f

p
�1�2;3

�
1

2
�sin�

���
f

p
�1�3 � cos��2�3�: (2.9)

The Dirac Eqs. (2.3) become

�
�0���
f

p
@�

@t
�

���
f

p
�1

�
@
@r

�
1

r
�

1

4f
df
dr

�
�

�
�2

r

�
@
@�

�
1

2
cot�

�
� �

�3

r sin�
@�

@’
� 0: (2.10)

If we rescale � as

� � f�
1
4�; (2.11)
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Eq. (2.10) assumes a simpler form in the new unknown �,
which can be written as

�
�0���
f

p
@�

@t
�

���
f

p
�1

�
@
@r

�
1

r

�
� �

�2

r

�
@
@�

�
1

2
cot�

�
�

�
�3

r sin�
@�

@’
� 0: (2.12)

We introduce a well known coordinate change from the
radial variable r to the tortoise coordinate r� given by

r� �
Z dr
f
: (2.13)

We will use an ansatz for the Dirac spinor

� �

 
iG����r�
r  �

jm��; ’�
F����r�
r  

jm��;’�

!
e�i!t; (2.14)

with spinor angular harmonics

 �
jm �

0@
��������
j�m
2j

q
Ym�1=2
l��������

j�m
2j

q
Ym�1=2
l

1A;
0@for j � l�

1

2

1A; (2.15)

 �
jm �

0@
������������
j�1�m
2j�2

q
Ym�1=2
l

�
������������
j�1�m

2j�2

q
Ym�1=2
l

1A;
0@for j � l�

1

2

1A:
(2.16)

Note that Ym�1=2
l ��; ’� represent ordinary spherical har-

monics. Since0@�i� @@��
1
2 cot�� 1

sin�
@
@’

� 1
sin�

@
@’ i� @@��

1
2 cot��

1A0@ �
jm

 
jm

1A

� i

0@ k� 0

0 k�

1A0@ �
jm

 
jm

1A; (2.17)

Eqs. (2.12) can be written in the simplified matrix form� 0 �!

! 0

��F�

G�

�
�
@
@r�

� F�

G�

�
�

���
f

p � k�
r 0

0 � k�
r

��F�

G�

�

� 0: (2.18)

These equations can be thought of as equations referring to
the radial functions �F�; G�� or �F�; G�� depending on
the original choice made in the ansatz of Eq. (2.14). On the
other hand it can be proved that the radial differential
equations related to the two different sets of functions are
exactly the same. In other words, we have a unique equa-
tion for F� and another equation for G�. For this reason
we will avoid from now on specifying if we are referring to
the spin up or spin down components when talking about
F� and G� and we will simply call these functions F and
G. Consequently the two decoupled equations can be ex-
pressed in the form
-2
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d2F

dr2
�

� �!2 � V1�F � 0; (2.19)

d2G

dr2
�

� �!2 � V2�G � 0; (2.20)

with

V1 �

���
f

p
jkj

r2

�
jkj

���
f

p
�
r
2

df
dr

� f
�
;�

k � j�
1

2
; j � l�

1

2

� (2.21)

V2 �

���
f

p
jkj

r2

�
jkj

���
f

p
�
r
2

df
dr

� f
�
;�

k � �j�
1

2
; j � l�

1

2

�
:

(2.22)

In a similar way to the integer spin case in [19], the two
potentials V1 and V2, are supersymmetric partners derived
from the same superpotential. In the asymptotically flat
case, it has been shown that potentials related in this way
possess the same spectra of quasinormal mode frequencies
[22]. In the AdS case, this is still true provided that the
boundary conditions are mapped between the two cases in
a consistent way. We shall concentrate just on Eq. (2.19)
with potential V1 in evaluating the quasinormal mode
frequencies in the next section.
III. DIRAC QUASINORMAL FREQUENCIES

In this section we evaluate the quasinormal frequencies
for the massless Dirac field using the Frobenius series
solution method. We start defining � as

� � r2 � 2Mr� �2r4; (3.1)

where �2 � ��=3. This implies that the function f in
(2.19) can be rewritten as f � �=r2. Next, rescale F as

F � e�i!r�u; (3.2)

which allows us to scale out the behavior of the function at
the black hole event horizon. We obtain an equation in u
given by

f2 d
2u

dr2 �


f
df
dr

� 2i!f
�
du
dr

� Vu � 0: (3.3)

Let us now set

r �
1

x
: (3.4)

We obtain the equation in the variable x

f2x4 d
2u

dx2 � fx
2

�
2xf� x2 df

dx
� 2i!

�
du
dx

� Vu � 0:

(3.5)
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Define p as

p � x2 � 2Mx3 � �2x4: (3.6)

Note that p1 � p�x1� � ��x1�x
4
1 � 0. Rescale f as

f � �x2 � px�2 (3.7)

inserting this into (3.5) we obtain the equation

p2 d
2u

dx2 � p
�
dp
dx

� 2i!
�
du
dx

� Vu � 0: (3.8)

Rescale again the independent variable x, by introducing
the variable z given by�

x1 � x
x1

�
� z2; (3.9)

we obtain a new expression for V in the variable z,

V�z� � pjkj2 � p1=2jkjx1�1 � z2��3Mx1�1 � z2� � 1�:

(3.10)

Insert (3.9) into (3.8) and rescale all the parameters:
M;�2; ! with respect to x1, which is the inverse of the
radial coordinate r1 of the black hole event horizon, while
r1 is the largest root of �. We obtain

p̂z
d2u

dz2 �


p̂�

dp̂
dz
z� 4i!̂z2

�
du
dz

� 4z3fjkj2

� p̂�1=2�3M̂jkj�1 � z2�2 � jkj�1 � z2��gu � 0; (3.11)

where

p̂ � px�2
1 : (3.12)

Expanding the coefficients of Eq. (3.11) as Taylor series
around z � 0, which is the same than performing a series
expansion around the black hole event horizon, we obtain

A�z�
d2u

dz2 � B�z�
du
dz

� C�z�u � 0; (3.13)

where

A�z� � p2z
3 � p3z

5 � 2M̂z7; (3.14)

B�z� � �4i!̂� p2�z
2 � 3p3z

4 � 10M̂z6; (3.15)

C�z� � 4jkj2z3 � 2jkjp2z
2q̂�1=2 � 4jkjp3z

4q̂�1=2

� 12M̂jkjz6q̂�1=2; (3.16)

with

p2 � �6M̂� 2�; (3.17)

p3 � ��6M̂� 1� (3.18)

and

q̂ � p̂z�2 � p2 � p3z2 � 2M̂z4: (3.19)
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The differential equation in u can be now solved by series
by exploiting Frobenius method, which consists in looking
for a solution of the form

u � z.
X1
n�0

anzn: (3.20)

The main difference between the spin 1
2 case and the integer

spin case is the nonpolynomial term q̂�1=2. This function
can be Taylor expanded as

q̂�1=2 � �p2 � p3z2 � 2M̂z4��1=2 �
X1
s�0

1

s!
Aszs; (3.21)

leaving aside for the moment the problem of deriving the
coefficients of this last series.

The two possible values for the index . at z � 0 of our
series solution (3.20) can be easily calculated and they are
given by .1 � 0 and .2 � 4i!̂=p2. We pick the first of the
indices (the other solution has infinitely many oscillations
close to the horizon) and therefore look for a series solution
which will be simply given by

u �
X1
n�0

anz
n: (3.22)

The infinite nature of the expansion for q̂�1=2 and u, leads
us to deal with a product of two series which can be
expressed as a single series, X1

s�0

1

s!
Aszs

! X1
n�0

anzn
!
�
X1
n�0

 Xn
s�0

1

s!
Asan�s

!
zn:

(3.23)

Inserting Eqs. (3.22) and (3.23) into Eq. (3.13), we obtain a
recurrence relation for an�1 which has n terms,

� 4jkjp3


A0an�2 � � � � �

An�2

�n� 2�!
a0

�

� 12M̂jkj

A0an�4 � � � � �

An�4

�n� 4�!
a0

�
� 0:

This recurrence equation, due to its unbounded character
caused by the series expansion for q̂�1=2, is much harder to
solve by numerical recursion, and in any case before we
proceed we first need to know the expression for the
coefficients As of the Taylor expansion of q̂�1=2. This
problem is solved by remembering Faà di Bruno’s formula
for the analytical calculation of derivatives of any order

hn �
�
dnh
dxn

�
x�x0

�
Xn
k�1

fk
X
p�n;k�

n!
Yn
i�1

gaii
�ai!��i!�ai

; (3.25)

where h�x� � f�g�x�� is a composed function,

fk �
dk

dyk
f�y0� (3.26)
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and

gi �
di

dxi
g�x0�: (3.27)

The second sum inside (3.25) is done over partitions
p�n; k�, which are defined as

p�n; k� �

�a1; . . . ; an�:ai 2 N 0;

Xn
i�1

ai � k;
Xn
i�1

iai � n
�
;

(3.28)

where N 0 is equal to the set of non-negative integers. An
element �a1; . . . ; an� belonging to p�n; k� represents a par-
tition of a set with n elements into a1 classes of cardinality
1, . . . , an classes of cardinality n. The number of such
partitions is represented by the Stirling numbers of the
second kind,

S�k�n �
X
p�n;k�

n!
Yn
i�1

1

�ai!��i!�ai
: (3.29)

When formula (3.25) is applied to the As coefficients, we
have

As �
Xs
m�1

f�m��q̂�0��
X
p�s;m�

s!
Ys
i�1

1

�ai!��i!�
ai
fq̂�i��0�gai ;

(3.30)

with f�m��q̂�0�� given by

Ym�1

k�0

�
�
�2k� 1�

2

�
�q̂�0���1=2�m: (3.31)

On the other hand, evaluating q̂ and its derivatives at z � 0,
we obtain

q̂�0� � 6M̂� 2; (3.32)

q̂ 00�0� � 2�1 � 6M̂�; (3.33)

q̂ �4��0� � 48M̂; (3.34)

while

q̂ 0�0� � q̂000�0� � 0; (3.35)

beside all the derivatives of order higher than four. The As
coefficients can then be written in the form

As �
Xs
m�1

f�m��q̂�0��s!
�

1

�a2!��2!�a2
fq̂00�0�ga2

�

�

�
1

�a4!��4!�a4
fq̂�4��0�ga4

��
; (3.36)

where the set of partitions p�s;m� now contains only a
single element
-4
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FIG. 1. In this figure we show the potentials related to axial
perturbations of AdS Schwarzschild black holes. The plot on the
left represents the potential related to the evolution of an axial
spin- 1

2 field, for l � 0 and M̂ � 1:0. The plot on the right
represents the potential related to the evolution of an axial
spin-2 field, for l � 3 and M̂ � 1:0. The masses are rescaled
with respect to the radial coordinate of the black hole event
horizons.
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p�s;m� � f�a2; a4�:a2; a4 2 N 0; a2 � a4

� m; 2a2 � 4a4 � sg: (3.37)

Hence

a2 � 2m�
1

2
s (3.38)

a4 �
1

2
s�m; (3.39)

for 4m> s > 2m and s even. Expression (3.36) is very
simple to encode in a numerical subroutine.

A. Boundary conditions

Having separated Dirac equations in Anti-de Sitter
Schwarzschild black hole background spaces and obtained
two radial second order differential Eqs. (2.19) and (2.20),
we have argued that those two equations are related. They
can be physically identified as the equations governing the
axial and polar perturbations of the Dirac field, respec-
tively. We have also mentioned the fact that the two po-
tentials (2.21) and (2.22) possess the same quasinormal
mode frequency spectra if the boundary conditions are
mapped consistently.

According to Cooper [23], Eq. (2.19) describes axial
perturbations and Eq. (2.20) describes polar perturbations
of the Dirac field. Suppose we are interested in investigat-
ing further the AdS=CFT conjecture and want to relate the
spinor field and its quasinormal frequencies to the calcu-
lation of the correlation functions on the boundary confor-
mal field theory. More precisely, let us suppose that we are
interested in evaluating the correlators of a polar quantity
in the CFT on the boundary, which corresponds to the
polar part of the spinor field in the bulk of AdS space-time.
Accordingly we must set the axial spinor field perturbation
to vanish on the boundary.

In terms of what we have done until now, we must take
our series solution (3.22) to the axial Eq. (2.19), and
impose on this Dirichlet boundary conditions

u�z� �
X1
n�0

anzn ! 0 (3.40)

as z! 1. Taking the limit of the left hand side gives us the
identity

X1
n�0

an � 0: (3.41)

This is an implicit equation for the computation of quasi-
normal frequencies related to the spinor field. The com-
puter program which performs the numerical calculation is
organized in the following way. An independent routine
evaluates the coefficients As associated to the Taylor ex-
pansion of q̂�1=2. These results are then exploited within a
recursive routine which iterates the recurrence relation to
024007
evaluate the coefficients an of the series solution. Finally,
an ordinary Newton-Raphson root-finding routine seeks
for solutions to the Eq. (3.41).

The choice of boundary conditions is related to the axial
or polar character of the spinor field at infinity and to its
interpretation in terms of the AdS=CFT conjecture. On the
other hand the consistency of the boundary conditions can
be checked by the shape of the effective potential in the
differential Eq. (2.19) we are solving.

In Fig. 1, we plot the potential related to the evolution of
the axial component of massless spin- 1

2 fields alongside the
axial potential for the spin-2 case in four dimensional
Schwarzschild-AdS space-time. Note that r! 1 is a regu-
lar point of the differential Eq. (2.19) and Dirichlet bound-
ary conditions are a consistent choice.
IV. NUMERICAL RESULTS

The numerical procedure described above can be suc-
cessfully applied to both large black holes, for which the
radius of the event horizon r1 is much larger than the Anti-
de Sitter radius ��1 �r1 >>�

�1�, and intermediate black
holes for which r1 � �

�1. The quasinormal frequencies
are decomposed into real and imaginary parts

! � !R � i!I: (4.1)

With this sign chosen, !I is negative for all quasinormal
frequencies. In Table I, we list the values of the lowest
quasinormal mode frequencies for ��1 � 1, l � 0 and
selected values of r1. For large black holes, the real and
imaginary parts of the frequency scale linearly with the
horizon radius, resembling the results obtained in [5,6] for
other perturbation fields. Since the temperature scales also
-5



TABLE I. Values of the lowest Dirac quasinormal mode fre-
quency for ��1 � 1:0 and n � 0; l � 0. These results are ob-
tained by evaluating the frequency as a function of r1 for some
selected black hole sizes.

r1 !R !I r1 !R !I

100 �0 �76:8157 1.0 1.80808 �1:10565
60 �0 �46:8901 0.8 1.76332 � 0:8516
40 �0 �31:9303 0.5 1.7463 � 0:4525
20 �0 �17:0652 0.45 1.7555 � 0:3829
10 �0 �10:0749 0.4 1.7719 � 0:3118
5 2.20 � 6:3626 0.3 1.7958 � 0:1768

TABLE II. Quasinormal mode frequencies corresponding to
l � 0 and l � 1 massless Dirac perturbations of a large
Schwarzschild-AdS black hole �r1 � 100�. For large values of
the overtone number n, the modes become evenly spaced in
mode number and the spacing is given by �!n�1�!n�

r1
� �1:299 �

2:25i�.

Overtone Number l � 0 l � 1

n !R !I !R !I

0 � 0 �76:8402 � 0 �78:7731
1 � 0 � 217:83 � 0 �211:417
2 47.7354 �417:775 76.7222 �406:192
3 178.073 �650:494 203.247 �636:479
4 305.383 �877:767 330.457 �863:679
5 433.279 �1104:39 458.292 �1090:25
6 561.539 �1330:64 586.517 �1316:47
7 690.04 �1556:66 715.01 �1542:46
8 818.77 �1782:56 843.695 �1768:29
9 947.614 �2008:24 972.531 �1994:02
10 1076.56 �2233:86 1101.48 �2219:65
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with r1 in this regime, the imaginary part of the frequency,
which determines how damped the mode is and which
according to the AdS=CFT correspondence is a measure
of the characteristic time 5 � 1=j!Ij of approach to ther-
mal equilibrium, scales with the temperature. Therefore, in
the dual CFT the approach to thermal equilibrium is faster
for higher temperatures. The linearity of the scaling be-
tween!I and T is clearly shown in Fig. 2, both for the n �
0 and n � 1 mode numbers. The dots represent some
frequencies numerically calculated. The lines connecting
them are linear fits. Explicitly, the lines are given by

!I � �3:11T (4.2)

for n � 0 and

!I � �9:36T (4.3)

for n � 1.
In Table II, we list the values of the first 11 quasinormal

mode frequencies corresponding to massless spinor pertur-
bations of large Schwarzschild-AdS black holes �r1 �
��1�. For large values of the overtone number n, the
frequencies become evenly spaced in mode number and
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FIG. 2. The imaginary part of the spinor quasinormal mode frequen
functions of the temperature T for some selected black hole sizes. T
lines connecting them are linear fits.
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the spacing, which is independent of the angular mode
number l, is given by

�!n�1 �!n�
r1

� �1:299 � 2:25i�: (4.4)

This is exactly the same spacing, related to the large black
hole regime, obtained by Cardoso and his collaborators in
[24], for different kinds of perturbing fields. Their results
were the same for scalar, electromagnetic and gravitational
perturbations. Moreover, the quasinormal frequencies of
large black holes have a number of first overtones with
pure imaginary parts as in the electromagnetic and gravi-
tational cases. The higher the black hole radius r1, the
-200

-150

-100

-50

5 10 15 20 25 30T

ω
I

cies for n � 0; l � 0 (left) and n � 1, l � 0 (right) are shown as
he dots represent some frequencies numerically evaluated. The
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FIG. 4. The frequencies of the first ten quasinormal modes for
the axial component of the Dirac field, are shown for r1 �
��1 � 1:0, and the angular mode values l � 0 and l � 1.
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FIG. 3. The frequencies of the first 11 quasinormal modes for
the axial component of the Dirac field, are shown for ��1 � 1,
r1 � 100 and the angular mode values l � 0 and l � 1.
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higher the number of these first pure damped modes. In
Fig. 3, the large black hole frequencies are plotted for l �
0; 1.

In Table III, we list the first ten quasinormal mode
frequencies corresponding to massless spinor perturbations
of intermediate Schwarzschild-AdS black holes �r1 �
��1�. The values of the frequencies are shown for ��1 �
1:0 and l � 0; 1. For large values of the overtone number n,
the modes become evenly spaced and the spacing, which is
independent of l, is given by

�!n�1 �!n�
r1

� �1:96 � 2:36i�: (4.5)

Once again this is a result that, for the intermediate black
hole regime, resembles those obtained in [24] for different
TABLE III. Quasinormal mode frequencies corresponding to
l � 0 and l � 1 massless Dirac perturbations of an intermediate
Schwarzschild-AdS black hole �r1 � 1:0�. For large values of
the overtone number n, the modes become evenly spaced in
mode number and the spacing is given by �!n�1�!n�

r1
� �1:96 �

2:36i�.

Overtone Number l � 0 l � 1

n !R !I !R !I

0 1.80808 �1:10565 2.7956 � 0:9744
1 3.44229 �3:43805 4.26976 � 3:1623
2 5.28094 �5:82213 5.99062 �5:51618
3 7.17816 � 8:119914 7.81556 �7:89152
4 9.09828 �10:5728 9.68897 �10:2668
5 11.0301 �12:9413 11.5837 �12:6412
6 12.9712 �15:3067 13.5014 �15:0117
7 14.9172 �17:6699 15.4250 �17:3815
8 16.8671 �20:0254 17.3552 �19:7468
9 18.8253 �22:3793 19.2938 �22:1086

024007
kinds of perturbation fields. In Fig. 4, the intermediate
black hole frequencies are plotted for l � 0; 1.

In Fig. 5 and 6, we show, for intermediate black holes,
the dependence of the real and imaginary part of the
fundamental quasinormal mode frequencies on the metric
parameters for l � 0 and l � 1. The parameters 6 and ��1

represent, respectively, the black hole surface gravity eval-
uated at the event horizon and the Anti-de Sitter radius.
Both the real and imaginary parts of the frequencies seem
to depend linearly on the black hole surface gravity and
therefore on the black hole temperature for ��16 > 1:8.
This is a result that has already been found in [7] for
gravitational perturbations of Schwarzschild AdS black
holes. The slopes of the straight lines, which are indepen-
dent of l, are given by
 1.6
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 2.6

 2.8

 3

 1.7  1.8  1.9  2  2.1  2.2  2.3  2.4
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ω
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FIG. 5. The dependence of the real part of the fundamental
quasinormal mode frequencies on the metric parameters for l �
0 (bottom) and l � 1 (top), is shown for Dirichlet axial boundary
conditions on the spinor field.
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FIG. 6. The dependence of the imaginary part of the funda-
mental quasinormal mode frequencies on the metric parameters
for l � 0 (bottom) and l � 1 (top), is shown for Dirichlet axial
boundary conditions on the spinor field.
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!R � 0:256 (4.6)

for the plots in Fig. 5 and

!I � �1:296 (4.7)

for the plots in Fig. 6.
For small black holes �r1 � ��1�, it is very difficult to

evaluate the corresponding quasinormal frequencies, or to
go high in mode number. The error associated in estimating
the frequencies in this regime is too high, and we cannot be
completely sure of the results. In the case of other pertur-
bation fields [5,6,24], it was found that small black holes
have quasinormal frequencies that are very close to the
pure AdS values. In the case of the Dirac field considered in
this paper, after setting ��1 � 1, we have been able to
evaluate the fundamental frequency, at most, down to the
value of r1 � 0:3 (see Table I). Further investigations and
more powerful numerical tools are needed to outline the
behavior of the spin-1=2 frequencies in the limit of r1 ! 0.

V. CONCLUSION

In this paper we have investigated the quasinormal
mode frequencies of a spinor field interacting with a
024007
Schwarzschild black hole in four dimensional Anti-de
Sitter space-time. After solving the related axial perturba-
tive equation we have imposed on this solution Dirichlet
boundary conditions and evaluated the corresponding qua-
sinormal frequencies. This choice of boundary conditions
is physically justified in the contest of the AdS=CFT
correspondence, in which it is suggested to exploit these
frequencies in the evaluation of poles of correlation func-
tions associated to the conformal field theory on the
boundary.

For large black holes, we have numerically confirmed
that the imaginary part of the frequency scales with the
temperature. We have also shown that both the real and
imaginary components of the frequencies are evenly
spaced in mode number. The spacing between consecutive
modes, which is independent of the angular quantum num-
ber l, behaves as in the case of scalar, electromagnetic
and gravitational perturbations. The quasinormal frequen-
cies have a number of first overtones with pure imaginary
parts.

For intermediate black holes, we have found that both
the real and imaginary part of the frequency scale linearly
with the surface gravity. The modes are evenly spaced and
the spacing, which is independent of the angular quantum
number l, resembles the one related to other kinds of
perturbations.

Our purpose is to extend this project imposing different
boundary conditions on the axial or the polar Dirac equa-
tions. We could be interested, for instance, in calculat-
ing the correlation functions and associated poles of a
quantity related to the axial part of the spinor field. That
would suggest we set the polar component of the spinor
field perturbation to vanish on the boundary and conse-
quently we could solve either the odd parity differential
equation with Dirichlet boundary conditions or the even
parity equation with mixed boundary conditions due to
the transformation theory between polar and axial func-
tions.
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