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This paper discusses models of inflation based on global supersymmetry. It is shown that there are
parameter ranges, consistent with observational constraints, for which warm inflation occurs and
supergravity effects can be neglected. There is no need for any fine tuning of parameters. The thermal
corrections to the inflaton potential are calculated and it is shown that they do not alter the warm
inflationary evolution.
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I. INTRODUCTION

Attempts to build inflationary models based on super-
symmetric Grand Unified Theories run into difficulties
caused by the size of the supergravity corrections to the
inflaton potential. Inflation requires severe flatness condi-
tions on the potential, but these conflict with the F-term
supergravity corrections. The solutions to this problem
have meant considering models with special cancellations
or models where a different supergravity correction, the
D-term, dominates (see [1] for a review).

A totally different solution to the problem of supergrav-
ity corrections has recently been put forward, which is
based on the realization that the dissipation associated
with warm inflation relaxes the constraints on the flatness
of the potential [2]. Warm inflation can exist in a parameter
regime where the supergravity corrections to the potential
can be safely ignored.

In warm inflation, particle production during inflation
provides a damping effect on the inflaton. This idea has
been around for a long time [3–6], but the general features
of this scenario were described in [7]. The nonequlibrium
dynamics has been expensively developed in subsequent
work [2,8–15] and several phenomenological warm infla-
tion models have been discussed in the literature [16–20].

Models in which warm inflation appears to occur spon-
taneously have the inflaton decaying by two stages, the first
stage into a heavy particle and the second into a light
particle [2,21]. An example is provided by the interaction
Lagrangian density,

L I � �g2�2�2 �
1
p
2
h� � y y; (1)

where � is a heavy boson and ~y (field  y) is a light fermion.
The dissipation is associated with �! �! ~y ~y .

The ultimate destination of the vacuum energy from the
inflationary phase is into excitations of the light sector
fields. In warm inflation, one has to consider the possibility
that these excitations enhance the loop corrections to the
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inflaton potential and violate the flatness conditions which
inflation requires. Because of this concern, we have calcu-
lated the loop corrections to the potential under the as-
sumption that the light fields thermalize.

The light sector will typically have coupling terms rep-
resenting self-interactions, or interactions with other light
fields, in addition to the couplings given in Eq. (1). The
relaxation time of the radiation should therefore be inde-
pendent of the damping mechanism which is affecting the
inflaton. Whether the radiation thermalizes during inflation
is therefore rather arbitrary. We assume thermalisation, but
some consequences of nonthermalization are mentioned in
the conclusion.

We shall consider the simplest inflationary models
which include global supersymmetry. These models divide
naturally into two classes. In the first class, which we call
pure, the vacuum energy is associated only with the in-
flaton field. We find that normalizing the density perturba-
tion amplitude to the cosmic microwave background
implies a mass scale of up to 1011 GeV and coupling
constants g and h around 0:1.

In the second class of models, part of the vacuum energy
can be linked to a false vacuum of the � field. These are the
supersymmetric hybrid models of inflation [22,23]. We
find that normalising the density perturbation amplitude
to the cosmic microwave background implies a mass scale
of up to 1014 GeV for the false vacuum energy and cou-
pling constants again around 0:1. Consequently, F-term
supersymmetric inflation with parameters in this range is
of the warm inflationary type.

While the present work was nearing completion, we
learned that an independent study of hybrid models of
warm inflation was also underway, being conducted by
Arjun Berera and Mar Bastero-Gil [24].
II. SUPERSYMMETRIC MODELS

A. Potential and interaction terms

We have just described how the warm inflationary sce-
nario arises when there is a two stage reheating process
involving a heavy boson. Global SUSY models can easily
be constructed which provide the required interactions
-1  2005 The American Physical Society
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[2,21]. Consider the superpotential

W � �g
X2; (2)

where the scalar field components of the chiral superfields

 and X are ’ and � respectively. The scalar interaction
terms in the theory are unpacked from the superpotential
using

LS � �j@
Wj2 � j@XWj2: (3)

We identify the inflaton with � �
���
2

p
Re’, and then

LS � �g2j�j4 � 2g2�2j�j2: (4)

Supersymmetry breaking now plays an important role in
determining the shape of the inflaton potential along the
flat direction � � 0 [1]. A ‘‘new inflation’’ type of model
[25–27] results from introducing a soft SUSY breaking
mass Ms for the � field. The inflaton potential V��� is
determined by the one loop correction [28],

V��� �
1

2
g2M2

s

�
�2 log

�2

�2
0

��2
0 ��2

�
: (5)

Supercooled inflation requires �0 >mp, but in this pa-
rameter range the inclusion of supergravity F-term correc-
tions would typically prevent the inflation from occurring.

Hybrid inflationary models can be constructed if we
change the superpotential slightly [22,23],

W � g
�2 � g
X2 � g
X02: (6)

where� is a constant andX and X0 are a pair of superfields.
The interaction terms are now

LS � �g2j�2 � �02 ��2j2 � 2g2�2�j�j2 � j�0j2�:

(7)

In hybrid models, the � field is stable at � � 0 during
inflation and the potential is dominated by the constant
term g2�4. The � field becomes unstable at when � falls
below the critical value �c � �.

The supersymmetry is broken by the inlaton field result-
ing in a nonvanishing one loop contribution to the inflaton
potential. The presence of the second superfield helps
produce a potential which is suitable for inflation by re-
ducing the size of the quantum corrections. For �
 �,

V��� � g2�4 �
g4

4�2 �
4 ln

�
2g2�2

�2

�
: (8)

The heavy sector plays a double role in contributing to the
vacuum energy and damping the inflaton field.1

For an efficient two stage reheating process, we intro-
duce an additional light sector Y, which can be coupled
through a superpotential
1For comparison with Dvali et al. [23], their $ � 2g and % �
g1=2�.
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W � �g
X2 � hXY2: (9)

The Yukawa interaction terms are recovered from

LY � �
1

2

@2W
@�n@�m

� nPL m �
1

2

@2W�

@��
n@��

m

� nPR m;

(10)

where �m is a superfield and PL � 1� PR � �1� �5�=2.
The interactions contain terms such as those in Eq. (1), and
lead to a friction term / _� in the inflaton field equation [2].
They also have an effect on the vacuum polarization of the
� field, which in turn can affect the inflaton potential. The
full set of interaction terms and the vacuum polarization
are discussed in Sec. III.

B. Inflationary dynamics

In an expanding, homogeneous universe, the inflaton
equation of motion is given by

��� �3H� �� _�� VT;� � 0; (11)

where VT��; T� is the thermodynamic potential and
���; T� is the damping term due to interactions between
the inflaton � and surrounding fields. For supercooled
inflation, this damping term is negligible compared to the
Hubble damping term. The interesting regime of warm
inflation is characterized by large damping terms. To dis-
tinguish between the two inflationary scenarios, a dimen-
sionless parameter, r, is introduced to denote the relative
strength between the damping terms

r �
�

3H
:

We shall take warm inflation in the limit r
 1.
As the inflaton evolves, energy dissipates into radiation

and entropy is produced. Simple thermodynamic relations
lead to a definition of entropy density,

s��; T� � �VT;T �
4�2

90
g�T3 � . . . ; (12)

where g� is the effective particle number and the dots
denote contributions from the thermal correction to the
potential. In the warm inflationary scenario, inflation is
characterized by three slow-roll equations [29]

_� � �
VT;�

3H�1� r�
; Ts � r _�2; 3H2 � 8�GVT:

(13)

The second equation denotes conservation of energy, while
the third is the usual Friedmann equation. Slow-roll auto-
matically implies inflation, �a > 0, and the consistency of
slow-roll is governed by a set of slow-roll parameters:
-2
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& �
m2
p

16�

�VT;�
VT

�
2
; ' �

m2
p

8�

�VT;��
VT

�
;

( �
m2
p

8�

�
�;�VT;�
�VT

�
; ) �

TVT;�T
VT;�

;

(14)

where m�2
p is Newton’s constant. The slow-roll approxi-

mation is consistent when the above parameters are less
than r. Supergravity F-term corrections, without special
cancellations, lead to ' of order unity [22]. We shall
therefore concentrate on the range,

1<'< r: (15)

The thermal corrections to the potential will be calculated
in the next section. For the remainder of this section we
shall examine the situation where the corrections are small,
VT � V and the slow-roll parameter ) � 0.

An important observational constraint on the model is
set by the density perturbation amplitude. In our case,
where we have assumed that the radiation has thermalized,
the thermal fluctuations induce scalar density fluctuations.
The amplitude � can be obtained analytically [29,30], and
for r
 1,

V1=4h � +r�3=4h &1=4h �2=3mp; (16)

where +  0:68g�1=12� and the parameters are evaluated at
the time th that the perturbation scale crossed the horizon.
The value of � inferred from cosmic microwave observa-
tions is around�  5:4� 10�5 on the 500MPc scale [31].

Limits on the mass parameters can be found by combin-
ing the slow-roll limits (15) with the constraint from the
density perturbations (16). The pure inflation model with
potential (5) has two mass parameters gMs and �0. Order
of magnitude estimates can be obtained by taking�h ��0

for the value of � at horizon crossing (which is consistent
with numerical solutions [28]) and &  '. The normaliza-
tion condition (16) gives

gMs  3:3� 10�6'hr
�3=2
h mp: (17)

The upper limit for gMs set by (15) is of the order
1013 GeV.

For hybrid inflation, a similar approximation can be
made when the vacuum energy g2�4 dominates the poten-
tial and �
 �. In this case,

& 
g2

4�2 ' 
g4m2

p

64�4�2 : (18)

The normalization condition (16) gives

�  3:88� 10�4'1=4h r�3=4h mp: (19)

When combined with the conditions rh > 'h > 1, the
upper limit on � is of order 1015 GeV.

More detailed limits can be placed on the parameters
when we know the form of the friction term in the inflaton
023514
equation. For the interactions in Eq. (1), the friction term
has been calculated in the zero-temperature limit [21] and
is given to leading order in h by

�  ��: (20)

The value of � depends on the decay process. For �! 2~y
and �! 2y, the leading order contributions to � are

���! 2~y� � ���! 2y� �

���
2

p
g3h2

128�2 : (21)

For the fermionic channel ~�! y~y,

��~�! y~y� �
3

���
2

p
g3h2

64�2 : (22)

Hence the total

� �

���
2

p
g3h2

16�2 : (23)

To be in the perturbative regime, with g < 1 and h < 1, sets
a requirement � < 8:9� 10�3.

We can relate r to � using the slow-roll Eqs. (14),

r �
�

3H
�

��mp

�24�V�1=2
: (24)

The nonhybrid models can be regarded as having three
parameters gMs, �0 and �. The normalization from the
density fluctuation amplitude provides one constraint
which can be used to eliminate one parameter, let us say
�0. The warm inflationary regime can then be displayed as
bounds on the remaining two parameters.

The horizon crossing timescale depends on the number
N of e-folds of the scale factor before the end of inflation.
As a rough guide, we can take rh � N'h. The normaliza-
tion condition (16) gives

�0 � 8:2� 10�6��1N�1=2mp: (25)

Note that �0 <mp is needed for ' to remain larger than 1
throughout the inflationary era, which is a necessary re-
quirement for the neglect of supergravity corrections. After
eliminating �0, there is a consistency requirement

�gMs < 4:8� 10�11N�2mp (26)

for warm inflation.
The hybrid models can be taken to have parametersM �

g1=2�, g and �. The horizon crossing timescale is given
approximately by the relation rh � 3N'h. The normaliza-
tion condition (16) allows us to express g as

g  1:5� 1021�2M2N5=2m�2
p : (27)

The condition '> 1 becomes

� > 1:3� 10�6N�1=2: (28)

Taken together with the expression for � given by Eq. (23),
this gives lower limits on g and h. For example, if g  h,
-3
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then g > 0:1. Another condition follows from �>�,
which implies a consistency condition

�M > 3:8� 10�12N�13=8mp (29)

for the warm inflationary regime.
The parameter ranges are shown in Fig. 1. The number

of e-folds of inflation has been taken to be N � 60. It is
clear from the figure, that the warm inflation occurs for a
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FIG. 1. The figures show, approximately, the allowed values
(region A) of the parameters �, gMs and g1=2� for (a) pure and
(b) hybrid inflation. The line SUGR shows the limit for which
SUGR corrections can be neglected. In case (a), the limit of
consistent warm inflation is shown as WI. In case (b), the limits
for consistent warm inflation are �h � � (WI1) and g � 1
(WI2).
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broad range of parameters. In the case of hybrid inflation,
range includes 0:03< g< 1 which means that many
F-term inflationary models should be have warm rather
than cold inflation [23].

Finally, we can use the slow-roll equations to determine
what the temperature is during the inflationary phase. The
slow-roll Eqs. (13) give

Ts �
2

3
r�1&V: (30)

Once again making use of the normalization provided by
the density fluctuation amplitude, and the slow-roll relation

V;�� �
8�'V

m2
p

; (31)

we can compare Th to the slope of the potential,

Th  230r1=2h '�1=2
h �V;���1=2: (32)

Note that Th is always larger than the mass scale respon-
sible for the slope of the potential. In this situation, we
should be concerned that thermal corrections to the poten-
tial may make the models untenable. The calculation of
these thermal corrections to the potential is therefore
necessary.

In the case of pure inflation, V;�� � 2g2M2
s and the

temperature during inflation is approximately

Th � 320N1=2gMs: (33)

In the case of hybrid inflation, using Eq. (30) and
Eq. (18),

Th 
�
45

16�5

�
1=4
g1=2N�1=4M: (34)

Note that the vacuum energy of the hybrid model after
inflation, before the second field decays, is approximately
M4. The values of the temperature are sufficiently high
such that, if we have local supersymmetry, then we are in
danger of violating constraints set by the thermal produc-
tion of gravitinos [32–37]. These constraints can be sat-
isfied by taking small values of the mass parameters,
corresponding to large values of r [38]. The allowed pa-
rameter ranges permit this, but so far this appears to be an
unnatural feature of the models under discussion.
III. THERMAL CORRECTIONS

The full set of interaction terms obtained from the super-
potential (9) are

LS � g2��2 � j�j2�2 � 4g2j’j2j�j2 � 4h2jyj2j�j2

� h2jyj4 � 2gh�y2’y�y � yy2’�� (35)
-4
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FIG. 2. Diagram for the fermionic self-energy
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LY � g�’ �PL � � ’y �PR �� � h�� yPL y

� �y yPR y� � 2g�� �PL ’ � �y �PR ’�

� 2h�y yPL � � yy yPR ��: (36)

Thermalization conditions of the light fermion, ~y depend
directly on the mass of the fermion and its self-interaction.
These properties are inherent to quadratic and cubic terms
in the superpotential (%�Y

2, /Y3), which we have not
specified. We assume that the interactions are such that
the light fermions thermalize and we calculate the corre-
sponding thermal effects. The  y interactions to fields
other than the inflaton, � or � fields, will have no effect
on the thermal corrections to the inflaton effective poten-
tial. We can therefore disregard the exact nature of these
interactions.

For the model considered, if ~y thermalizes but � and  �
do not, then important simplifications can be made. The
thermal corrections in the action appear as a result of the
self-energies of the � and ~� fields. Inside the self-energy
loops, y and ~y are taken to be very light, so the Hard
Thermal Loop (HTL) approximation can be made, i.e.,
T 
 my;m~y. Outside the loop, however, the � fields are
heavy, and T � m�;m~�.

We use the imaginary time formalism and adopt the
notation that 4-momenta are written in upper case and 3-
momenta as written in lower case, so that P% � �!;p�.
The boson and fermion propagators of the � fields are G
and S respectively. The contribution to the effective poten-
tial of the inflaton field from the � fields is given by

V� �
Z d4P

�2��4
lndet�G�1� �

Z d4P

�2��4
lndet�S�1S��1�1=2

(37)

after regularization has been applied. The detailed calcu-
lation of the thermal corrections to the fermionic and
bosonic masses m� and m~� will be given in the following
sections.

A. Fermion Contribution

If we set y � �y1 � iy2�=
���
2

p
, then the yi y � terms in

Eq. (36) lead to two similar fermion self-energy diagrams
(Fig. 2) for ~�. The vertex factors are i

���
2

p
h and

���
2

p
h�5

respectively. Using the properties of �5, contributions from
both diagrams are found to be identical. Thermal feynman
rules applied to the diagram in Fig. 2 lead to an expression
for the fermion self-energy, �,

��P� � �4h2T
X
n

Z d3k

�2��3
�K6 � P6 ���K�~��P� K�;

(38)

where ��K�  K�2, k0 � 2n�T for bosons and k0 �
�2n� 1��T for fermions (denoted by a tilde).
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Many similar diagrams appear in the literature, for
example [39–42], specifically with regards to the HTL
loop corrections to electron propagators in QCD. The
calculation given here follows [41] with only slight
changes, due to having a scalar field rather than a vector
field. Therefore we only need quote the result,

��P� �
m2
f

2p
�0Q0

�
i!
p

�
�
m2
f

2p
� � p̂

�
1�

i!
p
Q0

�
i!
p

��
:

(39)

Note that the overall factor of 1=2, which is different to the
literature, is a convention we have adopted for the defini-
tion of mf for later convenience. Q0�x� is the Legendre
function of the second kind,

Q0�x� �
1

2
ln
x� 1

x� 1
: (40)

Accounting for the contribution of two diagrams, the fer-
mion thermal mass is

m2
f �

h2T2

2
: (41)

In our conventions, the inverse propagator is iS�1 � P6 �

m~� � � and thus can be written

iS�1 � A0�0 � As� � p̂�m~�; (42)

where

A0 � i!�
m2
f

2p
Q0

�
i!
p

�
(43)

As � p�
m2
f

2p

�
1�

i!
p
Q0

�
i!
p

��
: (44)

Hence the combination

�SS���1 � �A20 � A2s �m2
~�: (45)

The fermionic contribution to the effective potential (37)
becomes

Vf � �2
Z d4P

�2��4
ln
��
!�

im2
f

2p
Q0

�
i!
p

��
2

�

�
p�

m2
f

2p
�
im2

f

2p2
!Q0

�
i!
p

��
2
�m2

~�

	
: (46)
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We can obtain the leading terms using m� 
 mf,

Vf � �2
Z d4P

�2��4
lnf!2 � p2 �m2

~� �m2
fg �O�m4

f�:

(47)

The evaluation of this regularized integral is a standard
exercise,

Vf � �
1

32�2 �m
4
~� � 2m~�m

2
f� ln

�m2
~� �m2

f

%2

�
; (48)

where % has been introduced by the regularization.

B. Boson Contribution

Three diagrams are expected to contribute to the bosonic
self-energy as shown in Fig. 3. Because of the interaction
terms �i y y in Eq. (36), there will be two diagrams
similar to Fig. 3(a), with vertex factors i

���
2

p
h and

���
2

p
h�5

respectively. The two diagrams result in identical expres-
sions, each with a symmetry factor of 1=2 because the
fermions are Majorana. The self-energy for �1 from
Fig. 3(a) is given by

��P�a � h2T
X
n

Z d3k

�2��3
Tr�K6 �K6 � P6 ��~��K�~��K � P�:

(49)

In the HTL limit,

��P�a � �4h2T
X
n

Z d3k

�2��3
K2 ~��K�~��K � P�: (50)

Using ~��K�  K�2 the final result is a single fermion loop
expression,

��P�a � �4h2T
X
n

Z d3k

�2��3
~��K� �

1

6
h2T2: (51)

The second contribution stems from the four tadpole dia-
grams coming from the terms �2i y

2
i in Eq. (35). Each

diagram is identical, and has a symmetry factor of 1=2.
The self-energy is given by the expression,

��P�b � 4h2T
X
n

Z d3k

�2��3
��K� �

1

3
h2T2: (52)

The Feynman diagram in Fig. 3(c) does not result in an
O�T2� contribution to the self-energy, but instead gives a
χ

ψy

ψy

χ

(a)

χ

yi

χ

(b)

χ

yi

yi

χ

(c)

FIG. 3. Diagrams for the bosonic self-energy
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possibly important contribution of O�m2
��. The self-energy

contribution is given by

��P�c � 4g2h2�2T
X
n

Z d3k

�2��3
��K���K � P�: (53)

For the evaluation of this integral in the HTL limit see, for
example, [43]. The result is

��P�c � 4g2h2�2
Z dk

�2��2
1

p
ln
�
k� p
k� p

�
1

ekT � 1
: (54)

The integral evaluates to

��P�c 
1

2�2 g
2h2�2 log

T2

p2
(55)

in the HTL limit.
The inverse boson propagator is defined as G�1 � P2 �

m2
� ��. The total contribution from the first two diagrams

in Fig. 3 defines a contribution m2
b to the mass,

m2
b � �a ��b �

1

2
h2T2: (56)

Note that m2
� � 4g2�2, and the temperature dependent

part of �c can be regarded as a contribution to the finite
temperature coupling constant g�T�,

g2�T� � g2
�
1�

1

8�2 h
2 log

T2

%2

�
: (57)

Since the inflationary dynamics is not sensitive to the
precise value of g, we shall not distinguish between g
and g�T�.

The bosonic contribution to the effective potential is
obtained from the two fields �i,

Vb �
Z d4P

�2��4
lnfP2 �m2

� �m2
bg

�
1

32�2 �m
2
� �m2

b�
2 ln

�m2
� �m2

b

%2

�
: (58)
C. Effective Potential

The total effective potential is given by the sum of both
the fermionic and bosonic contributions. The largest of the
O�T2� terms cancel due to the fact that mb � mf. This is,
of course, due to the underlying supersymmetry, but it
happens despite the fact that supersymmetry is broken at
nonzero temperatures. The remaining O�T2� terms are due
to other sources of SUSY breaking. For the case of soft
SUSY breaking, we can consider the � boson and ~�
fermion masses,

m2
� � 2g2�2 �M02

s ; (59)

m2
~� � 2g2�2: (60)
-6



THERMAL EFFECTS ON PURE AND HYBRID INFLATION PHYSICAL REVIEW D 71, 023514 (2005)
The leading order terms in the potential are

V� �
1

32�2

�
�m2

� �m2
b�
2 ln

�m2
� �m2

b

%2

�

� �m2
~� �m2

f�
2 ln

�m2
~� �m2

f

%2

�)
� constant: (61)

For our scenario, g�
 M0
s, which results in

V� 
1

2
M2
s

�
g2�2 �

1

4
h2T2

��
ln
�g2�2 � 1

4h
2T2

g2�2
0

�
� 1

�

�
1

2
g2M2

s�2
0: (62)

We have defined M2
s � M02

s =�8�2�, and �0 has been
chosen such that both the potential and its derivative vanish
at � � �0 when T � 0.

The thermodynamic potential of the inflaton in the mod-
els under consideration is determined primarily by the �
loop contribution calculated above and the free energy of
the light radiation fields,

V��; T� � �
�2

90
g�T

4 � V���; T�: (63)

Fig. 4 graphically shows the temperature dependence of
the potential. The scale of the temperature corrections is set
by T0, where hT0 � 2g�0.

The Hybrid models (6) can be treated in a similar
manner if we couple the two heavy superfields to the light
superfield with equal couplings h (which is consistent with
an underlyingU�1� symmetry). The masses of the � and �0

fields are

m2
� � 2g2�2 � 2g2�2 (64)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

V
/V

0

φ/φ0

T=0.0T0
T=0.1T0
T=1.0T0

FIG. 4. The thermodynamic potential of the pure inflationary
model is depicted. On the vertical axis, V � VT��; T� �
VT�0; T� and V0 � VT�0; 0�. The critical temperature hT0 �
2g�0.
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m2
�0 � 2g2�2 � 2g2�2 (65)

m2
~� � m2

~�0 � 2g2�2: (66)

The one loop correction to the inflaton potential is now

V� �
1

4�2 g
4�4 ln

�
2g2�2 � 1

2h
2T2

g2�2

�
(67)

for �
 �.

D. Friction term

The zero temperature friction term calculated by Berera
and Ramos [21] can be modified for our interaction terms
with the decays �! �! 2~y and �! �! 2y,

� �
g4�2��

2��m2
� � �2��

1=2�2m��m
2
� � �2��

1=2 � 2m2
��
1=2
;

(68)

where �� is the � decay width,

�� �
h2

16�
m�

�
1�

4m2
y

m2
�

�
3=2

�
h2

16�
m�

�
1�

4m2
~y

m2
�

�
1=2
:

(69)

This reduces to the expression used earlier when my � 0
and m2

� � 2g2�2.
One would expect that the thermal corrections to � will

manifest themselves as corrections tom� and ��. Since the
latter already contains factors of h, the thermal corrections
to � will be of order h3T2. The correction to � due to m�

will be of order h4T2. The corrections to the effective
potential are order h2T2 and are therefore taken to be the
dominant effect. Corrections to the friction term can there-
fore be ignored.

E. Effects on the inflationary dynamics

The temperature range relevant for the warm inflationary
scenario was given in Eq. (32). In the models under dis-
cussion, h2T2 � g2�2 and the thermal corrections make
only a small change to the height of the thermodynamic
potential VT . The effect on the slope of the potential is
more delicate, however, and has to be investigated sepa-
rately. The slope can be quantified by the slow-roll pa-
rameter '. Consider the change in ',

)'
'

�
VT;�� � V;��

V;��
: (70)

In the nonhybrid case,

)'h
'h

�
h2T2h
g2�2

0

: (71)

Given Eqs. (33), (25), and (26), this correction is of order
10�5h2g�2 at most.
-7



LISA M. H. HALL AND IAN G. MOSS PHYSICAL REVIEW D 71, 023514 (2005)
For hybrid inflation, using (67),

)'h
'h

 �
h2T2h
g2�2

h

: (72)

Proceeding as above, using Eq. (34), this correction is of
order 10�7h2g�2.

IV. CONCLUSION

We have found that the inflation occurs naturally in
particle models with global supersymmetry when the dis-
sipative effects of particle production are taken into ac-
count. The warm inflationary scenario escapes the flatness
problems which arise when supercooled inflation is com-
bined with global supersymmetry. The parameter restric-
tions on the model are not severe, with the possible
exception of a gravitino constraint, and there is a corre-
spondence between mass parameters required for the ob-
served density fluctuation amplitude and the parameter
values of interest for supersymmetric Grand Unified
Theories.

We have demonstrated that, in a two stage reheating
process, the thermal corrections to the inflaton potential
are small, due to fermion-boson cancellations . The as-
sumptions used for the models have been relatively mild,
consisting mainly of the following:
(i) A
t least one superfield has vanishing, or very weak
coupling, to the inflaton and another has nonvan-
023514-8
ishing coupling. During inflation, the former will
naturally become a ‘‘light’’ sector, and the latter a
‘‘heavy’’ sector.
(ii) T
here is either (a) soft SUSY breaking in the heavy
sector, which we called the pure inflation model or
(b) a false vacuum energy, and two equally coupled
heavy superfields, which we identify as the hybrid
model.
(iii) W
e have assumed that the light radiation
thermalizes.
The last assumption was needed to avoid far from equilib-
rium calculations. However, in the absence of thermaliza-
tion, the energy will still be dumped into the light sector.
The important features of the light particle distribution can
be described in terms of nonthermal occupation numbers
n�k�. If the boson and fermion occupation numbers are
similar, we might still expect the cancellation of correction
to the effective potential which we have found here.

We have made use of the density fluctuation amplitude
when setting limits on the parameters in the models. If the
radiation does not thermalize, we would expect to find
changes in the predicted value of the density fluctuation
amplitude and this remains to be investigated further.
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