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Astrophysical constraints on scalar field models

O. Bertolami* and J. Páramos†
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We use stellar structure dynamics arguments to extract bounds on the relevant parameters of two scalar
field models: the putative scalar field mediator of a fifth force with a Yukawa potential and the new
variable mass particle models. We also analyze the impact of a constant solar inbound acceleration, such
as the one reported by the Pioneer anomaly, on stellar astrophysics. We consider the polytropic gas model
to estimate the effect of these models on the hydrostatic equilibrium equation and fundamental quantities
such as the central temperature. The current bound on the solar luminosity is used to constrain the relevant
parameters of each model.
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I. INTRODUCTION

Scalar fields play a crucial role in particle physics and
cosmology. Indeed, in inflation, the potential of a scalar
field, the inflaton, acts as a dynamical vacuum energy that
allows for an elegant solution of the initial conditions
problem [1]. This prominent role of scalar fields is also
evident in models to explain the late time accelerated
expansion of the Universe in vacuum energy evolving
and quintessence models [2], as well as in the Chaplygin
gas dark energy/dark matter unification model [3]. Scalar
fields have also been proposed as dark matter candidates
[4]. Furthermore, it was recently proposed that a scalar
field can be also at the source of the anomalous accelera-
tion detected by the Pioneer spacecraft [5].

Scalar fields may also have astrophysical implications
as, for instance, the mediating boson of a hypothetical fifth
force, which should yield the measurable effects on celes-
tial bodies, besides the other known forces of nature.
Although the origin of these fields is rather speculative,
they can all be described by the Yukawa potential, written
here as VY�r� � Ae�mr=r, where A is the coupling strength
and m is the mass of the field, which sets the range of the
interaction, �Y � m�1.

Models leading to a Yukawa-type potential can be found
in widely distinct areas such as brane-world models,
scalar-tensor theories of gravity, and in the study of topo-
logical defects. In brane-world models, one considers our
Universe as a 3-dimensional world sheet embedded in a
higher dimensional bulk space [6]. Symmetry considera-
tions about the brane and its topological properties can be
implemented to constrain the evolution of matter on the
brane and gravity on the brane and in the bulk.

Brane-world models are rather trendy in cosmology and
allow, for instance, for a solution for the hierarchy prob-
lem, whether the typical mass scale of the bulk is compa-
rable with the electroweak breaking scale, MEW � 1 TeV.
As a result, a tower of Kaluza-Klein (KK) massive tenso-
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rial perturbations to the metric appears. Following the KK
dimensional reduction scheme, the masses (eigenvalues) of
these gravitons (eigenfunctions) are ordered. Most brane-
world models consider one first light mode with cosmo-
logical range, and hence all ensuing modes have submilli-
meter range.

Given the relevance of scalar fields, the search for
bounds on the Yukawa parameters is crucial, so to exclude
unviable models and achieve some progress in the study on
those that appear feasible. Most experimental tests of a
‘‘fifth’’ force have been conducted in the vacuum; in the
authors opinion, a study on the way this force should affect
stellar equilibrium is lacking and constitutes one of the
motivations for this work.

The bounds on parameters A and �Y � m�1 include the
following (see [7,8], and references therein): laboratory
experiments devised to measure deviations from the
inverse-square law, sensitive to the range 10�2m< �Y <
1m, and constraining A to be smaller than 10�4; nucleo-
synthesis bounds which imply that A< 4� 10�1 for �Y <
1m; gravimetric experiments, sensitive in the range of
10m< �Y < 103m, suggesting A < 10�3; satellite tests
probing ranges of about 105m< �Y < 10

7m, showing
that A< 10�5; and radiometric data of the Pioneer
10=11, Galileo, and Ulysses spacecrafts suggesting the
existence of a new force with parameters A � �10�3

and �Y � 4� 1013m [9], despite contrary claims [10,11].
It is striking that, for �Y < 10�3m and �Y > 1014m, A is
essentially unconstrained. Considerations on higher di-
mensional superstring motivated cosmological solutions
hint that modifications to Newtonian gravity will occur in
the short range region, �Y < 10�3m (cf. Fig. 2). This range
also emerges if one assumes the observed vacuum energy
density to be related with scalar or vector/tensor excita-
tions [12].

In high energy physics, it is widely accepted that the
mass of fermions results from the Higgs mechanism, in
which a scalar field coupled to the right and left compo-
nents of a particle acquires a vacuum expectation value
(vev) that acts as a mass term in the Lagrangian density.
This behavior of the Higgs-scalar field depends on the
-1  2005 The American Physical Society
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presence of a potential which acquires nonvanishing min-
ima and, therefore, cannot evolve monotonically.

Can one relax this last feature of the Higgs mechanism?
This has been the main motivation behind the variable
mass particle proposal [13]. In these models it is assumed
that there are some yet unknown fermions whose mass
results not from a coupling to the Higgs boson, but to a
quintessence-type scalar field with a monotonically de-
creasing potential. This potential has no minima, yet the
coupling of the scalar field � to matter can be included in
an effective potential of the following form Veff��� �
V��� � �n �, where n� is the number density of fermi-
onic variable mass particle (VAMP) models and � is their
Yukawa coupling. In this way, a minimum is developed and
the ensuing vev is responsible for the particle’s mass. Since
in a cosmological setting the density depends on the scalar
factor a�t�, this mass will vary on a cosmological time
scale.

Before proceeding, note that the present analogy is not
perfect. Indeed, while the Higgs mechanism relies on a
spontaneous symmetry breaking, where the vev experien-
ces a transition from a vanishing to a finite value, the
VAMP idea assumes that no vev exists if the matter term
of the effective potential is ‘‘switched off,’’ whereas it is
always nonvanishing when the latter is considered.

For definitiveness, we choose a potential of the
quintessence-type form, V��� � u0��p, where p is an
integer, u0 has dimensionality Mp�4. The effective poten-
tial Veff���, acquires a vev given by

�0 � h�i �
�
pu0
�n 

�
1=�1�p�

: (1)

Since the number density evolves as n �t� � n 0a�t��3,
while � evolves as ��t� � �0a3=�1�p�, where �0 is the
present value of the scalar field, then its mass is given by

m2� �

�
@2V

@�2

�
�0

� p�p� 1�u0�
��p�2�
0 a�3�2�p�=�1�p�

(2)

and the mass of the VAMP fermions is [13]

m � ��0a3=�1�p�: (3)

Considering the evolution of the energy density contri-
butions as a function of the redshift, z, one can compute the
age of the Universe

t �
Z a

0

da0

a0
� H�1

0

Z 1�z�1

0
�1��0 ��M0x

�1

��Vx
�2�p�=�1�p�1=2dx; (4)

where H0 � 100 hKm s�1 Mpc�1, 0:65 � h � 0:75 is the
observational uncertainty on the expansion of the Universe,
�M0 is the energy density of normal baryonic plus dark
matter, �V is the energy density due to the potential
driving �, and �0 is the total energy density of the
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Universe. The limiting case where �0 � �V � 1, �M0 �
0 yields

t0 �
2

2
H�1
0 �1� p�1�: (5)

Assuming that the VAMP particles,  , were relativistic
when they decoupled from thermal equilibrium, then it
follows that [13]

m � 12:7� 0h2r�1 a3=2 eV; (6)

where r is the ratio of geff , the effective number of
degrees of freedom of  , to g�f, the total effective number
of relativistic degrees of freedom at freeze-out.
Furthermore, in terms of the Yukawa coupling,

u0 � 1:02� 10�9
�2
 0h

4

�r 
eV5; (7)

and thus

m� � 1:00� 10�6
�r 

�1=2
 0 h

a�9=4 eV: (8)

However interesting, VAMP models have not been sub-
jected to a more concrete analysis mostly due to a signifi-
cant caveat, namely, the introduction of exotic  fermions,
the VAMP particles, and the consequent derivation of the
cosmologically relevant quantities in terms of their un-
known relative density, � 0. As a result of this somewhat
arbitrary parameter, plus the unknown coupling constant
with the scalar field and the potential strength, there is little
one can do in order to draw definitive conclusions from
VAMP models.

The present study attempts to overcome this drawback,
by asserting that, aside from the hypothetical existence of
the assumed exotic particles, all fermions couple to the
quintessence scalar field. In this assumption one considers
that fermionic matter couples mainly to the Higgs boson,
so that the VAMP mass term is a small correction to the
mass acquired by the Higgs mechanism. Thus, exotic
VAMP particles are defined by their lack of the Higgs
coupling.

The extension of the VAMP proposal to usual fermionic
matter implies in a correction to the cosmologically rele-
vant results obtained in Refs. [13,14]. However, these
corrections should be negligible, as one assumes that the
‘‘Higgs to quintessence’’ coupling ratio is small, that is, at
cosmological scales the exotic VAMP particles dominate
the VAMP sector of usual fermions.

Notice that the vev resulting from the effective potential
depends crucially on the particle number density n .
Hence, it is logical to expect that the effect of this variable
mass term in a stellar environment should be more signifi-
cant than in the vacuum. This sidesteps the model from the
usual cosmological scenario with a temporal variation, to
the astrophysical case with an isotropic spatial dependence,
-2
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thus allowing one to attain bounds on model parameters
from known stellar physics observables.

Another object of this study concerns the Pioneer anom-
aly. This consists in an anomalous acceleration inbound to
the sun and with a constant magnitude of aA ’
�8:5� 1:3� � 10�10 m s�2, revealed by the analysis of ra-
diometric data from the Pioneer 10=11, Galileo, and
Ulysses spacecrafts. Extensive attempts to explain this
phenomena as a result of poor accounting of thermal and
mechanical effects and/or errors in the tracking algorithms
were presented, but are now commonly accepted as un-
successful [9].

The two Pioneer spacecraft follow approximate opposite
hyperbolic trajectories away from the solar system, while
Galileo and Ulysses describe closed orbits. Given this and
recalling that one has three geometrically distinct designs,
an ‘‘engineering’’ solution for the anomaly seems not very
plausible. Hence, although not entirely proven and even
poorly understood (see, e.g., Ref. [5] and references
within), the Pioneer anomaly, if a real physical phenome-
non, should be the manifestation of a new force. This force,
in principle, acts upon the sun itself, and thus lends itself to
scrutiny under the scope of this study. It turns out that one
can model its effect and constrain, even though poorly, the
only parameter involved, the anomalous acceleration aA.
Notice that we do not intend to explain the anomaly, which
is hence modeled simply by a constant term added to the
usual Newtonian force. This study, however, shows that
such a constant inbound acceleration is allowed by the
central solar temperature constraint up to values well above
the measured Pioneer anomaly.
II. THE POLYTROPIC GAS STELLAR MODEL

Realistic stellar models, arising from the assumptions of
hydrostatic equilibrium and Newtonian gravity, rely on
four differential equations, together with appropriate defi-
nitions [15–17]. This intricate system requires heavy-duty
numerical integration with complex code designs, and an
analysis of the perturbations induced by a variable mass is
beyond the scope of the present study. Instead, we focus on
the polytropic gas model for stellar structure: this assumes
an equation of the state of the form P � K�n�1=n, where n
is the so-called polytropic index, that defines intermediate
cases between isothermic and adiabatic thermodynamical
processes, and K is the polytropic constant, defined below.
This assumption leads to several scaling laws for the
relevant thermodynamical quantities,

� � �c!
n�"� �a�;

T � Tc!�"� �b�;

P � Pc!�"�
n�1 �c�;

(9)

where �c, Tc, and Pc are the values of the density, tem-
perature, and pressure at the center of the star.
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The function !, responsible for the scaling of P, �, and
T, is a dimensionless function of the dimensionless vari-
able ", related to the physical distance to the star’s center
by r � %", where

% �

�
�n� 1�K
4&G

��1�n�=n
c

�
1=2
; (10)

K � NnGM�n�1�=nR�3�n�=n; (11)

and

Nn �
�
n� 1

�4&�1=n
"�3�n�=n

�
�"2

d!
d"

�
�n�1�=n�

�
�1

"1

; (12)

so that R is the star’s radius, M its mass, and "1, defined by
!�"1� � 0, corresponds to the surface of the star (actually,
this definition states that all quantities tend to zero as one
approaches the surface). Its unperturbed value is "�0�1 �
6:89685, as given in Ref. [15].

The function !�"� obeys a differential equation arising
from the hydrostatic equilibrium condition

d
dr

�
dP
dr

r2

�

�
� �G

dM�r�
dr

; (13)

the Lane-Emden equation:

1

"2
@
@"

�
"2
@!
@"

�
� �!n: (14)

We point out that the physical radius and mass of a star
appear only in Eq. (11) so that the behavior of the scaling
function !�"� is unaffected by their values. Hence, the
stability of a star is independent of its size or mass, and
different types of stars correspond to different polytropic
indices n. This kind of scale-independent behavior is re-
lated to the homology symmetry of the Lane-Emden
equation.

The first solar model ever considered corresponds to a
polytropic star with n � 3 and was studied by Eddington in
1926. Although somewhat incomplete, this simplified
model gives rise to relevant constraints on the physical
quantities.
III. RESULTS

A. Yukawa potential induced perturbation

In this section we look at the hydrostatic equilibrium
equation with a Yukawa potential:

dP � �
GM�r��1� Ae�mr

r2
��r�dr; (15)

which, after a small algebraic manipulation, implies that
-3
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1

r2
d
dr

�
dP
dr

r2

�

�
� �4&G��1� Ae�mr

�
GM�r�Ame�mr

r2
: (16)

The last term is a perturbation to the usual Lane-Emden
equation, obtained by substituting r � %" and � � �c!n;
one gets

1

"2
d
d"

�
"2
d!
d"

�
� �!n�1� Ae�m%" �

M�"�Ame�%m"

4&�c%
2"2

:

(17)

Since

% �

�
�n� 1�K
4&G

��1�n�=n
c

�
1=2

(18)

and

M�"� � �4&
�
�n� 1�K
4&G

�
3=2
��3�n�=2n
c "2

d!
d"
; (19)

the second perturbation term can be written as

M�"�Ame�%m"

4&�c%2"2
� �

�
�n� 1�K
4&G

�
1=2
��1�n�=2n
c

d!
d"
Ame�%m":

(20)

Furthermore, one has

K � NnGM�n�1�=nR�3�n�=n; Pc � WnGM2=R4;

Pc � K��n�1�=n
c ;

(21)

where R, M are the radius and the mass of the star and Nn,
Wn are numbers which depend on n, and for which one
takes the tabulated values, valid for the unperturbed equa-
tion. Hence,

�c �
�
Wn

Nn

�
�1�n�=2�1�n�

�
M

R3

�
�1�n�=2n

: (22)

Substituting into Eq. (21), one obtains

�

�
�n� 1�K
4&G

�
1=2
��1�n�=2n
c

d!
d"
Ame�%m"

� �

������������
n� 1

4&

s
Nn=�n�1�
n W�1�n�=2�n�1�

n R
d!
d"
Ame�%m": (23)

If one now defines the dimensionless quantities

Cn �
�
n� 1

4&

�
1=2
Nn=�n�1�
n W�1�n�=2�n�1�

n ; (24)

and , � mR, the perturbed Lane-Emden equation acquires
the form

1

"2
d
d"

d!
d"

� �!n�1� Ae�%m" � ,ACn
d!
d"
e�%m":

(25)
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One can eliminate % on the exponential term by writing
�%m" � �%mR"=R � �,"="s, where "s corresponds
to the value at the surface of the star. Since one must
specify it prior to integration of the differential equation,
one assumes that "s ’ "1, the latter being the tabulated
value for !�"1� � 0. This is in good approximation, since
the solar temperature is very small when compared at the
surface to its central value, Ts � 5:778� 103K � 3:7�
10�4Tc. Hence, one gets

1

"2
d
d"

d!
d"

� �!n�1� Ae�,"="1 � ,ACn
d!
d"
e�,"="1 :

(26)

This notation makes clear that the perturbation vanishes
for A! 0. Notice that, if m� R�1, then ,� 1. However,
sincem should arise from a fundamental theory, this would
be the case only for stars of a particular size m�1 � �Y .
Since , � mR � R=�Y , it is clear that large stars (R�
�Y ! ,� 1) are perturbed only within a small central
region, where "="1 � 1.

It is also apparent that the Yukawa-type perturbation
breaks the invariance under homologous transformations,
since , � mR explicitly depends on R, the radius of the
star. Hence, a bound on , obtained from the luminosity or
other observables is, for a given m, equivalent to a bound
on the maximum size of a polytropic star of index n.

The boundary conditions are unaffected by the pertur-
bation: from the definition � � �c!�"�, one gets !�0� � 1;
the hydrostatic equation Eq. (17), in the limit "! 0, still
imposes that jd!=d"j"�0 � 0.

By specifying A and ,, we may solve Eq. (17) numeri-
cally and get relative deviations from the unperturbed
solution. Since a star’s central temperature is given as a
function of M and R and in terms of the mean molecular
weight ., the hydrogen mass H and the Boltzmann con-
stant k by Tc � Yn.GM=R, with

Yn �
�
3

4

�
1=n

�H=k�Nn

�
�

"

3 d!d"

�
1=n

"1

; (27)

one can compute the relative changes on Tc for different
values of A and m. The results are presented in Fig. 1. The
parameters were chosen so that the Yukawa interaction �Y
ranges from 0:1R to 10R: in the first case, the interaction is
mainly located in the interior of the star, while in the
second case it reaches outward and could be considered
approximately constant within it. The Yukawa coupling
was chosen so that the effect on Tc could be sizable [that is,
of order O�10�4�].

This enables us to build the exclusion plot of Fig. 2, by
imposing that �Tc < 4� 10�3, the accepted bound de-
rived from solar luminosity constraints [15]. It is super-
imposed on the different bounds available [7]. One expects
that a refinement of the calculus through numerical inte-
gration of the stellar dynamics differential equations and
realistic assumptions for its behavior should yield more
-4



FIG. 1. Relative deviation from unperturbed central tempera-
ture Tc=Tc0 � 1, for A ranging from 10�3 to 10�1, and , from
10�1 to 10.

ASTROPHYSICAL CONSTRAINTS ON SCALAR FIELD MODELS PHYSICAL REVIEW D 71, 023521 (2005)
interesting results [15,16]. Notice that the central tempera-
ture is not precisely known and it is clear that constraining
its uncertainty below 10�4 would yield a larger exclusion
region in the parameter space.

B. VAMP models

As previously discussed, we consider usual fermions
with a variable mass term 1m given by the coupling to
the quintessence-type scalar field; its mass is then given by
the usual Higgs-mechanism related term m plus this new
VAMP term, a small contribution: m � mHiggs � 1m. We
adopt, however, a ‘‘worst case’’ scenario, in which the
electron mass is not mainly due by the Higgs mechanism
plus a minor VAMP sector contribution, but fully given by
the said VAMP component alone. This implies that the
FIG. 2. Exclusion plot for the relative deviation from unper-
turbed central temperature Tc, for A ranging from 10�3 to 10�1,
and , from 10�1 to 10 (tip at the top), superimposed on the
available bounds [7].
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cosmological expectation value should be weakly per-
turbed, so that the electron mass does not undergo large
variations.

It can be shown (see the Appendix) that this variable
term leads to a geodesic deviation equation of the form

�x a �
�
�abc �

%a
2%

gbc

�
_xb _xc �

2 _%
%
_xa: (28)

Assuming isotropy, one obtains the acceleration

~a � ~aNewton �
m0

m
gbc _x

b _xc ~ur �
_m
m
~v

� ~aNewton �
�0

�
gbc _x

b _xc ~ur �
_�
�
~v; (29)

where the prime and the dot denote derivatives with respect
to r and t, respectively. Considering the Newtonian limit
gab � diag�1;�1;�1;�; 1� so that gbc _xb _xc � 1� v2 ’
1, one finds a radial, anomalous acceleration plus a time-
dependent drag force:

aA �
�0

�
< 0; aD � �

_�
�
< 0: (30)

Notice that this radial sun bound acceleration has the
qualitative features for a possible anomalous acceleration
measured by the Pioneer probes [9].

The time-dependent component should vary on cosmo-
logical time scales and can thus be absorbed in the usual
Higgs mass term. Hence, one considers only the perturba-
tion to the Lane-Emden equation given by the radial force,
aA ’ �0=�:

dP � ��GM�r� � aAr2
�dr

r2
; (31)

which translates into

1

r2
d
dr

�
r2

�
dP
dr

�
� �4&G��

c2

��r�

�
2�0�r�
r

��00�r� �
�02�r�
��r�

�
: (32)

Defining the dimensionless quantities

U �
GM

Rc2
� 2:12� 10�6;

C�1
n � �n� 1�Nn=�n�1�

n W1=�n�1�
n ;

(33)

where

Wn �
1

4&�n� 1��d!d"�
2
"1

; (34)
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one obtains the perturbed Lane-Emden equation:

1

"2
d
d"

�
"2
d!
d"

�
� �!n�"� �

Cn
U

1

��"�

�
�00�"�

�
2

"
�0�"� �

�02�"�
��"�

�
: (35)

The Klein-Gordon–type equation for the scalar field,
written in terms of the " variable is, inside the star, given by

1

%2

�
�00�"� �

2

"
�0�"�

�
� �pu0�

��p�1��"� �
��c
.

!n�"�;

(36)

where now the prime denotes derivation with respect to ".
The parameter . is the mean molecular weight and it is
assumed that there are two electrons per molecule, that is,
that the star is composed by ‘‘hydrogen’’ with a molecular
weight ..

Beyond the star, in the Klein-Gordon equation one has
the coupling to the constant number density of fermions in
the vacuum n � nV � 3m�3,

1

%2

�
�00�"� �

2

"
�0�"�

�
� �pu0���p�1��"� � �nV: (37)

These equations constitute a set of coupled differential
equations for ��"� and !�"� and, of course, the continuity
of � across the surface of the star must be addressed. A
complete derivation can be found in Ref. [5]. In here, % and
�c depend on Wn, Nn and related quantities, which are
evaluated after the solution !�"� is known, together withM
and R. Hence, one considers their unperturbed values for
the sun: % � R="�0�1 � 1:009� 108 m and �c � 1:622�
105 kgm�3. Moreover, current solar estimatives indicate
that. ’ 0:62mp,mp being the hydrogen atomic mass [15].

For simplicity, we deal only with the case of p � 1, as in
Ref. [13]. Instead of the potential strength u0, we work
with the potential energy density �V < 1 of the scalar
field. Before presenting the obtained numerical solutions,
we develop the expression for �V � V��c�=�crit, with
�crit ’ 1:88� 10�29 h2 g cm�3; in what follows we chose
h � 0:71. Therefore

V��c� � u0

� ���������
u0
�nV

s �
�1

� �nV

���������
u0
�nV

s
� 2

��������������
u0�nV

p
; (38)

which implies

u0 �
�2
V�

2
crit

4�nV
: (39)

We now rescale the scalar field so to work with a
dimensionless quantity ) � �=��

c, where ��
c is the cos-

mological vev obtained by assuming as reference values
� � �V � 1,

��
c �

�crit
2nV

: (40)
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Hence, the cosmological vev for general � and u0 is given
by

�c �
�V�crit
2�nV

�
�V

�
��
c; (41)

so that )c � �c=�
�
c � �V=�. Thus, the Klein-Gordon

equation has the following form:
(i) Inside the star

)00�"� �
2

"
)0�"� � �

2%2n2V�
2
V

�crit�
)�2�"�

�
2%2�nV
.

�c
�crit

!3�"�: (42)

(ii) In the vacuum

)00�"� �
2

"
)0�"� � �

2%2n2V�
2
V

�crit�
)�2�"� �

2%2�nV
�crit

nV:

(43)

The perturbed Lane-Emden equation assumes the form

1

"2
d
d"

�
"2
d!
d"

�
� �!n�"� �

Cn
U

1

)�"�

�
)00�"�

�
2

"
)0�"� �

)02�"�
)�"�

�
: (44)

Since the perturbation on !�"� is shown to be small, one
can take the unperturbed function !�"� ’ !0�"� when solv-
ing Eqs. (43) and (44), and then introduce the obtained
solution for the scalar field )�"� in Eq. (45). First, one
assumes that the scalar field is given by its cosmological
vev perturbed by a small ‘‘astrophysical,’’ )a�"�, contri-
bution, )�"� � �V=��)a�"�. Hence, the Klein-Gordon
equation becomes

)00
a�"� �

2

"
)0
a�"� �

2%2�nV
�crit

�c
.
!3�"�

�
2%2�2n2V
�crit

�
1�

2�)a�"�
�V

�
; (45)

inside the star, and

)00
a�"� �

2

"
)0
a�"� �

2%2�n2V
�crit

�
2%2�2n2V
�crit

�
1�

2�)a�"�
�V

�
;

(46)

in the outer region.
Substituting by the sun values % � R="�0�1 �

1:009� 108 m, �c � 1:622� 105 kgm�3, . � 0:62mp,
n � 3 m�3, one gets

)00
a�"� �

2

"
)0
a�"� � 6:8�

�
4:79� 1032!3�"�

� �
�
1�

2�)a�"�
�V

��
; (47)
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FIG. 4. Perturbed solutions for !�"� � T�"�, for the �V � 0:1,
� � 1:06� 10�14 case; other solutions overlap.
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inside the star, and

)00
a�"� �

2

"
)0
a�"� � 6:8�

�
1� �

�
1�

2�)a�"�
�V

��
; (48)

in the outer region.
Numerical integration of these equations enables the

computation of the central temperature’s relative devia-
tion; as boundary conditions for )�"� it is imposed that
both the field and its derivative vanish beyond the solar
system (about 105AU). One can see by inspection that the
solution )a�"� is practically the same, regardless of the
value for �V , as one always assumes )a�"� � �V=�.
However, it is highly sensitive to �.

Also, one must verify the validity of the condition)a �
�V=� for chosen �V and � values. For this, note that
)a�"� evolves as ��1 and, as stated above, it is fairly
independent of �V to a very good approximation. Hence,
choosing a smaller value for �V amounts to reducing �,
both by lowering the field )a�"� and increasing its upper
limit, �V=�.

By the same token, each value of �V corresponds to a
maximum allowed value for the coupling, �max��V�. One
then uses these values to numerically obtain to first order
solutions for !�"� and ��"�, for say�V � 0:1, 0.4 and 0.7,
as presented in Figs. 3 and 4. This enables one to extract the
variation of the central temperature, Tc. The maximum
allowed values for � (depending on the chosen �V) are
the following: for �V � 0:1, �max � 1:24� 10�14; for
�V � 0:4, � � 2:45� 10�14; and for �V � 0:7, � �
3:3� 10�14. The limiting case�V � 1 yields � � 3:93�
10�14.

None of the presented curves exceed the maximum
allowed variation for Tc of 0.4%: the maximum of 1Tc �
FIG. 3. )a�"� field profile, for the (�V � 0:1, � �
1:24� 10�14) (solid line), (�V � 0:4, � � 2:45� 10�15)
(dashed line), and (�V � 0:7 and � � 3:3� 10�14) (dash-
dotted line) cases.

023521
2:82� 10�8 occurs for �V � 0:7, � � 2:82� 10�14.
Hence, the luminosity constraint is always respected and
the bound one must respect is � < 10�14.

C. The Pioneer anomaly

As outlined before, we now aim to establish the effect of
anomalous, constant inbound acceleration aA superim-
posed on the usual Newtonian acceleration. No particular
model is considered to explain its origin, which would, in
principle, introduce further corrections (see, e.g., the
Yukawa negative coupling model [18] and a ‘‘exotic’’
scalar field model [5]). We plot the results for variable
aA, and identify the reported Pioneer anomaly with the
case aA � aP � 8:5� 10�10 m s�2.

Following the method discussed above, we look at the
hydrostatic equilibrium equation for a constant perturba-
tion:

dP � ��GM�r� � aAr2
�dr

r2
; (49)

and therefore

1

r2
d
dr

�
r2

�
dP
dr

�
� �4&G��

2aA
r
: (50)

The last term is a perturbation to the usual Lane-Emden
equation, which is given by

1

"2
d
d"

�
"2
d!
d"

�
� �!n�"� �

aA
2&G�c%"

: (51)

The factor in the perturbation term can be written as

2&G�c% � ��n� 1�GK&1=2��n�1�=2n
c : (52)

Following the same steps as before, and defining the
dimensionless quantities
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FIG. 5. Relative deviation from the unperturbed central tem-
perature, for aA ranging from 10�13a� to 10�11a�.
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C�1
n �

��������������������������
�n� 1�&Wn

q
;

6 �
aAR

2

GM
�
aA
a�

� 3:65� 10�3aA;
(53)
one obtains the perturbed Lane-Emden equation
1

"2
d
d"

�
"2
d!
d"

�
� �!n�"� � 6Cn

1

"
: (54)
As previously, the boundary conditions for this modified
Lane-Emden equation are unaffected by the perturbation:
from the definition � � �c!�"�, one gets !�0� � 1; the
hydrostatic equation (50), in the limit "! 0, still imposes
jd!=d"j"�0 � 0. In the present case one has only one
model parameter, 6, which can be constrained by the
same luminosity bounds as before. Solutions for this equa-
tion with6 varying from 10�13a� to 10�11a� (the reported
value is of magnitude aP � 3� 10�12a�) enable one to
compute the relative central temperature deviation as a
function of 6, as presented in Fig. 5.

From Fig. 5, one concludes that the relative deviation of
the central temperature scales linearly with aA, as 1Tc �
aA=a�. Thus, the bound 1Tc < 4� 10�3 is satisfied for
values of this constant anomalous acceleration up to
amax � 10�4a�. The reported value is then well within
the allowed region and has a negligible impact on the
astrophysics of the sun.
023521
IV. CONCLUSIONS

In this work we have studied solutions of the perturbed
Lane-Emden equation for three different cases, related to
relevant scalar field models. We obtain bounds on the
parameter space of each model from solar luminosity
constraints.

The exclusion plot obtained for a Yukawa perturbation
produces no new exclusion region in the parameter space
A-�Y . This results from the low accuracy to which the
central temperature Tc is known, when compared to the
sensibility of dedicated experiments [7]. Therefore, it is
fair to expect that improvements in the knowledge of the
sun’s central temperature could yield a new way of explor-
ing the available range of parameters.

For the VAMP case we have shown that the Yukawa
coupling of the VAMP sector is constrained to be � <
10�14, and that the solar luminosity constraint is always
respected. The numerical analysis reveals that �V and �
should satisfy the relation �=�V < 10�13.

It has also been shown that the scalar field acquires
its ‘‘cosmological’’ value just outside the star, leading
to no differential shifts of the particle masses in the vac-
uum; thus, there is no observable variation of fermionic
masses and hence no violation of the weak equivalence
principle.

Finally, we found that an anomalous, constant accelera-
tion such as the one reported on the Pioneer 10=11 space-
craft is allowed within the sun for values up to 10�4a�,
thus clearly stating that the observed value aP � 10�12a�
has negligible impact on the central temperature and other
stellar parameters.
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APPENDIX

In order to encompass models with a variable mass, we
consider the generalized Lagrangian density
L �
����������
%�x�

p �����������������
gab _x

a _xb
q

: (A1)
The function % is, in the homogeneous and time-
independent case, identified with the square of the rest
mass. We now deduce the Euler-Lagrange equation for
the timelike geodesics. Notice that there is no right side
terms because 8 is an affine parameter:
-8



ASTROPHYSICAL CONSTRAINTS ON SCALAR FIELD MODELS PHYSICAL REVIEW D 71, 023521 (2005)
0 �
@L2

@xc
�
d
d8

@L2

@ _xc
� %;cgab _x

a _xb � %gab;c _x
a _xb �

d
d8

�%2gac _x
a�

� �%;cgab � %gab;c� _x
a _xb � 2 _%gac _x

a � 2%gac;b _x
a _xb � 2%gac _x

a

�

�
%;c
%
gab � gab;c

�
_xa _xb �

2 _%
%
gac _xa � 2gac;b _xa _xb � 2gac �xa

�

�
%;c
%
gab � gab;c � 2gac;b

�
_xa _xb �

2 _%
%
gac _x

a � 2gac �x
a

� gac _xa �
�
1

2
�gac;b � gbc;a � gab;c� �

%;c
2%

gab

�
_xa _xb � 2

_%
%
gac _xa

� gcdgab �x
a �

�
1

2
gcd�gac;b � gbc;a � gab;c� �

%;c
2%

gcdgab

�
_xa _xb � 2

_%
%
gcdgac _x

a

! �xa �
�
�abc �

%a
2%

gbc

�
_xb _xc �

2 _%
%
_xa � 0: (A2)

In the isotropic, Newtonian case, one has % � %�r; 8� t�, and thus

~a � ~aN �
%0

2%
gbc _x

b _xc ~ur �
2 _%
%
~v; (A3)

where the prime denotes derivative with respect to the radial coordinate.
Using gab � diag�1;�1;�1;�; 1� so that gbc _xb _xc � 1� v2 ’ 1, one obtains a radial anomalous acceleration plus a

time-dependent drag force:

aA �
%;r
2%

< 0; aD � �
2 _%
%
< 0: (A4)
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O. BERTOLAMI AND J. PÁRAMOS PHYSICAL REVIEW D 71, 023521 (2005)
[9] J. D. Anderson, P. A. Laing, E. L. Lau, A. S. Liu, M. M.
Nieto, and S. G. Turyshev, Phys. Rev. D 65, 082004
(2002).

[10] J. I. Katz, Phys. Rev. Lett. 83, 1892 (1999).
[11] E. M. Murphy, Phys. Rev. Lett. 83, 1890 (1999).
[12] S. R. Beane, Gen. Relativ. Gravit. 29, 945 (1997); O.

Bertolami, Classical Quantum Gravity 14, 2785 (1997).
[13] G. W. Anderson and S. M. Carroll, astro-ph/9711288.
[14] U. França and R. Rosenfeld, Phys. Rev. D 69, 063517

(2004).
023521
[15] V. B. Bhatia, Textbook of Astronomy and Astrophysics with
Elements of Cosmology (Narosa Publishing House, Delhi,
2001).

[16] T. Padmanabhan, Theoretical Astrophysics: Stars and
Stellar Systems (Cambridge University Press,
Cambridge, 2001).

[17] J. N. Bahcall, Phys. Rev. D 33, 47 (2000).
[18] J. D. Anderson, P. A. Laing, E. L. Lau, A. S. Liu, M. M.

Nieto, and S. G. Turyshev, Phys. Rev. Lett. 81, 2858
(1998).
-10


