
PHYSICAL REVIEW D 71, 023524 (2005)
Effect of inhomogeneities on the expansion rate of the universe
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While the expansion rate of a homogeneous isotropic universe is simply proportional to the square-root
of the energy density, the expansion rate of an inhomogeneous universe also depends on the nature of the
density inhomogeneities. In this paper we calculate to second order in perturbation variables the expansion
rate of an inhomogeneous universe and demonstrate corrections to the evolution of the expansion rate.
While we find that the mean correction is small, the variance of the correction on the scale of the Hubble
radius is sensitive to the physical significance of the unknown spectrum of density perturbations beyond
the Hubble radius.
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I. INTRODUCTION

There is no more fundamental physical quantity in cos-
mology than the expansion rate of the universe. In recent
years the present value of the expansion rate, Hubble’s
constant, has been measured with increasing accuracy
[1]. With the exploration of the universe at redshifts of
order unity, we now have information about the time evo-
lution of the expansion rate [2]. A most surprising result is
that the time evolution of the expansion rate does not seem
to be described by a matter-dominated Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) cosmological model.
The usual explanation for the discrepancy is that there is a
new component of the energy density of the universe,
known as dark energy, that determines the recent evolution
of the expansion rate. Of course all indications for dark
energy are indirect; they all involve some form of the time
evolution of the expansion rate.

Since the expansion rate of the universe is of such
fundamental importance, we must understand any possible
effects that would result in an expansion rate different from
the FLRW prediction. In this paper we study the change in
the expansion rate due to perturbations of a homogeneous,
isotropic, FLRW model. In particular, we perform a
second-order calculation of the effect of inhomogeneities
on the expansion rate. We only consider modifications to
the expansion rate of a matter-dominated universe,
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although our results can be extended to a universe contain-
ing a mixture of matter and a cosmological constant. We
find that the mean corrections are a few parts in 105.

The expansion rate of a perturbed FLRW cosmology has
been discussed in many works (although we believe ours is
the first complete second-order calculation). Hui and
Seljak [3] estimated the order of magnitude of the effect
by considering a representative second-order term. They
arrived at the correct mean order of magnitude of the
result. Some recent works [4,5] suggested that small-scale
contributions could give a large correction, producing an
apparent accelerated expansion of the universe. In particu-
lar, Räsänen [5] suggested that due to ultraviolet sensitiv-
ity, one of the second-order terms could give large
corrections depending on boundary conditions. As we
will discuss in the conclusions, we find that if one employs
the correct averaging procedure the result (at least for the
terms we could compute exactly using the second-order
formalism) is well behaved in the ultraviolet and the term
identified by Räsänen does not result in a large correction.

In addition to calculating the mean value of the expan-
sion rate, we calculate the variance about the mean value.
In calculating the variance we uncover an interesting in-
frared effect. At second order the expansion rate has a term
proportional to ’r2’, where ’�x� is the peculiar gravita-
tional potential, related to the density perturbations
through the cosmological Poisson equation. If inflation is
the origin of perturbations, then ’ should be a Gaussian
random variable with zero mean. However, if the perturba-
tion spectrum on super-Hubble-radius scales is no bluer
than a Harrison-Zel’dovich spectrum, then the variance of
-1  2005 The American Physical Society
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’ formally has an infrared singularity.1 Now if the value of
’ in our local Hubble volume is sufficiently large to
modify the expansion rate, our perturbative expansion
fails. Nevertheless, our results suggest that if the super-
Hubble modes of ’ have physical significance, then a
nonperturbative extension of our calculation could yield
a most important modification to the Friedmann equation.
One might even speculate that a complete treatment of the
effect could explain the observed time dependence of the
expansion rate on its own and obviate the need for the dark-
energy assumption. Since that conjecture is beyond the
perturbative calculation of this paper, we will postpone
discussion of this point to a subsequent communication [6].

In the next section we discuss the general perturbative
expansion. In Sec. III we calculate the corrections to the
expansion rate in terms of metric fluctuations, and then
express the results in terms of the density perturbation
spectrum. In Sec. IV we present the numerical results.
We then conclude, followed by two technical appendices.
II. THE GENERAL FORMALISM

In this section we describe how to treat the average
properties of a perturbed universe up to second order in
the metric variables, including the effect of the inhomoge-
neous gravitational field on the homogeneous background
field. We then discuss the proper definition of the average
expansion rate and express the effect of inhomogeneities to
second order as averages of density perturbations.

By ‘‘average,’’ we mean the average over a spatial
hypersurface at a given time. Clearly an average defined
in this way depends on the chosen coordinate system, i.e.,
the gauge.

We will consider a universe filled only by irrotational
dust and choose the coordinates of an observer at rest with
the dust (i.e., comoving coordinates), and with the same
time coordinate for every point of the spatial hypersurface
(i.e., synchronous coordinates). This system of coordinates
can be chosen if the universe is filled by a single pressure-
less component. Since the pressure vanishes, the only force
acting on the particles is gravity, and the comoving world
lines coincide with geodesics. (See Ref. [7] for a full
discussion of this point.)

We will call � the (conformal) time in this gauge, and xi

the spatial coordinates, so that the metric has the form
ds2 � a2�����d�2 � 	ij��; x
i�dxidxj	: (1)
We will perform the averages on constant-� spatial
hypersurfaces.
1Presumably this infrared singularity is cut off because infla-
tion did not last for an infinite period of time.
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A. First order

The goal of this paper is a second-order calculation, but
before embarking, let us recall the familiar linearized first-
order result. The energy-momentum tensor and metric are
expanded to first order as

T�� � T�0�
�� � T�1�

��; (2a)

g�� � g�0��� � g�1���; (2b)

where the superscript �r� denotes the r-th-order perturba-
tion. By definition T�0�

�� and g�0��� are homogeneous and
isotropic.

In the synchronous gauge, to first order the metric may
be written in terms of a set of perturbation variables con-
sisting of two scalars ( �1�; ��1�), a vector (��1�

i ), and a
tensor (��1�

ij ). The vector ��1�
i is transverse (@i��1�

i � 0)

and the tensor ��1�
ij is symmetric, transverse, and traceless

(��1�
ij � ��1�

ji , @i��1�
ij � 0, ��1�i

i � 0). In terms of these var-
iables the metric is

	ij � �1� 2 �1���ij �Dij��1� � @i�
�1�
j � @j�

�1�
i � ��1�

ij ;

(3)

where Dij � @i@j �
1
3r

2�ij.
The metric perturbations  �1� and ��1� may be expressed

in terms of the peculiar gravitational potential ’�x�, which
is related to ��1�, the first-order density perturbation, by the
Poisson equation,

r2’ �
�2

2
a2��0���1�: (4)

Ignoring metric perturbations that decay in time, for a
matter-dominated universe  �1� and ��1� are given by (see
Ref. [8])2

 �1��x; �� �
5

3
’�x� �

�2

18
r2’�x�; (5a)

��1��x; �� � �1
3�

2’�x�: (5b)

To first order we will neglect vector modes, as they do not
arise in conventional perturbation-generation mechanisms
such as inflation. We will also assume the tensor mode
amplitude is small.

In calculating spatial averages we will also require
����
	

p
,

where 	 is the determinant of the spatial metric. To first
order [8],

����
	

p
� 1�

1

2
	�1��x; �� � 1� 3 �1��x; ��

� 1� 5’�x� �
�2

6
r2’�x�: (6)
2The perturbation variable � in Ref. [8] corresponds to our
variable  , and vice versa.
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Whether calculating to first order or second order, when
calculating the spatial average h� � �i of a quantity O��; xi�
one must fix a system of coordinates in which to express
O��; xi�, and then integrate with the proper integration
measure over d3x at fixed �. For all orders we adopt the
definition3

hOi��� �

R
d3x

����������������
	��; xi�

p
O��; xi�R

d3x
����������������
	��; xi�

p ; (7)

where the domain of integration is some large volume. If
O�0� is a homogeneous quantity (i.e., it does not depend on
xi, but only on �), then simply hO�0�i � O�0�. In the first-
order calculation, if O�1� is already a first-order quantity we
may set 	 � 1, and hO�1�i becomes

hO�1�i �

R
d3xO�1���; xi�R

d3x
: (8)

To first order, the Einstein equations are

G�0�
�� �G�1�

�� � �2�T�0�
�� � T�1�

���; (9)

which yield upon averaging the 00 component

G�0�
00 � �2hT00i � hG�1�

00 i: (10)

Here we see that ��2hG�1�
00 i may be interpreted as an extra

component to the stress-energy tensor.4

For the unperturbed FLRW cosmology, the expansion
rate a0=a2 is found from the 0� 0 component of the
Einstein equations. For the first-order perturbed FLRW
model

3
�
a0

a2

�
2
� �2h�i � a�2hG�1�

00 i; (11)

where � � ��0� � ��1� � a�2T00. This is the basic point.
In a perturbed FLRW cosmology, _a=a � a0=a2 is not����������������������
�2h��0�i=3

q
.5 However, one must be careful to find the

true variables that describe the evolution of the averaged
background. It is not clear that the quantity a0=a2 describes
the physical Hubble flow. The correct quantity to describe
the Hubble flow may be found from the evolution of h�i.

We know that for a homogeneous isotropic universe
there are two independent equations that govern the dy-
namics of the expansion. So we have to find the two
independent equations that describe the evolution of aver-
aged physical quantities such as like h�i. For the unper-
3Note that this definition is appropriate for scalar quantities. It
will also be used to average G00 which is a scalar under the
residual gauge freedom.

4This effect is sometimes incorrectly described as a ‘‘back-
reaction.’’ Technically, it is not a backreaction; while the in-
homogeneities modify the expansion rate of the universe, they
are not produced by the expansion of the universe.

5Here the overdot stands for d=dt, where t is related to � by
ad� � dt.
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turbed model we may augment the 0� 0 equation with the
continuity equation, D�T

�0 � 0. This gives for a perfect
pressureless fluid (dust)

1

a
�0 � _� � ���; (12)

where � � D�u
� and u� is the fluid four velocity.

Equation (12) is true to all orders. For an unperturbed
FLRW universe with scale factor a, this immediately gives
�0=� � �3a0=a, which results in � / a�3.

For the perturbed model, we want to expand Eq. (12) to
first order and then average it. This will give us the effec-
tive scale factor for the dilution of the matter density. In
addition to the expansion of �, we expand � as

� � ��0� � ��1�; (13)

and obtain

1

a
h��0�0 � ��1�0i � �h���0� � ��1�����0� � ��1��i: (14)

Using the fact that h��1�0i � h��1�i0 we are left with

1

a

h�i0

h�i
� �h�i: (15)

This tells us that in a first-order perturbed universe the
average matter density is diluted with expansion according
to h�i�1dh�i=dt � �h�i, which in general is not equiva-
lent to h�i�1dh�i=dt � �3 _a=a.

An alternative way to express the result is to define a new
scale factor, aV , such that h�i / a�3

V . It is clear that aV
must be defined by

_aV
aV

�
1

3
h�i: (16)

And so the true scale factor is aV and not a, at least for the
dilution of matter (see, e.g., [9]).

The physical quantity of interest is h�i. It is given by

h�i � ��0� � h��1�i � 3
a0

a2
� h��1�i: (17)

We will define a ��, and express � as

h�i � 3

������������
�2h�i
3

s
� h��i � 3H

�
1�

h��i
3H

�
: (18)

Two important notational points: We have defined H ������������������
�2h�i=3

p
(not as a0=a2); and we have defined h��i as the

difference between h�i and 3H (not as the difference
between h�i and ��0�).

To calculate h��i=3H, we can express Eq. (11) in the
form

a0

a2
�

�
�2h�i
3

�
hG�1�

00 i

3a2

�
1=2

’ H
�
1�

hG�1�
00 i

6a2H2

�
; (19)
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where of course the second equality holds if the corrections
are small. Combining Eqs. (18) and (19), we find

h��i
3H

�
h��1�i
3H

�
hG�1�

00 i

6a2H2 : (20)

It will turn out that in the first-order calculation g�1��� will
appear only as a spatial gradient in the final expression for
h��i. This means that the physical result is insensitive to
the choice of the normalization of hg�1���i, since we could
always add a constant to g�1��� to make hg�1���i anything we
please. The cancellation of the nongradient first-order
terms in Eq. (20) seems accidental, but in Appendix A
we derive an expression for h��i that at first order only
contains spatial derivatives of g�1���, which do not change if
we shift g�1��� by a constant (or even a time-dependent
renormalization).

B. Second order

The spatial metric 	ij is expanded up to second order
(neglecting first-order vector and tensor perturbations) as6

	ij � �1� 2 �1� �  �2���ij �Dij���1� � 1
2�

�2��

� 1
2�@i�

�2�
j � @j�

�2�
i � ��2�

ij �: (21)

The functions  �r�, ��r�, ��r�
i , and ��r�

ij represent the rth-
order perturbation of the metric. Vector and tensor modes
have been included here at second order as they are dy-
namically generated by the nonlinear evolution of purely
scalar perturbations [8].

It will turn out that  �2��x; �� is the only second-order
term for which we will require the explicit form. For a
matter-dominated universe the metric perturbation
 �2��x; �� is obtained similarly to Ref. [8]

 �2��x; �� � �
50

9
’2 �

5�2

54
’;k’;k

�
�4

252

�
�r2’�2 �

10

3
’;ki’;ki

	
: (22)

The first term arises from a primordial epoch of inflation
and can be computed as follows. There exists a second-
order extension of the well-known gauge-invariant variable
! , the curvature perturbation on uniform density hyper-
surfaces. In terms of H � a0=a, to first order it is given by
! �1� �  �1� �H��1��=�0. To second order, ! � ! �1��
�1=2�! �2�, where ! �2� remains constant on superhorizon
scales in the case in which only adiabatic perturbations
are present. In standard single-field inflation, ! �2� is gen-
erated during inflation and its value is given by ! �2� ’
�2�! �1��2 [10,11]. Since in the synchronous gauge and on
superhorizon scales ! �1� ’  �1� � 5’=3 and ! �2� ’  �2�,
6From now on spatial indices will be raised and lowered by the
background metric �ij.
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one readily concludes that the primordial contribution to
the second-order metric perturbation  �2� is given by the
constant term �50’2=9 and it also propagates to the co-
efficients of the term proportional to �2.

In the second-order calculation care must be taken in
defining the spatial average. Again, if O is a homogeneous
quantity, then simply hO�0�i � O�0�. If O is already a
second-order quantity, then we can take 	 � 1, both in
the numerator and in the denominator. But in the second-
order calculation of hO�1�i we must remember to include����
	

p
. Using Eq. (6),

hO�1�i �

R
d3x

����������������
	��; xi�

p
O�1���; xi�R

d3x
����������������
	��; xi�

p
�

R
d3x�1� 3 �1��O�1���; xi�R

d3x�1� 3 �1��
;

�

R
d3xO�1� � 3

R
d3x �1�O�1�R

d3x� 3
R
d3x �1�

� hO�1�i1 � 3h �1�O�1�i � 3h �1�i1hO
�1�i1; (23)

where we have introduced the notation h� � �i1 for a first-
order term to denote the spatial average with the factor����
	

p
� 1, i.e., hO�1�i1��� �

R
d3xO�1���; xi�=

R
d3x.

So the correct second-order averaging procedure gives

hO�0�i � O�0�; (24a)

hO�1�i � hO�1�i1 � 3h �1�O�1�i � 3h �1�i1hO
�1�i1; (24b)

hO�2�i �

R
d3xO�2���; xi�R

d3x
: (24c)

As an illustration of the subtleties in averaging, if at first
order hg�1���i1 � 0, where the first-order averaging prescrip-
tion is defined in Eq. (8), at second order the averaging
prescription for a first-order quantity is defined by
Eq. (24b), and hg�1���i need not vanish.

Now we perform a second-order expansion. We first
expand the energy-momentum tensor and the metric as

T�� � T�0�
�� � T�1�

�� � T�2�
��; (25a)

g�� � g�0��� � g�1��� � g�2���; (25b)

where again the superscript �r� represents the rth-order
perturbation. Again we will take T�0�

�� and g�0��� to be homo-
geneous and isotropic, so T�0�

�� � hT�0�
��i and g�0��� � hg�0���i.

Note that this is not equivalent to the statement that T�0�
�� �

hT��i and g�0��� � hg��i.
Expanding the Einstein tensor G�� to second order

yields several types of terms. The first type are the
zeroth-order terms, denoted G�0�

��, which only involve
g�0���. G�0�

�� will be homogeneous since g�0��� is homogeneous
by definition. Then there are first-order terms, G�1�

��, which
-4
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involve a single power of g�1���, possibly combined with
g�0���. There are two types of second-order terms. The first
type, denoted byG�11�

�� , involves squares of g�1���. The second
type of second-order terms, denoted G�2�

��, involves g�2���.
Now we consider the Einstein equations

G�0�
�� �G�1�

�� �G�11�
�� �G�2�

�� � �2�T�0�
�� � T�1�

�� � T�2�
���:

(26)

We proceed by averaging Eq. (26). This yields

G�0�
00 � �2hT00i � hG�1�

00 �G�11�
00 �G�2�

00 i: (27)

From Eq. (27) we see that now ��2hG�1�
00 �G�11�

00 �G�2�
00 i

may be interpreted as an extra component to the stress-
energy tensor. To second order, the 0� 0 component of the
perturbed FLRW model gives

3
�
a0

a2

�
2
� �2h�i � a�2hG�1�

00 �G�11�
00 �G�2�

00 i: (28)

Again we see that _a=a � a0=a2 is not �2��0�=3.
Now let us consider the second-order expression for the

evolution of h�i. We again use the continuity equation,
Eq. (12), and expand � and � as

� � ��0� � ��1� � ��2�;

� � ��0� � ��1� � ��11� � ��2�:
(29)

The result is a bit more complicated than the first-order
result:

1

a
h��0�0 � ��1�0 � ��2�0i � �h���0� � ��1� � ��11� � ��2��

� ���0� � ��1� � ��2��i: (30)

Using the fact that h��1�0i � h��1�i0 � 3h��1�i1 �

h �1�0i1 � 3h �1�0��1�i, the left-hand side of Eq. (30) be-
comes

1

a
h��0�0 � ��1�0 � ��2�0i �

1

a
h�i0 �

3

a
h �1�0i1h�

�1�i1

�
3

a
h �1�0��1�i: (31)

We may also express the right-hand side of Eq. (30) as

�h���0� � ��1� � ��11� � ��2�����0� � ��1� � ��2��i

� �h�ih�i � h��1�i1h�
�1�i1 � h��1���1�i: (32)

Equating Eqs. (31) and (32) we obtain

1

a
h�i0 �

3

a
h �1�0i1h��1�i1 �

3

a
h �1�0��1�i

� �h�ih�i � h��1�i1h��1�i1 � h��1���1�i: (33)

Since to first order a simple calculation yields ��1� �
�3 �1�0=a, we are left with
023524
1

a

h�i0

h�i
� �h�i: (34)

This tells us that as in a first-order perturbed universe, in a
second-order perturbed universe the average matter density
is diluted with expansion according to h�i�1dh�i=dt �
�h�i, which in general is not equivalent to
h�i�1dh�i=dt � �3 _a=a. Note that it was crucial to define
the averages with the

����
	

p
factor; otherwise we would not

have discovered the right quantity to describe the scaling of
h�i.

Again, the physical quantity of interest is h�i, given by

h�i � ��0� � h��1�i � h��11�i � h��2�i

� 3
a0

a2
� h��1�i � h��11�i � h��2�i: (35)

We emphasize again that H �
�����������������
�2h�i=3

p
(and not a0=a2).

The goal of this paper is to calculate h��i=3H. To do so,
we can express Eq. (28) in the form

a0

a2
�

�
�2h�i
3

�
hG�1�

00 �G�11�
00 �G�2�

00 i

3a2

�
1=2

’ H
�
1�

hG�1�
00 �G�11�

00 �G�2�
00 i

6a2H2 �
hG�1�

00 i
2

72a4H4

�
; (36)

where of course the second equality holds if the corrections
are small. Using Eq. (36), we find

h��i
3H

�
h��1� � ��11� � ��2�i

3H
�

hG�1�
00 �G�11�

00 �G�2�
00 i

6a2H2

�
hG�1�

00 i
2

72a4H4 : (37)

It will turn out that g�2��� will appear only as a spatial
gradient in the final expression for h��i. This means that
now the physical result is insensitive to the choice of the
normalization of hg�2���i, since we could always add a term
that is spatially constant. The cancellation of the nongra-
dient second-order terms in Eq. (37) seems accidental, but
again, in Appendix A we derive an expression for h��i that
explicitly only contains spatial derivatives of g�2���, which
do not change if we shift g�2��� by a term that is spatially
constant (or even a time-dependent normalization).

III. COMPUTATION OF h��i=3H IN THE
SYNCHRONOUS GAUGE

The relevant quantity which we want to calculate is
h��i=3H. The simplest way to proceed is to perform the
computation directly in the synchronous gauge. The syn-
chronous coordinates are more physical for our purposes.
If the calculation is performed in the Poisson gauge it is
necessary to perform a complex calculation (as we do in
Appendix B) to express the result in synchronous coordi-
nates (see also Refs. [5,12]).
-5
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Moreover, in general for second-order calculations, the
synchronous gauge turns out to be very convenient, since
here the scalar perturbations do not have nonlocal terms
that appear in other gauges such as the Poisson gauge.
Also, for matter u� in this gauge takes the trivial form
u� � a�1����1; ~0�, so the only terms that have to be com-
puted are the Christoffel symbols in the covariant deriva-
tive
023524
� � D�u� � @�u� � 
#�#u� � 3
a0

a2
�
�
0

00 � �
i0i
a

:

(38)

Moreover, in the synchronous gauge, to second order
�
00

0 � 0 [11]. Finally, the computation of the perturbation
of �with respect to its background value consists of finding
just the trace of 
i0j. From [11],
h��1� � ��11� � ��2�i
3H

�
1

3H
h�
i0ii �

1

3Ha
h��1�
i0i � ��2�
i0ii;

�
1

aH



� �1�0 �

1

2
 �2�0 � 2 �1� �1�0 �

1

18
r2��1�r2��1�0 �

1

6
��1�;kj��1�0

;jk

�
;

�
1

a2H2



�
2

9
r2’�

20

27
’r2’�

5

27
’;i’;i �

�2

63
�r2’�2 �

4�2

189
’;ij’;ij

�
: (39)

In the last equation we expressed the result in terms of the initial perturbation ’, using the time evolution of the relevant
perturbation variables in the synchronous gauge given in Eqs. (5) and (22).

The simplest way to findG00 is to realize that a�2�G�1�
00 �G�11�

00 �G�2�
00 � � �2���1� � ��2��, and use the explicit solutions

for ��1� and ��2� from Ref. [8], but using for  �2� the expression augmented with the ’2 as in Eq. (22). In the matter-
dominated universe,

�
hG�1�

00 �G�11�
00 �G�2�

00 i

6a2H2 �
1

a2H2



�

1

3
r2’�

10

27
’r2’�

55

54
’;i’;i �

5�2

126
�r2’�2 �

�2

63
’;ij’;ij

�
;

�
hG�1�

00 i
2

72a4H4 � �
1

a2H2

�2

72
hr2’ihr2’i:

(40)
The value of ��=3H is found by summing Eqs. (39) and
(40).

We must now perform the appropriate spatial average. In
�� there is only one first-order term; the rest of the terms
are second order. The first-order term must be averaged
using the procedure of Eq. (23), while the other terms are
averaged using

����
	

p
� 1. The result is

h��i
3H

�
1

a2H2

�
�

5

9
hr2’i1 �

5

3

�
h’r2’i �

13

18
h’;i’

;ii

�

�
�2

27
�h�r2’�2i � h’;ij’;iji	 �

25

9
h’i1hr2’i1

�
23�2

216
hr2’i1hr2’i1



: (41)

A. Evaluation of h��i in terms of the matter power
spectrum

We now proceed to express the averages in terms of the
matter power spectrum. The procedure is to fix a spherical
domain of radius R with volume V�R�. From Eq. (7) and
the definition of h� � �i1, all of the averages in Eq. (41)
involve integrals of the form

h� � �i �
1

V�R�

Z
V�R�

�� � ��d3x: (42)
For calculational convenience we will employ a Gaussian
window function and assume V�R� is a spherically
symmetric volume with volume element dV �

4%r2 exp��r2=2R2�dr and volume V�R� � �2%�3=2R3.
The Fourier transform of the window functions is
W�kR� � V�1�R�
Z
d3xe�r

2=2R2
exp�i ~k � ~x� � e�k

2R2=2:

(43)
Of course as kR! 0, W�kR� ! 1.
We wish to evaluate the typical expected value of �

averaged over this sphere. By ‘‘typical expected value’’
we mean the ensemble average. The metric fluctuation ’ is
treated as a Gaussian variable with zero mean (of which we
know the N-point correlation functions) that takes random
values over different ‘‘realizations’’ of volumes V�R�. In
other words, we calculate the typical value of a quantity for
a region of radius R as the statistical mean over many
different similar regions. We will indicate this statistical
average with a bar: h� � �i.

We will express ’ and its derivatives in terms of a
Fourier integral, so
-6
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’ �
Z d3k

�2%�3
’~ke

i ~k� ~x; ’;i �
Z d3k

�2%�3
iki’ ~ke

i ~k� ~x;

r2’ � �
Z d3k

�2%�3
k2’~ke

i ~k� ~x; etc:
(44)

The Fourier components ’~k satisfy

’~k � 0; (45a)

’~k1
’~k2

� �2%�3��3�� ~k1 � ~k2�P’�k1�; (45b)

’~k1
’~k2

’~k3
’~k4

� �2%�6f��3�� ~k1 � ~k2���3�� ~k3 � ~k4�

� P’�k1�P’�k3� � ���3�� ~k1 � ~k3�

� ��3�� ~k2 � ~k4� � ��3�� ~k1 � ~k4�

� ��3�� ~k2 � ~k3�	P’�k1�P’�k2�g; (45c)

where P’�k� � j’~kj
2. From Eq. (4) we can express P’�k�

in terms of the matter power spectrum as

P’�k� �
9%2

2
a4H4 �

2�k; a�

k7
; (46)

where �2�k; a� is the (dimensionless) power spectrum of
the matter density fluctuations.

Let us first consider h’i1 and hr2’i1. Clearly from
Eq. (45a), h’i1 � 0 and hr2’i1 � 0. However this does
not imply that h’i1 � 0 or hr2’i1 � 0 over any individual
volume of radius R. The question is the magnitude of
typical departures from the mean values, which corre-
sponds to the statistical variance of our quantities. As we
will show, it is intuitively clear that if the radius R is big
enough, this variance will go to zero. So the effect of
variance could be important. We will return to the calcu-
lation of the variances of the different terms after complet-
ing the calculation of the mean values.

Next, consider h’r2’i. Passing to Fourier space, we
have

h’r2’i � �
Z
V�R�

d3x
V�R�

d3k1
�2%�3

d3k2
�2%�3

�
k21 � k22

2

�
’~k1

’~k2

� exp�i� ~k1 � ~k2� � ~x	;

� �
Z d3k1

�2%�3
d3k2
�2%�3

�
k21 � k22

2

�
’~k1

’~k2

�W�j ~k1 � ~k2jR�: (47)

Making use of Eq. (45b), we find

h’r2’i � �
Z d3k

�2%�3
k2P’�k�: (48)

EFFECT OF INHOMOGENEITIES ON THE EXPANSION . . .
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Using Eq. (46), we can express h’r2’i in its final form. In
the same manner we find the means for the other terms.
The result is

h’i1 � 0; (49a)

hr2’i1 � 0; (49b)

h’r2’i � �
9

4
a4H4

Z 1

0

dk

k3
�2�k; a�; (49c)

h’;i’
;ii � �

9

4
a4H4

Z 1

0

dk

k3
�2�k; a�; (49d)

h�r2’�2i � �
9

4
a4H4

Z 1

0

dk
k
�2�k; a�; (49e)

h’;ij’;iji � �
9

4
a4H4

Z 1

0

dk
k
�2�k; a�; (49f)

h’i1hr2’i1 � �
9

4
a4H4

Z 1

0

dk

k3
�2�k; a�W2�kR�; (49g)

hr2’i1hr
2’i1 � �

9

4
a4H4

Z 1

0

dk
k
�2�k; a�W2�kR�: (49h)

Of course in the limit R! 1, Eqs. (49g) and (49h) vanish.
Therefore, the entire second-order calculation gives

h��i
3H

� �
25

24
a2H2

Z 1

0

dk

k3
�2�k; a�

�
25

4
a2H2

Z 1

0

dk

k3
�2�k; a�W2�kR�

�
23

96

Z 1

0

dk
k
�2�k; a�W2�kR�; (50)

where we have used � � 2=aH appropriate for a matter-
dominated universe. We will give numerical results in the
next section.

Now for the variances of selected terms. The variance is
defined as

Var�h� � �i	 � �h� � �i � h� � �i�2: (51)

For instance,

Var�h’i1	 �
9

4
a4H4

Z 1

0

dk

k5
�2�k; a�W2�kR�; (52a)

Var�hr2’i1	 �
9

4
a4H4

Z 1

0

dk
k
�2�k; a�W2�kR�: (52b)

The variances of other terms are more complicated, but
straightforward to derive. For instance,
Var
�
h’r2’i �

13

18
h’;i’;ii

	
�

1

�2%�6
Z
d3k1d3k2

1

2

�
k21 � k22 �

13

9
~k1 � ~k2

	
2
W2�j ~k1 � ~k2jR�P’�k1�P’�k2�: (53)

The angular integrals can be expressed in terms of a filter function, defined in general as
-7
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J�l��k1; k2; R� �
Z 1

�1
d��lW2�

��������������������������������������
k21 � k22 � 2k1k2�

q
R�: (54)

For a Gaussian window function the filter expression can be expressed in terms of incomplete 
 functions as

J�l��k1; k2; R� �
Z 1

�1
d��le��k21�k

2
2�2�k1k2�R2

;

�
exp���k21 � k22�R

2	�
�l� 1;�2R2k1k2� � 
�l� 1; 2R2k1k2�	

2l�1R2�l�1�k1
l�1k2

l�1
: (55)

We will make use of the fact that for k1R! 0 and k2R! 0, J�0��k1; k2; R� ! 2.
Using the Gaussian filter, Eq. (53) becomes

Var
�
h’r2’i �

13

18
h’;i’;ii

	
�

�
9

8
a4H4

�
2 Z 1

0

dk1
k31

�2�k1; a�
Z 1

0

dk2
k32

�2�k2; a�
��
k21
k22

�
k22
k21

� 2
�
J�0��k1; k2; R�

�
26

9

�
k1
k2

�
k2
k1

�
J�1��k1; k2; R� �

169

81
J�2��k1; k2; R�

	
: (56)

It is interesting that the integral is not well behaved in the infrared. As discussed in the next section, for a Harrison-
Zel’dovich spectrum �2�k� / k4, so the term proportional to J�0� has an infrared divergence:

Var�h’r2’i	1 �

�
9

8
a4H4

�
2 Z 1

0

dk1
k31

�2�k1; a�
Z 1

0

dk2
k32

�2�k2; a�
�
k21
k22

�
k22
k21

�
J�0��k1; k2; R�;

�

�
9

8
a4H4

�
2
4
Z dk2

k2
�2�k2; a�

Z dk1
k51

�2�k1; a�: (57)

We will discuss the importance of this term below.
Now we turn to the variances of h’i1hr2’i1 and hr2’ihr2’i. They are given by

Var�h’i1hr
2’i1	 �

�
9

4
a4H4

�
2
�Z dk1

k1
�2�k1; a�W

2�k1R�
Z dk2

k52
�2�k2; a�W

2�k2R� �
�Z dk

k3
�2�k; a�W2�kR�

	
2


; (58a)

Var�hr2’ihr2’i	 � 2
�
9

4
a4H4

�
2
�Z dk

k
�2�k; a�W2�kR�

	
2
: (58b)

Note that Eq. (58a) also has an infrared divergence

Var�h’i1hr2’i1	1 �

�
9

8
a4H4

�
2
4
Z dk2

k2
�2�k2; a�

Z dk1
k51

�2�k1; a�: (59)

Of course we will be interested in the variance of the total expression Eq. (41), not the individual terms. Of particular
interest is the cross term of the infrared-singular parts. This will be the only one for which we will include the cross terms.
The infrared-singular pieces appear in Eq. (41) proportional to h’r2’i � 3h’i1hr

2’i1. The infrared part of the variance
of this term is

Var�h’r2’i � 3h’i1hr
2’i1	1 �

�
9

4
a4H4

�
2
4
Z dk2

k2
�2�k2; a�

Z dk1
k51

�2�k1; a�: (60)

It is straightforward to obtain the variance for the second-order, four-derivative terms. (The sum of these terms has zero
mean.) It is given by

Var�h�r2’�2i � h’;ij’
;iji	 �

�
9

4
a4H4

�
2 Z 1

0

dk1
k1

�2�k1; a�
Z 1

0

dk2
k2

�2�k2; a��J
�0��k1; k2; R� � 2J�2��k1; k2; R�

� J�4��k1; k2; R�	: (61)
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FIG. 1 (color online). The present mean value, h��i=3H, in the
matter-dominated universe as a function of the ultraviolet cutoff
kMAX for various values of the shape factor 
.
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There is another potential contribution that will result in
contributions to the variance similar to the terms we have
found. Suppose we expand �� to third order in perturbation
theory. We can express �� in the general form

h��i � hA’�B’2 � C’3i; (62)

where A, B, and C are operators which contain deriva-
tives. Then the variance of �� will contains terms like
hA’i2, hB’2i2, and hA’ihC’3i. The first term is the
usual cosmic variance term; it is well behaved in the
infrared. The second term is singular in the infrared; it is
given in Eq. (60). The third term will be present, in
principle it also will have an infrared-singular part, and
its value requires a relativistic third-order perturbation
calculation. However there is no reason for the infrared-
singular part of the AC term to cancel exactly the
infrared-singular part of the B2 term.

Finally we remark on the ultraviolet behavior of the
corrections to the expansion rate. The second-order result
for the mean, Eq. (50), should be well behaved in the
ultraviolet. As discussed in the next section, in the linear
regime �2�k; a� increases logarithmically with k for a
Harrison-Zel’dovich spectrum, so the first term should be
well behaved in the ultraviolet. The ultraviolet behavior of
the last two terms are regulated by the filter function
W2�kR�. The contributions to the variance of the terms
we have calculated, Eqs. (52b), (56), (58), and (61), all
involve filter functions that regulate the ultraviolet behav-
ior. However, we expect there to be terms that do not
involve filter functions. For instance, if one performs the
relativistic third-order calculation, one expects to find con-
tributions to h��i from terms like h�r2’�3i. The variance
would then include evaluation of terms like hr2’ih�r2’�3i
(an example of the aforementioned AC terms). These
terms would include parts with a momentum integration
unregulated by a filter function. If there are third-order
terms with large numbers of derivatives bringing down
large powers of momentum, then the variance might be
sensitive to the ultraviolet behavior.

In the next section we show the numerical results for the
mean and variance of the corrections to the expansion rate.

IV. NUMERICAL RESULTS

In this section we present the numerical results for
h��i=3H for a matter-dominated universe. We will give
the mean values, as well as the variances.

For both the mean and the variances we express the
power spectrum �2�k; a� in terms of the transfer function
T2�k�. For a Harrison-Zel’dovich spectrum, the power
spectrum is

�2�k; a� � A2

�
k
aH

�
4
T2�k�; (63)

where A is the dimensionless amplitude, A � 1:9� 10�5.
We will discuss the implications of other spectra. For our
023524
purposes the bardeen, Bond, Kaiser Szalay (BBKS) trans-
fer function [13] will be adequate. The BBKS transfer
function may be expressed in terms of a dimensionless
parameter

q �
k


hMpc�1 ; (64)

where 
 is the shape factor, defined for a flat universe in
terms of the baryon fraction �B and the total value of �0 as

 � �0h exp���B �

���
2

p
h�B=�0�. In terms of q,

T�q� �
ln�1� 2:34q�

2:34q
�1� 3:89q� �16:1q�2 � �5:84q�3

� �6:71q�4	�1=4: (65)

Of course at small q, T2�q� ! 1, while at large q, T2�q� !
q�4ln2q.

Also, in all expressions we make use of the fact that in a
matter-dominated universe H2�a� � H2

0a
3
0=a

3, where a0 is
the present value of the scale factor.

Consider the mean, given by Eq. (50):

h��i
3H

� �
25

24

a
a0
A2

�
h Mpc�1

H0

�
2

2

Z 1

0
dqqT2�q�

�
25

4

a
a0
A2

�
h Mpc�1

H0

�
2

2

Z 1

0
dqqT2�q�W2�r
q�

�
23

96

�
a
a0

�
2
A2

�
h Mpc�1

H0

�
4

4

Z 1

0
dqq3T2�q�

�W2�r
q�; (66)

where r is the dimensionless size of the region, r �
R=h�1 Mpc. We will present results for R � H�1

0 (so r �
3000) and the last two terms are negligible. While we have
indicated the range of integration from q � 0 to q � 1, in
reality to employ Eq. (63) there is a cutoff on the maximum
value of the integral. The ultraviolet cutoff arises because
density perturbations become nonlinear. The mean value is
-9
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very insensitive to the ultraviolet cutoff. The integral for

the mean value receives most of the contribution in the decade between 10�1 � q � 1.

The result for the present mean value of h��i=3H is shown in Fig. 1 for various choices of 
. It scales as a=a0 �
1=�1� z�.

Now consider the variance about the mean value. First consider the variance of the linear term, Eq. (52b). This term
contributes to the variance in h��i=3H an amount

���������������������
Var�h��i	

p
3H

��������linear term
�

5

9

1

a2H2

��������������������������
Var�hr2’i1	

q
�

5

6

�Z 1

0

dk
k
�2�k�W2�kR�

	
1=2
: (67)

Defining a dimensionless wave number x � q
r, the term becomes���������������������
Var�h��i	

p
3H

��������linear term
�

5

6
A
�
h Mpc�1

H0

�
2 a
a0
r�2

�Z xMAX

0
dx x3T2�x=
r�e�x

2

	
1=2

’
a
a0

100

r2
�
r� 1�; (68)

where the last expression holds for xMAX � kMAXR� 1. The result is shown in Fig. 2. Because of the window function,
the results do not depend on kMAX, the ultraviolet cutoff (so long as it is greater than about k � 0:1h Mpc�1). The result is
also well behaved in the infrared. Of course as R! 1, the variance of the linear term approaches the mean of the linear
term, which is zero.

We can see comparing Fig. 1 and 2 that the variance in the linear term dominates the mean value out to distances of about
3� 103h�1 Mpc.

Next, consider the contribution to the variance of a typical second-order, four-derivative term, Eq. (61). This term
contributes to the variance in h��i=3H an amount

���������������������
Var�h��i	

p
3H

��������second order;k4
�

4

27

1

a4H4

������������������������������������������������������
Var�h�r2’�2i � h’;ij’

;iji	
q

: (69)

Again, with the same dimensionless variables���������������������
Var�h��i	

p
3H

��������second order;k4
�

1

3
A2

�
h Mpc�1

H0

�
4
�
a
a0

�
2
r�4

�Z xMAX

0
dx1

Z xMAX

0
dx2x

3
1x

3
2

� T2�x1=
r�T2�x2=
r�e
�x21e�x

2
2

Z 1

�1
d�e�2x1x2��1��2�2

	
1=2
: (70)

The results are also shown in Fig. 2. This term scales as r�4. The result is well behaved in the infrared and an infrared cutoff
does not need to be introduced.

Finally, consider the variance of a typical second-order two-derivative term, Eq. (56). As mentioned in the previous
section this term is not well behaved in the infrared. We first calculate the variance by introducing an infrared cutoff which
we will take to be the wave number of the present Hubble radius. The second-order k2 term contributes to the variance in
h��i=3H an amount

���������������������
Var�h��i	

p
3H

��������second order;k2
�

25

27

1

a2H2

���������������������������������������������������������
Var

�
h’r2’i �

13

18
h’;i’;ii

	s
: (71)

In terms of the dimensionless variables x and r, this term contributes to the variance an amount���������������������
Var�h��i	

p
3H

��������second order;k2
�

25

24
A2

�
h Mpc�1

H0

�
2 a
a0
r�2

�Z xMAX

xMIN

dx1
Z xMAX

xMIN

dx2T2�x1=
r�T2�x2=
r�e
�x21e�x

2
2

�
Z 1

�1
d�e�2x1x2�

�
x31
x2

�
x32
x1

� 2x1x2 �
26

9
x21��

26

9
x22��

169

81
x1x2�2

�	
1=2
: (72)

As a result of the infrared behavior, for this term we must introduce another parameter, xMIN � kMINR, as an infrared
cutoff. Its value is shown in Fig. 2 as a function of R. As expected, it has a r�2 behavior.

Now we turn to the infrared-singular part of the second-order two-derivative term. The contribution is

���������������������
Var�h��i	

p
3H

��������second order;k2
�

25

27

1

a2H2

��������������������������������������������������������
�h’r2’i � 3h’i1hr

2’i1	1
q

: (73)
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We will evaluate the integral by defining some x� � k�R such that xMIN � x� < 1. We will be interested in large values of
r, so if x� 1, then x=
r� 1, and T2�x=
r� can be set to unity. Using Eq. (60), this term may be written as���������������������

Var�h��i	
p

3H

��������second�order;k2
�

25

12
A2

�
h Mpc�1

H0

�
2 a
a0
r�2

�
x4� ln

k�
kMIN

	
1=2
: (74)

If we take k� � kH where kH � H � 3000�1h Mpc�1 is the Hubble wave number, then evaluating the term for r
corresponding to the Hubble radius we find���������������������

Var�h��i	
p

3H

��������second order;k2
�

25

24
A2 a
a0

�
ln
kH
kMIN

	
1=2

�
25

36
A
a
a0

��������������������
Var�h’i1	

q
: (75)
We started with a perturbative expansion, and for that
expansion to be valid requires ’< 1, so our perturbative
analysis will break down for

���������������������
Var�h��i	

p
=3H � 10�5.

Of course the total variance of h��i=3H includes cross
terms from the various contributions. However we have
seen that the linear term will dominate.
V. CONCLUSIONS

Our results are illustrated in Figs. 1 and 2. The mean
corrections to the expansion rate are a few parts in 105. If
the correct prescription for dealing with the infrared-
singular nature of Var�’	 is to employ a cutoff of the order
of the Hubble radius, then the variance about the mean is
small, and dominated by the first-order term. If, however,
the super-Hubble modes are physical, then the variance is
dominated by the infrared-singular part of the second-order
corrections. Restricting ourselves to Var�’	< 1 where the
perturbative calculation is valid, then the variance will be
small, of order 10�5.

In Ref. [5], Räsänen considered what amounts to the
variance associated with the second-order term propor-
FIG. 2 (color online). The present contribution to���������������������
Var�h��i	

p
=3H from the indicated terms in a matter-dominated

universe as a function of R, the volume sampled. The results are
for kMAX � 0:1 and 
 � 0:2. On the logarithmic scale, the
dependence on 
 and kmax is not noticeable. We emphasize the
point made in the text that the calculation for the second order,
two-derivative term has an infrared cutoff of the present Hubble
radius.
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tional to r2’r2’ and suggested that due to unknown
boundary conditions it may lead to a large contribution to
the expansion rate. We claim that when properly averaged,
this term is subdominant.

In closing, let us speculate that corrections to the expan-
sion rate will include a term like ’r2’ even when ’� 1.
Returning to the infrared-singular part of the second-order
variance, Eq. (75),

������������������������
Var�h��i	1

p
3H

��������second order;k2
� 3:76� 10�10 a

a0
ln
kH
kMIN

:

(76)
For the variance to be of order unity, the perturbation
spectrum would have to extend to a factor of exp�6�
1018� (1018:8 e-folds) times the present Hubble radius.

Rather than a Harrison-Zel’dovich spectrum, if we as-
sume a slightly red spectrum so that �2�k� / k4�2 with
0< 2� 1,7 then the logarithmic term in Eq. (76) is re-
placed by 2�1�kH=kmin�

2. Now this will give unit variance
if lnkH=kMIN � �43:3� ln2�=2. For instance, if n � 0:94
on super-Hubble-radius scales, then a variance of order
unity is obtained if the perturbation spectrum extends 676
e-folds beyond the Hubble radius. Since the present
Hubble radius corresponds to a scale that crossed the
Hubble radius about 60 e-folds before the end of inflation,
if inflation lasted more than 736 e-folds with a super-
Hubble-radius spectral index of n � 0:94, then the effect
of super-Hubble-radius perturbations would have a large
effect on the expansion rate of our Hubble volume.
Speculation about the significance of this result will follow
in a separate paper [6].
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8Actually, the other results we are aware of in the literature use
only the first-order metric.

9Also here, for our purposes the vector !�2�
i and the tensor ��2�

ij
will never enter in the computations.

KOLB, MATARRESE, NOTARI, AND RIOTTO PHYSICAL REVIEW D 71, 023524 (2005)
APPENDIX A: ON THE PRESCRIPTION FOR T�2�
��

AND g�2���

The aim of this appendix is to demonstrate that h�i does
not depend on the value of hg�2���i since second-order terms
will only enter as spatial derivatives. For the demonstra-
tion, we first introduce #ij, the extrinsic curvature of
constant-� hypersurfaces:

#ij �
1
2	

ik	0
kj: (A1)

In either the synchronous or comoving gauge one can see
that (see Ref. [8])

��1� � ��11� � ��2� �
#ii
a

�
#
a
: (A2)

One can now write the G0
0 term in a convenient form (see

Eq. (4.3) of [8])

G�1�
00 �G�11�

00 �G�2�
00 �

1

2

�
4
a0

a
# �3 R� #2 � #ij#

j
i

�
;

(A3)

where 3R is the intrinsic curvature of the three space with
metric 	ij. At second order 3R is

3R � 	�1�‘k
;‘k � 	�1�k;‘

k � 1
2�	

�2�‘k
;‘k � 	�2�k;‘

k �

� 	�1�jk�r2	�1�
jk � 	�1�‘

‘ � 2	�1�‘
j � � 	�1�‘k

;‘�	
�1�j
j

� 	�1�;j
jk � � 3

4	
�1�‘j

;k	
�1�;k
‘j � 1

2	
�1�‘j

;k	
�1�k
j

� 1
4	

�1�j;‘
j 	�1�k

k : (A4)

Using Eq. (A2), Eq. (A3) also can be written as

G�1�
00 �G�11�

00 �G�2�
00 � 1

2�4a
0���1� � ��11� � ��2�� � 3R�1�

� 3R�11� � 3R�2� � �#�1��2

� #�1�i
j#

�1�j
i	: (A5)

Recall now that in any of the definitions adopted,
Eq. (37) is always valid. So independent of hg�2���i,

h�i � 3H �
hG�1�

00 �G�11�
00 �G�2�

00 i

2a2H
� h��1�i � h��11�i

� h��2�i: (A6)

Using Eq. (A5), we obtain

h�i � 3H �
1

4a2H
�h3R�1� � 3R�11�i � h3R�2�i � h�#�1��2

� #�1�i
j #�1�j

i i	: (A7)

We note now that the only piece that depends on g�2��� is the
one contained in 3R�2�. And, as we can see from its explicit
expression

3R �2� � 1
2�	

�2�lk
;lk � 	�2�kk

;ll�; (A8)
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this is a spatial gradient, so independent on hg�2���i. From
this formula it is also clear that � has no term with zero
powers of k, since the spatial curvature 3R always involves
spatial derivatives (and the same is true for the h�#�1��2i �

h#�1�i
j#

�1�j
ii terms).

If one computes h�i using Eq. (A7), one obtains the same
result as Eq. (41), thus our results are independent of hg�2���i.
By the same argument, in a first-order calculation we could
add a constant to g�1���.
APPENDIX B: � IN THE POISSON GAUGE

In this appendix we repeat the calculation in the Poisson
gauge in order to check our results and compare with other
results in the literature for � in the that gauge.8 The Poisson
gauge is a second-order generalization of the longitudinal
(or Newtonian) gauge. Since this is a very involved way to
do the computation, and since it is only intended to be a
check, we do it only in a partial way by just computing the
corrections ��1� � ��11� � ��2� [see Eqs. (18) and (39)].
Furthermore we compute exactly the terms with two spatial
derivatives, while as for the four derivatives terms, we only
check that they have zero statistical mean (that is, we
disregard total spatial gradients).

The metric is given at second order in this gauge by9

ds2 � a2P�6�f��1� 2��1� ���2��d62 �!�2�
i dy

id6

� ��1� 2 �1� �  �2���ij �
1
2�

�2�
ij 	dy

idyjg: (B1)

Here ��2�
ij is a pure symmetric, transverse, traceless tensor

degree of freedom. We will denote the derivative with
respect to conformal time 6 as @6. We will also introduce
here a cosmic time z, linked to 6 through the relation dz �
ad6, and we will denote the derivative with respect to z
with a @z symbol. The spatial derivatives with respect to xi

will be denoted as before, with a simple @i or ;i symbol. The
derivatives with respect to yi instead will be explicitly
written as @=@yi or with the subscript @i

�y�. Recall also, as
is well known, that the i� i component of Einstein’s
equations (in the absence of anisotropic stress) imposes
��1� �  �1�, and moreover, the evolution equations in mat-
ter domination give

��1��z; yi� �  �1��z; yi� � ’�yi�: (B2)

The four velocity of the fluid u� here has a more involved
form
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u0 �
1

aP

�
1� ’�

3

2
’2 �

2

9H 2
P

@�y�i’@
i
�y�’�

��2�

2

�
;

(B3a)

ui �
1

aP

�
�

2

3H P
@i
�y�’�

v�2�i

2

�
; (B3b)

where H P � a�1
P @6aP. Here v�2�i is the second-order

contribution to the three velocity. We will need only its
divergence (which is obtained taking the divergence of the
0� i Einstein equation):

@�y�iv�2�i �
4

3H P

�
�@i

�y�’@�y�i’� ’r2
�y�’

�
2�@i�y�’r

2
�y�@�y�i’�

3H 2
P

�
2�r2

�y�’�
2

3H 2
P

�

�
2

3H P

�
r2

�y��
�2� �

r2
�y� 

�2�0

H

�
: (B4)

Now, taking these expressions and taking Christoffel sym-
bols from Ref. [11], we must compute

� � @�u
� � 
#�#u

� � @6u
0 � @�y�iu

i � 
#�#u
�: (B5)

This gives us

��z; yi� � 3HP � 3HP’�
9H’2

2
�

20@�y�i’@i�y�’

9a2PHP

�
3H��2�

2
�

3 _ �2�

2
� @�y�iu

�1�i � @�y�iu
�2�i:

(B6)

Here HP is defined as HP � a�1
P @zaP � a�2

P @6aP �

a�1
P H P. The piece coming from @�y�iu

i in Eq. (B5) con-
tains first order (@�y�iu�1�i) and second order (@�y�iu�2�i)
terms. The first-order term [see Eq. (B3b)] is equal to

@�y�iu�1�i � �
2

3a2PHP
r2

�y�’; (B7)

and it will be important in the next steps of the computa-
tion, since it will produce second-order quantities. The
term @�y�iu

�2�i [Eq. (B4)] is a spatial gradient of second-
order quantities. For the purposes of this appendix we have
to keep the first two pieces in Eq. (B4), and moreover we
have to consider also the two intrinsically second-order
terms ��2� and  �2�. Note also that, in their time evolution
they contain nonlocal quantities ($0 and %0 of Eqs. (6.8)
of Ref. [8]), i.e., they are defined through

r2
�y�$0 � %0 �

1
3@�y�i’@

i
�y�’;

r2
�y�%0 � �1

2��r
2
�y�’�

2 � @�y�j@�y�k’@
j
�y�@

k
�y�’	:

(B8)

So the spatial derivatives of these quantities will produce
not only spatial gradients, but also terms who do not have
zero statistical mean. In the end, we keep them in the
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calculation as

@iu�2�i � �
r2

�y��
�2�

3a2PHP
�

r2
�y�

_ �2�

3a2PH
2
P

�
2

3a2PHP
�@i�y�’@�y�i’� ’r2

�y�’� � � � � ; (B9)

where ‘‘� � �’’ indicates terms with four spatial gradients
(that we will omit).

So, the relevant expression for ��z; yi� is obtained by
Eqs. (B6), (B7), and (B9)

��z; yi� � 3HP � 3HP’�
9H’2

2
�

20@�y�i’@i�y�’

9a2PHP

�
2

3a2PHP
�@i

�y�’@�y�i’� ’r2
�y�’� �

3H��2�

2

�
3 _ �2�

2
�

2r2
�y�’

3a2PHP
�

r2
�y��

�2�

3a2PHP
�

r2
�y�

_ �2�

3a2PH
2
P

� � � � :

(B10)

This is the result in the Poisson gauge in coordinates �z; yi�.
Note that here there are terms which do not vanish in the
infrared limit, proportional to ’ and in ’2 (they will
disappear going back to the synchronous and comoving
coordinates, as noted in Ref. [12]).

In order to compare with the results already obtained in
the synchronous gauge, we have to express our quantity
��z; yi� as ��t; xi� and average it over a volume in coordi-
nates xi at constant � as in Sec. III. First, we have to change
time from z to t in all the quantities. This is relevant only
for the zeroth-order and first-order terms, and not for the
ones which are already second order. So the quantities in
which the time has to be changed are HP, aP�z�, and
’�z; yi�. The first two, aP�z� � �z=z0�2=3 and HP � 2=3z,
have to be expanded up to second order in �t, which is
defined by t � z� �t and expressed in terms of the scale
factor and the Hubble rate defined by a comoving observer:
a � �t=z0�2=3,H � 2=3t. Instead, for the variable ’�6; yi�,
’�6; yi� � ’��; xi� holds since @6’�6; yi� � 0. In order to
find the change of the time coordinate from z to t one
knows that u�@� � @t, and that @tt � 1. In this way one
obtains an iterative equation

�1� v�1�0 � v�2�0�
d
dz

�z� �t�1� � �t�2���

u�1�i@�y�i�z� �t�1�� � 1; (B11)

where u� � a�1
P ���0 � v�1� � v�2��. For zeroth, first, and

second order, the equation becomes
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1 �
dz
dz
; 0 � v�1�0 �

d
dz
�t�1�;

0 � v�2�0 � v�1�0
d
dz
�t�1� �

d
dz
�t�2� � u�1�i@�y�i�t�1�;

(B12)

which lead to

�t�1� � ’t; �t�2� � �
1

2
’2t�

4’;i’;i

45a2H
�

1

2

Z t
dt0��2�:

(B13)

Now using these equations, one can change the time in
Eq. (B10), obtaining

��t; yi� � 3H �
118’�y�;i’�y�;i

45a2H
�

3H��2�

2
�

3 _ �2�

2

�
9H2

R
� ��2�

4
� @�y�iui: (B14)

As said before, this transformation (i.e., passing to syn-
chronous time t) has eliminated the two terms in ’ and ’2

that do not vanish in the infrared. We wrote it in this form
in order to compare with a previous result in literature
(Eq. (10) of Ref. [5]). As we are going to show, we agree
with that result, but we added here the contribution of
intrinsic10 second-order terms ��2� and  �2�. This is crucial
if we want to recover the result obtained in Sec. III in the
other gauge. Here @�y�iui contains the terms

@�y�iu
i � �

2r2
�y�’

3a2H
�

2’r2
�y�’

9a2H
�

2

3a2H
�@i�y�’@�y�i’

� ’r2
�y�’� �

r2
�y��

�2�

3a2H
�

r2
�y�

_ �2�

3a2H2 � � � � :

(B15)

Note that after changing time, a new term (which is not a
spatial gradient) appears, namely �2’r2

�y�’=9a
2H.

Finally, one has to change also spatial variables from yi

to xi. The change of coordinates is found by imposing that
the metric g�� in the coordinates �t; xi� has g0i � 0. Using
the transformation given by Eq. (B13), one finds that to
first order the change in spatial coordinates is given by

xi � yi �
2

3

@i
�y�’

a2H
: (B16)

Since it is already first order, this change of coordinates is
irrelevant for quantities that are already second order.
Moreover, the only first-order term of Eq. (B14) is
@�y�iu

�1�i � �2r2
�y�’=3a

2H. Here, the change of spatial
coordinates in the argument of ’��; yi� is not relevant for
our purposes, since it produces only an extra term which is

KOLB, MATARRESE, NOTARI, AND RIOTTO
10Note however that what is ‘‘intrinsic’’ second order in a
gauge, can become first order times first order in another one.
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a four-derivative spatial gradient of something. But passing
from r2

�y� to r2 produces a (relevant) extra term with four
spatial derivatives,

�
2

3a2H
r2

�y�’ � �
2

3a2H
r2’�

4’;jk’;jk
9a4H3 : (B17)

In all the other terms we can safely put @�y� � @. After
doing this, the result is

��t; xi� � 3H�
2r2’

3a2H
�

8’r2’

9a2H
�

88’;i’;i
45a2H

�
4’;jk’;jk
9a4H3

�
3H��2�

2
�

3 _ �2�

2
�

9H2
R
t ��2�

4
�

r2��2�

3a2H

�
r2 _ �2�

3a2H2 � � � � : (B18)

Using Eqs. (6.8) of Ref. [8], together with Eqs. (B8) given
in the present section, one obtains for the time evolution of
the intrinsic second-order terms ��2� and  �2� the result

��t; xi� � 3H�
2r2’

3a2H
�

5’;i’;i
3a2H

�
40’r2’

9a2H
�

4’;jk’;jk
9a4H3

� � � � : (B19)

Now this is the first check we wanted to do. We can
compare with Eq. (39) and see that deriving by parts and
using aH � 2=�, they coincide (up to four-derivative total
spatial gradients).

An important observation here is that the presence of the
intrinsically second-order terms is necessary to obtain not
only the correct result, but even a consistent calculation. In
fact if one ignores them, i.e., ignores  �2� and ��2� in the
synchronous gauge and ignores��2� and  �2� in the Poisson
gauge, and compares the two results, one sees that they do
not coincide. In other words they are not really intrinsic
second order, since what appears as intrinsic second order
in one gauge, can appear as first order times first order in
another gauge.

At this point we may also average expression Eq. (B19)
over a volume d3x as we did in Sec. III. This has to be done
with the appropriate measure of integration, which is
d3x

����
	

p
, where 	 � det�gij�. Up to first order the spatial

metric is given by

gij �
@y#

@xi
@y:

@xj
~g#: � a2P

�
�ij�1� 2’� �

4

3a2H2 @i@j’
	

� a2
�
1�

4

3
’
��
�ij�1� 2’� �

4

3a2H2 @i@j’
	
;

(B20)

where ~g is the metric in the z; y coordinates, and where we
used the transformation of Eq. (B16). Using this metric, the
measure becomes

d3y
����
	

p
� d3ya3

�
1� 5’�

2

3a2H2 r
2’

	
; (B21)
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and this is the same as Eq. (6), and so the final result is the same.
Finally, we can check the computation of Ref. [5], which used only the first-order metric in this gauge. That is, we have

to put ��2� and  �2� to zero in Eq. (B18),
��t; xi� � 3H �
2r2’

3a2H
�

8’r2’

9a2H
�

88’;i’;i
45a2H

�
4’;jk’;jk
9a4H3 � � � � ;

� 3H �
2r2’

3a2H
�

128’;i’;i
45a2H

�
8@i�’@i’�

9a2H
�

4’;jk’;jk
9a4H3 � � � � ; (B22)
and average it with the measure of Eq. (B21). Doing so, we recover the result
h�i�t� � 3H �
22

45

h@i’@i’i

a2H
�

22

9

h@i�’@
i’�i

a2H
� � � � ; (B23)
as in Eq. (11) of Ref. [5].
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