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Generalized cosmological scaling solutions
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Motivated by the recent interest in cosmologies arising from energy density modifications to the
Friedmann equation, we analyze the scaling behavior for a broad class of these cosmologies comprised of
scalar fields and background barotropic fluid sources. In particular, we determine the corresponding scalar
field potentials which lead to attractor scaling solutions in a wide class of braneworld and dark energy
scenarios. We show how a number of recent proposals for modifying the Friedmann equation can be
thought of as being dual to one another, and determine the conditions under which such dualities arise.
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I. INTRODUCTION

The Friedmann equation is one of the cornerstones of
modern cosmology relating the expansion of the Universe
to the total energy density within it. It forms the starting
point for almost all investigations in cosmology. However,
over the past few years, possible corrections to the
Friedmann equation have been derived or proposed in a
number of different contexts, generally inspired by brane-
world investigations. These corrections are often of a form
that involves the total energy density �, and are such that
they tend to play a role early in the history of the Universe,
fading away as we enter the late-time, post-nucleosynthesis
era (although that is not always the case as we shall see).
Up to now, the different models have been presented in the
literature without any attempt to relate them. In this paper,
by introducing a generalized form for the correction, we
will provide a formalism which allows us to relate a large
class of modified Friedmann cosmologies. Assuming the
total energy density to be comprised of a canonical scalar
field � with potential V���, together with some form of
barotropic fluid, we will demonstrate how the existence of
scaling solutions determines the form of V���, and in
doing so we will establish a direct relation between the
form of the potential and the functional form of the modi-
fication to the Friedmann equation. Scaling (attractor)
solutions in cosmology are very important because they
allow one to understand the asymptotic behavior of a
particular cosmology and to determine whether such be-
havior is stable or not. They have also been advocated by a
number of authors as a way of establishing the behavior of
general scalar fields in a cosmological setting both in the
context of conventional Friedmann cosmologies [1–10]
and in particular classes of modified Friedmann cosmolo-
gies [11–23].

In Sec. II we present the equations of motion arising out
of the modified Friedmann equations and introduce varia-
bles which allow the scaling solutions to be determined.
The general conditions for scaling behavior are then estab-
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lished in Sec. III and we show that these can be written as a
closed form relationship between the scalar field and the
functional form of the modification to the Friedmann
equation. In Sec. IV we demonstrate the existence of dual-
ity symmetries between different scaling solutions, and
determine the conditions which must be satisfied in terms
of the modification to the Friedmann equation for such
duality properties to be obtained. Section V then applies
the results of the previous sections to a general class of
models, evaluating the scaling potentials (and their duals),
as well as the explicit evolution of the scale factor in the
scaling regimes. In particular, we apply the technique to a
number of recently investigated cosmologies of relevance
both to braneworld and dark energy scenarios, includ-
ing the Randall-Sundrum [24], Shtanov-Sahni (S-S) [25]
and Cardassian [26] models. The Dvali-Gabadadze-Porrati
(DGP) [27] braneworld scenario is investigated in Sec. VI
and we summarize our results in Sec. VII. Throughout
units are chosen such that �h � c � 1.

II. EQUATIONS OF MOTION

We consider spatially flat Friedmann-Robertson-Walker
(FRW) cosmologies such that the dynamics is determined
by an effective Friedmann equation of the form

H2 �
8�

3m2
4

�L2���; (1)

where H � _a=a is the Hubble parameter, a is the scale
factor, � is the total energy density of the Universe, a dot
denotes differentiation with respect to cosmic time and m4

is the four-dimensional Planck mass. Modifications to
standard relativistic cosmology are parametrized by the
correction function L��� and this is assumed to be
positive-definite without loss of generality.

We will investigate models where the Universe is
sourced by a self-interacting scalar field � with potential
V��� together with a barotropic fluid with equation of state
P� � ��� 1���, where � is the adiabatic index. The
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energy density and pressure of the scalar field are given by
�� � _�2=2 � V and P� � _�2=2 � V, respectively. As in
conventional cosmologies, we assume that the energy-
momenta of these matter fields is covariantly conserved
and this implies that

_� � � �3�H��; (2)

�� � �3H _�� dV=d�: (3)

Equations (1)–(3) close the system that determines the
cosmic dynamics.

In standard cosmology the stability of scaling solutions
is analyzed by introducing the variables [4]:

XCLW �

���������
4�

3m2
4

s
_�
H

YCLW �

���������
8�

3m2
4

s ����
V

p

H
(4)

and rewriting the field equations as an autonomous system.
Following [12,14], we define the new pair of variables:

X �
_�������
2�

p ; Y �

����
V

p

����
�

p ; (5)

that are related to those of Eq. (4) by

X
XCLW

�
Y

YCLW
� �L; (6)

where � � �1 for expanding and contracting universes,
respectively. In what follows, we consider expanding mod-
els unless otherwise stated.

When expressed in terms of the new variables (5), the
equations of motion (1)–(3) can be written in the form:

X0 � �3X� ��

���
3

2

s
Y2 �

3

2
X
2X2 � ��1 � X2 � Y2��;

(7)

Y0 � ���

���
3

2

s
XY �

3

2
Y
2X2 � ��1 � X2 � Y2��; (8)

�0 � ��
���
6

p
�2�
 � 1�X� 3�
2X2

� ��1 � X2 � Y2���
d
d�


lnL����; (9)

where

� � �
1

L
m4�������
8�

p
dV=d�
V

; (10)


 � V
d2V=d�2

�dV=d��2
; (11)

and a prime denotes differentiation with respect to the
logarithm of the scale factor, N � lna. As in Ref. [10],
Eqs. (10) and (11) generalize the expressions introduced in
023526
Refs. [2,4,9,14]. In particular, � is related to the parameter
�CLW � � m4�����

8�
p dV=d�

V introduced in Ref. [4] such that

�
�CLW

�
1

L
: (12)

We refer to � as the ‘‘scaling parameter.’’
The system of equations (7)–(11) for the variables X, Y

and � do not appear to be closed due to the presence of the
term involving 
 in Eq. (9). However, it follows from
Eqs. (5), (10), and (11) that we have 
 � 
���, � �
���; Y� and � � ���;�� and hence that 
 � 
��; Y�.
This implies that the equations are indeed closed.

The definition of the total energy density implies that the
variables (5) satisfy the constraint equation

X2 � Y2 �
��
�

� 1 (13)

and, since the energy density of the barotropic fluid is
semi-positive-definite, any cosmological model can be
represented as a trajectory in the �X; Y�-plane that is
bounded within the unit circle, i.e., �� � ��=� � X2 �

Y2 � 1. Furthermore, since Y 
 0 by definition, it is suffi-
cient to consider the evolution in the upper half of the disc.

Equations (7)–(9) exhibit an important property. For the
case where � is constant, they have an identical form to that
of the plane-autonomous system of standard relativistic
cosmology that is formulated in terms of the variables
fXCLW; YCLW; �CLWg. This duality immediately implies
that the system (7) and (8) admits an identical set of critical
points to that of the standard scenario when these solutions
are expressed in terms of the variables fX; Y; �g.

A further consequence of such a duality is that the
stability of each fixed point solution can be determined
directly from the stability analysis of Ref. [4]. In total,
there are five critical solutions to Eqs. (7) and (8) where the
variables fX; Y; �g � fXc; Yc; �cg are constants. Three of
these represent the unstable solutions �Xc � 1; Yc � 0�,
�Xc � �1; Yc � 0�, �Xc � 0; Yc � 0� for all values of �
and �. The value of � determines the nature of the other
two points. For �2 > 3�, there exists an attractor solution

Xc �

���
3

2

s
�
�
; Yc �

����������������������
3�2 � ���

2�2

s
; (14)

where the effective adiabatic index of the scalar field,
defined by

�� �
2X2

X2 � Y2 ; (15)

satisfies the condition �� � �. For this late-time attractor
solution, the relative contribution of the scalar field’s en-
ergy density to the total energy density of the Universe is
constant, ��c � X2 � Y2 � 3�=�2, and consequently, the
energy densities of the scalar field and fluid redshift at the
same rate as the Universe expands.
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The fifth critical point arises if �2 < 6 and is given by

Xc �
����
6

p ; Yc �

���������������
1 �

�2

6

s
: (16)

This corresponds to the case where the scalar field domi-
nates the fluid ���c � 1� and has an effective adiabatic
index �� � �2=3. The solution is stable if �� < �, i.e.,
�2 < 3�.
III. GENERAL CONDITIONS FOR SCALING
SOLUTIONS

Since the expressions (6) and (12) relating the standard
and modified FRW cosmologies involve the correction
function L���, the scalar field potential that gives rise to
the fixed point attractor solutions (14) and (16) in a given
generalized scenario will depend on the specific form of
this function. In particular, the potential will differ from the
purely exponential form that leads to scaling solutions in
the conventional FRW model. In this section we establish
the correspondence between the modified Friedmann equa-
tion and the scaling potential.

It can be shown by direct substitution that both sets of
critical points (14) and (16) represent solutions to the field
equations (7)–(9) of the form X0 � Y0 � �0 � 0 if the
relation


 � 1 � �
d
d�


lnL���� (17)

is satisfied. Since � � V=Y2
c for these solutions, Eq. (17)

may be written in the form

�
d2�=d�2

�d�=d��2
� 1 � �

d
d�


lnL� � 0; (18)

and multiplying Eq. (18) by �d�=d��=� then implies that

d�ln�d�=d���
d�

�
d�ln��
d�

�
d�lnL�
d�

� 0: (19)

Equation (19) may be integrated twice to yield a neces-
sary and sufficient condition on the scalar field potential if
the solution is to represent a scaling solution for a given
choice of correction function L���. We find the important
result:

Z d�
�L

� �

�������
8�

p
�

m4
�; (20)

where one of the integration constants has been set to zero
without loss of generality by performing a linear shift in
the value of the scalar field and the constant of proportion-
ality on the right-hand side follows by requiring consis-
tency with Eq. (10).

It is also of interest to determine the evolution of the
scale factor for a given class of scaling solutions. Since Xc
is a nonzero constant for these solutions, Eq. (5) implies
023526
that the scalar field is a monotonically varying function of
proper time � _� � 0�. It is natural, therefore, to view the
value of the field as the dynamical variable of the system
and to express all time-dependent parameters in terms of
this variable.

In general, the scalar field Eq. (3) can be expressed in the
form

_�� � �3H _�2 (21)

or, equivalently, as

d��
d�

� �3H _�: (22)

It then follows from the definition of the Hubble parameter
that

3H2 � �
1

a
da
d�

d��
d�

(23)

and substituting Eq. (23) into Eq. (1) implies that the
Friedmann equation can be expressed in the form

da
d�

d�
d�

� �
8�

��cm
2
4

a�L2���: (24)

Introducing a new variable

b��� � exp
�
��c

Z �
d�

1

�L2���

�
(25)

simplifies Eq. (24) to

da
d�

db
d�

� �
8�

m2
4

ab (26)

and the scale factor is then determined up to a single
quadrature:

a��� � exp
�
�

8�

m2
4

Z �
d�b���

�
db
d�

�
�1
�
: (27)

Thus, for a given cosmological scenario characterized
by a correction function L���, the potential (and equiva-
lently the total energy density) yielding the scaling solution
is determined by integrating Eq. (20). Integration of
Eq. (25) then yields the dependence of b��� on the scalar
field and the evolution of the scale factor follows after
integration of Eq. (27). Finally, the time-dependence of
the scale factor can in principle be deduced by integrating
Eq. (22),

t � �

���������
24�

p

��cm4

Z �
d�L����1=2���

�
d�
d�

�
�1
; (28)

and inverting the result.
In the following section, we employ the above formal-

ism to establish a link between different classes of scaling
solutions that arise for various choices of the modification
to the Friedmann equation.
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IV. DUALITY BETWEEN SCALING SOLUTIONS

A duality between different scaling solutions can be
established by noting that Eq. (26) is invariant under the
simultaneous interchange

a��� ! bp���; b��� ! a1=p���; (29)

where p is an arbitrary constant. This symmetry implies
that a given scaling solution may be employed as a seed
to generate a new scaling cosmology for a different
Friedmann equation and associated scalar field poten-
tial. To be specific, let us consider the scaling solution
parametrized by the functions fa����; b����; �����g
that arises for a specific choice of correction function
L����. We now denote the ‘‘dual’’ scaling solution as
fa����; b����; �����g and assume an ansatz of the form

b���� � 
a�����
1=p: (30)

The new scale factor is then determined from Eq. (27):

a���� � exp
�
�

8�p

m2
4

Z
d�a����

�
da�
d�

�
�1
�
: (31)

However, since the function a���� is itself a solution to the
Friedmann equation (26), Eq. (31) simplifies after integra-
tion to

a���� � 
b�����p (32)

modulo an arbitrary (constant) prefactor.
We may now determine the condition that the dual

correction function L���� must satisfy for the solution
(32) to also represent a scaling solution that satisfies
Eq. (20). If we assume a priori that the two solutions
a���� represent scaling solutions characterized by ��,
respectively, Eq. (20) implies that

1

����L�

d��

d�
�

1

����L�

d��

d�
: (33)

It then follows, after substitution of Eq. (24) into the right-
hand side of Eq. (33), that

1

��L�

d��

d�
� �

8���

��cm
2
4��

L�a�
�da�=d��

(34)

and Eq. (26) then implies that

1

��L�

d��

d�
�

��
����c

L�

b�

db�
d�

: (35)

On the other hand, substituting the ansatz (30) into
Eq. (35) and employing Eq. (24) for the positive-branch
solution yields the condition

1

�2
�L

2
�

�
d��

d�

�
2
� �

8�

�2
�cm

2
4

��
��p

L�L�: (36)

Consistency with Eq. (20) therefore implies that a neces-
sary and sufficient condition for the dual cosmology
023526
fa����; L����g to represent a scaling solution is that the
correction functions arising in the respective Friedmann
equations must be proportional to the inverse of each other
when both are expressed as functions of the scalar field:

L����L���� � �p�����2
�c: (37)

It is interesting that the standard relativistic cosmol-
ogy �L � 1� represents the self-dual model when
p�2

�c���� � �1.
Finally, we find after substituting Eq. (37) into Eq. (33)

and employing Eq. (25) that the energy density of the dual
scaling solution is given by

1

��

d��

d�
� �p��c�2

�

1

b�

db�
d�

: (38)

The dual potential then follows immediately from Eqs. (5)
and (25):

V���� � Y2
c exp

�
�p�2

��2
�c

Z
d��

1

��L2
�

�
: (39)

In the following section we employ the techniques de-
veloped above to determine scaling solutions (and their
duals) in a number of different cosmological settings.
V. UNIFICATION OF MODIFIED FRIEDMANN
COSMOLOGIES

A. Generalized class of scaling cosmologies

A wide class of scenarios that have been considered
recently predict deviations from the standard cosmology
of the form

L��� �
������������������
1 � A��

p
; (40)

where � is an arbitrary dimensionless constant and A is an
arbitrary constant with dimension m�4�. In this case, the
form of the potential leading to scaling (fixed point) solu-
tions is determined by integrating Eq. (20). It is found that

V���� � Y2
cA�1=�cosech2=�

�
�
��
2

�������
8�

p

m4
�
�
; (41)

if A> 0 and

V���� � Y2
c jAj�1=�sech2=�

�
�
��
2

�������
8�

p

m4
�
�
; (42)

if A< 0.
Given the form of the scalar potential (41), the para-

metric solution for the case A> 0 is determined by inte-
grating Eqs. (25) and (27), respectively:
-4
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����� � A�1=�cosech2=�
�
�
��
2

�������
8�

p

m4
�
�

b���� � A���c=�sech2��c=�
�
�
��
2

�������
8�

p

m4
�
�

a���� � sinh2=��2��c��
�
�
��
2

�������
8�

p

m4
�
�
:

(43)

The time dependence of the solution follows by substitut-
ing Eq. (43) into Eq. (40) to yield the Friedmann correction
function:

L���� � cotanh
�
�
��
2

�������
8�

p

m4
�
�

(44)

and then evaluating the integrand in Eq. (28):

t � �

������������
3A1=�

p

���c

Z
d�sinh1=�

�
�
��
2

�������
8�

p

m4
�
�
: (45)

The integral (45) can be performed analytically for various
choices of �, whereas the late-time behavior can be ana-
lyzed for arbitrary �. In particular, we find from Eq. (45)
that the late-time limit corresponds to large �, and it
therefore follows from Eq. (44) that L! 1 as t! 1.
This in turn is the limit corresponding to the case of an
exponential potential.

The corresponding scaling solution for A< 0 driven by
the potential (42) is deduced by applying the duality trans-
formation (29) to the solution (43) for a particular value of
the constant p, where the scaling parameters are chosen to
be equal, �� � �� � �. For the case where p �

�1=��2�2
�c�, the duality transformation (37) implies that

the dual correction function is given by

L���� � tanh
�
�
��
2

�������
8�

p

m4
�
�
; (46)

while integrating Eq. (39) with the form for ����� given in
Eq. (43) implies that the dual potential has precisely the
form of Eq. (42). We may conclude, therefore, that the dual
correction function is given by Eq. (40) with A< 0. In this
sense, a model with A> 0 and a specific value of � is
twinned with the model where the value of � is the same
but the sign of A is changed. In general, the dual scale
factor is deduced from Eqs. (32) and (43):

a���� � cosh2=��2��c��
�
�
��
2

�������
8�

p

m4
�
�

(47)

and the time-dependence follows from Eq. (28):

t � �

���������������
3jAj1=�

p
���c

Z
d�cosh1=�

�
�
��
2

�������
8�

p

m4
�
�
: (48)

It is of course trivial to show that for this choice of p, the
standard cosmology solution corresponding to the case
023526
L � 1 reproduces the well known exponential potential
for the scalar field [28].

In the following subsections, we consider some of the
specific models that belong to the class of corrections given
by Eq. (40).

B. Randall-Sundrum type II braneworld cosmology

The case A � 1=2� and � � 1 corresponds to the
Randall-Sundrum type II (R-S II) braneworld scenario
[24,29–31], where a codimension one brane with positive
tension � is embedded in five-dimensional anti–de Sitter
(AdS5) space:

L��� �
����������������
1 �

�
2�

r
: (49)

For this case, the scaling potential yielding the fixed
point solution is given by

V��� � 2�Y2
ccosech2

�
�
�
2

�������
8�

p

m4
�
�

(50)

and the time-dependences of the scalar field and scale
factor are deduced by evaluating the integral (45) for � �
1 and substituting the result into Eq. (43):

cosh
�
�
�
2

�������
8�

p

m4
�
�
�

�
2�

3Am2
4

�
1=2
�2��ct (51)

a�t� �
�2��2

�c�
4

3Am2
4

t2 � 1
�

1=��2��c�

: (52)

These results for the scaling solutions associated with
the R-S II model confirm those previously obtained using a
different method in Ref. [32]. An important feature of our
approach is that it shows the solution is a fixed point
attractor solution. Another important feature that emerges
is that in the limit where the quadratic energy density term
dominates, i.e., when

�������
8�

p
��� 2m4, the potential (50)

asymptotes to V / ��2, consistent with earlier analyses
[33,34]. Similarly, once the energy density has decreased
so that L� 1, the value of the scalar field becomes large,
and V � exp
���

�������
8�

p
=m4���, in agreement with general

relativistic results [3,4].
In Figs. 1 and 2, we confirm numerically how the above

potential leads to the expected attractor solutions for a
model with a barotropic fluid of radiation (� � 4=3).

C. Shtanov-Sahni braneworld cosmology

The case A � �1=�2j�j� and � � 1 represents a class of
braneworld inspired cosmologies due to Shtanov and Sahni
[25,35,36]. In this scenario, a codimension one brane with
negative tension � is embedded in a five-dimensional
conformally flat Einstein space, where the signature of
the fifth dimension is timelike. In this model, the deviation
from the conventional Friedmann cosmology is character-
-5
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FIG. 1 (color online). Scaling solution for R-S II brane cos-
mology including a radiation fluid and a scalar field with
potential given by Eq. (50). In order to obtain the scaling
solution, we choose � � 10 and for simplicity specify the energy
scale of the brane tension to be �=m4

4 � 10�20. In the upper
figure, the time evolution of the energy density for both radiation
�r (solid curve) and the scalar field �� (dashed curve) are shown.
Note that around logm4t� 10 there is a rapid change as the
quadratic correction becomes negligible and the standard cos-
mological evolution is recovered. However, the energy density of
the scalar field mimics that of the radiation fluid throughout the
entire evolution, i.e., there is scaling behavior. In the lower
figure, we show the time dependence of the cosmic expansion
law. At early times, before logm4t� 10, the scale factor grows
as a / t1=4, and represents a solution for a radiation-dominated
universe in a �2 dominated cosmology. After this time, the
conventional expansion rate a / t1=2 arises.
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-40
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FIG. 2 (color online). As in Fig. 1, although now we specify
� � 1. This leads to a scalar field dominated universe. In the
lower figure, the time dependence of the cosmic expansion law is
shown. As expected in a universe dominated by a scalar field, the
scale factor grows as a / t at early times, corresponding to the
�2 dominated phase, and as a / t2 at late times when the linear �
term is important.
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ized by

L��� �
�������������������
1 �

�
2j�j

r
: (53)

This model has recently been invoked to develop a non-
singular oscillating universe, where the turning points in
both the contracting and expanding phases are induced by
the quadratic correction [37].

The S-S braneworld is dual to that of the R-S II scenario
in the sense discussed above. The scaling potential follows
directly from Eq. (42):

V��� � 2j�jY2
csech

2

�
�
�
2

�������
8�

p

m4
�
�
; (54)

whereas the time-dependences of the scalar field and scale
factor follow from Eqs. (48) and (47), respectively, after
substituting for A � �1=�2j�j� and � � 1:
023526
sinh
�
�
�
2

�������
8�

p

m4
�
�
�

�
2�

3jAjm2
4

�
1=2
�2��ct (55)

a�t� �
�
1 �

2��2
�c�

4

3jAjm2
4

t2
�

1=��2��c�
: (56)

Such a scaling solution is phenomenologically interest-
ing since it represents a nonsingular bouncing cosmology.
The universe collapses from infinity �t! �1� to a finite
size at t � 0 and then bounces into an expanding phase.
The scalar field rolls up the potential during the collapse,
reaches the maximum of the potential at � � 0 at the
instant of the bounce, and then rolls monotonically down
the other side during the expansion era.

D. Cardassian cosmology

In the above classes of models, the modifications to
the Friedmann equation become significant at high energy
scales (early times). On the other hand, recent cosmic
microwave background (CMB) and large-scale structure
observations indicate that the Universe is entering a stage
of accelerated expansion at the present epoch and a number
of phenomenological models have been developed in an
attempt to provide a geometrical interpretation of these
observations. In Cardassian cosmology [26,38], for ex-
ample, the modification term in the Friedmann equation
-6
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is given by Eq. (40) with A > 0 and � � n [26,38]:

L��� �
������������������
1 � A�n

p
(57)

and the present-day cosmological acceleration can be ex-
plained even when the energy density is comprised of only
ordinary matter sources if n <�1=3. The characteristic
feature of this model, therefore, is that the modification
term becomes significant at late times.

Although no scalar field is present in the scenario
considered in Refs. [26,38], it is instructive to show that
the equivalent background cosmology can be obtained
from a model comprised of a barotropic fluid and a self-
interacting scalar field. We see immediately from Eq. (41)
that the corresponding potential which provides the fixed
point attractor solution is given by

V��� � Y2
cA�1=ncosech2=n

�
�
�n
2

�������
8�

p

m4
�
�

(58)

and in Fig. 3 we demonstrate numerically how the above
potential leads to the expected attractor solution. Although
such a homogeneous solution is indistinguishable from the
0 5 10 15 20

0.6
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1.4

-60

-40

-20

0

FIG. 3 (color online). Scaling solution for a Cardassian-type
cosmology including a matter fluid source and a scalar field with
a potential given by Eq. (58). We specify n � �0:5 and choose
� � 10 in order to obtain the scaling solution. For simplicity, we
set the energy scale where modifications to the standard scenario
become significant to be A=m2

4 � 10�10. In the upper figure, the
time evolution of the energy density of matter �m (solid curve)
and that of the scalar field �� are shown. When logm4t� 10, the
time-dependence of the energy density changes as the late-time
modification term becomes significant. In the lower figure, we
show the time dependence of the cosmic expansion law. For
logm4t� 10, we see that a / t2=3, corresponding to the conven-
tional matter dominated universe, whereas for logm4t > 10, the
correction term leads to an accelerating universe, a / t4=3.
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purely perfect fluid background, it is possible that the
presence of a scalar field may modify the evolution of
perturbations and the clustering properties of matter. In
principle, this could result in potentially observational
signatures [39] and a scaling solution of this type provides
a framework for quantitatively investigating the evolution
of perturbations in these models.

Finally, before concluding this section, we illustrate the
duality transformation that relates the Cardassian cosmol-
ogies with the S-S braneworld. Denoting the former with a
subscript ‘‘�’’ and the latter by ‘‘�’’, we may substitute
the form for b���� in the Cardassian scenario, as given by
Eq. (43), into Eq. (38) to deduce that

V���� / sech�2p�2
�c�

2
�=n

�
�
��n
2

�������
8�

p

m4
�
�
: (59)

This reduces to the S-S scaling potential Eq. (42) (with � �
1 and � � ��) when p�2

�c�
2
� � �n and �� � ��=n.

Moreover, in this case, it can be verified that the dual
correction function satisfying Eq. (37) reduces to
Eq. (46) with � � 1 and � � ��.

We now proceed in the following section to determine
the scaling solutions in a further braneworld scenario,
where the corrections to the Friedmann equation become
significant at late times.
VI. DVALI-GABADADZE-PORRATI
BRANEWORLD COSMOLOGY

The Dvali-Gabadadze-Porrati braneworld scenario
[27,40] corresponds to a 3-brane embedded in flat five-
dimensional Minkowski spacetime, where a Ricci scalar
term is included in the brane action. All energy-momentum
is confined to the brane since the bulk is empty. The
modified Friedmann equation for the DGP model is given
by [40]

H2 �
H
r0

�
8�

3m2
4

�; (60)

where r0 � m2
4=�2m

3
5� and m5 is the five-dimensional

Planck scale. In the DGP model, gravity behaves as four-
dimensional Einstein gravity at short scales, whereas it
propagates into the bulk at large scales. This induces
corrections to the standard Friedmann equation at low
energies and the parameter r0 determines the scale at which
these corrections become important. There are two inequi-
valent ways of embedding the brane in the bulk and this is
reflected in the different choices of sign in Eq. (60). In this
section, we refer to these as the ��� and ��� branches,
respectively. In subsequent expressions, where different
signs may be taken, the upper case corresponds to the
��� branch.

It proves convenient to express the Friedmann equation
(60) in the equivalent form
-7
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H �
1

2r0

�1 �

����������������
1 � B�

p
�; (61)

where

B �
32�r20
3m2

4

: (62)

For the ��� branch, the late-time attractor is de Sitter
(exponential) expansion for any decreasing energy density
[40]. For the ��� branch, on the other hand, expand-
ing Eq. (61) as a Taylor series to lowest-order implies
that H � 8�r0�=�3m2

4�. Modulo a rescaling of the four-
dimensional Planck mass, this corresponds formally to the
high-energy limit ��� 2�� of the R-S II braneworld (49).
Consequently, the early-time analysis of the latter model
performed in Ref. [41] is directly applicable to the late-
time behavior of this branch of the DGP model. In particu-
lar, we may conclude immediately that the potential driv-
ing the scaling solution in this limit is the inverse power-
law potential V / ��2.

A direct comparison between Eqs. (1) and (61) implies
that the Friedmann correction function is given by

L �
1�������
B�

p 
�1 �
����������������
1 � B�

p
�: (63)

In order to derive the scaling solutions, we define a new
variable, !:

� �
1

B
sinh2!: (64)

Substituting Eq. (63) into Eq. (20) then implies that the
solution represents a scaling solution if

�

�������
8�

p
�

m4
� � 2

Z
d!

cosh!
cosh!� 1

(65)

and the integral (65) may be evaluated to yield the form of
the potential:�������

2�
p

�
m4

� �

�������
B�

p����������������
1 � B�

p
� 1

� sinh�1
�������
B�

p
: (66)

The corresponding time dependence of the scaling so-
lution can also be determined. In terms of the variable (64),
the Friedmann equation (61) simplifies to

H�!� �
1

r0
sinh2 !

2
(67)

for the ��� branch, and

H�!� �
1

r0
cosh2 !

2
(68)

for the ��� branch. Recalling that _�2=� � 2X2
c and �� �

��c� for the scaling solution, it follows that the scalar
field equation (21) transforms to
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t � �
��c

3X2
c

Z
d!

cotanh!
H�!�

(69)

after substitution of Eq. (64). Substituting Eqs. (67) and
(68) for the ��� and ��� branches, respectively, and eval-
uating the integral (69) then implies that

3X2
c

��cr0
t � cotanh�1

����������������
1 � B�

p
�

1����������������
1 � B�

p
� 1

: (70)
VII. SUMMARY

In this paper we have brought together a number of
recent approaches to cosmology which involve modifica-
tions of the Friedmann equation. By introducing the gen-
eral function L��� as the way of parametrizing the
modification, we have been able to establish the conditions
under which the new system enters scaling solutions.
Considering the case where the energy density is com-
prised of a scalar field and background barotropic fluid,
we have obtained the general relationship that would have
to be satisfied between the evolving scalar field and L���.
In particular, we have obtained the corresponding potential
V��� which leads to scaling solutions and, for a rather
general class of functions of L���, we have shown that
there exist dual solutions which also exhibit similar scaling
behavior. This has allowed us to relate solutions which
would otherwise appear quite distinct, including those
involving collapsing and expanding cosmologies.

Moreover, the duality can directly relate singular and
nonsingular cosmologies. To illustrate this property, con-
sider a particular scaling solution a���� that is singular in
the sense that the scale factor vanishes at a��0� � 0. (The
value of the scalar field can be chosen to be � � 0 without
loss of generality). Suppose, however, that the logarithmic
derivative of the scale factor with respect to the field is
nonzero at this point, d lna�=d�j0 � 0, and furthermore,
that the scale factor is a monotonic function with a finite
first derivative for all physical (nonzero) values of the field.
These properties are satisfied, for example, in the R-S II
and Cardassian models.

The qualitative behavior of the dual solution, a����, is
then determined from Eq. (31). If we define a new parame-
ter ���� � 
d lna=d���1, the value of the scale factor is
simply given by the area under the curve �����, where the
field evolves from zero to some value �. (We are assuming
implicitly that _�> 0 and p < 0 again without loss of
generality). However, due to the exponential nature of
Eq. (31) the initial value of the dual scale factor is nonzero
and this results in a nonsingular background.

On the other hand, the time reversal of the seed solution
a���� would result in a collapsing dual model where the
limits in the integral (31) are taken from � to zero.
Consequently, the dual solution can be analytically con-
tinued through � � 0 into a contracting phase. In this
-8
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sense, therefore, any singular (expanding) scaling solution
satisfying the above (very weak) conditions can generate a
nonsingular bouncing cosmology, where the latter is asso-
ciated with a combination of the seed solution and its time
reversal. For fixed values of fp; ��g, the collapsing phase
of the bouncing solution will be unstable if the expanding
phase is stable, and vice versa. In principle, however,
different seed solutions may be employed to generate
distinct and stable collapsing and expanding branches
that can be smoothly joined at the bounce.

This opens up the possibility that such dualities will
allow us to relate singular cosmologies to nonsingular
bouncing cosmologies, a topic presently of considerable
interest in cosmology.

Finally, we have argued that the type of correction given
by Eq. (40) arises in a number of particle physics motivated
models. Further examples arise in the limit where A�� �
1. In particular, the case � � �1=3 corresponds to the
high-energy limit of the Gauss-Bonnet braneworld
[18,42]. In this model, the R-S II scenario is generalized
to include a Gauss-Bonnet combination of curvature invar-
iants in the five-dimensional bulk action. More generally,
effective Friedmann equations of the form H2 / ��, where
� is arbitrary [43], can arise in models based on Hořava-
023526
Witten theory compactified on a Calabi-Yau three-fold
[44]. Generalized scaling solutions driven by corrections
of this form were recently investigated for a variety of
scalar field models [23].

Future directions involving the use of the duality prop-
erties of these models would include an extension of our
analysis to negative potentials, thereby allowing us to link
these classes of solutions with those arising in the cyclic/
ekpyrotic scenario [45]. On the other hand, as we have
seen, the more general corrections proposed in [27,40] that
arise due to modifications of gravity on large scales can
lead to an explanation of the present cosmic acceleration
without introducing dark energy [46]. It would be interest-
ing to investigate the impact that the duality transforma-
tions we have described have on such a scenario.
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