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Dynamics of interacting scalar fields in expanding space-time
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The effective equation of motion is derived for a scalar field interacting with other fields in a
Friedmann-Robertson-Walker background space-time. The dissipative behavior reflected in this effective
evolution equation is studied both in simplified approximations as well as numerically. The relevance of
our results to inflation are considered both in terms of the evolution of the inflaton field as well as its
fluctuation spectrum. A brief examination also is made of supersymmetric models that yield dissipative
effects during inflation.
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I. INTRODUCTION

It is by now well established that inflation models in
general have dissipative effects during the inflationary
period [1–5]. These effects have two major consequences
for inflationary dynamics. First they result in radiation
production during inflation, which in turn influences the
fluctuations that seed large scale structure. Second they
lead to temporally nonlocal terms in the effective evolution
equation of the inflaton, which can significantly influence
the nature and history of the inflation period. The realiza-
tion of these dissipative effects in inflation models has
resulted in the division of inflation into two dynamical
possibilities referred to as cold and warm inflation. Cold
inflation is simply the original picture of inflation envi-
sioned in the earliest works [6–8]. In this picture the
effects of dissipation are negligible. The fluctuations cre-
ated during inflation are effectively zero-point ground state
fluctuations and the evolution of the inflaton field is gov-
erned by a ground state evolution equation. In contrast, in
the warm inflation picture [9], inflationary expansion and
radiation production occur concurrently. In this picture, the
fluctuations created during inflation emerge from some
excited statistical state and the evolution of the inflaton
has dissipative terms arising from the interaction of the
inflaton with other fields.

The dividing point between warm and cold inflation is
roughly at �1=4

r � H, where �r is the radiation energy
density present during inflation and H is the Hubble pa-
rameter. Thus �1=4

r > H is the warm inflation regime and
�1=4
r < H is the cold inflation regime. This criteria is

independent of thermalization, but if such were to occur,
one sees this criteria basically amounts to the warm in-
flation regime corresponding to when T > H. This is easy
to understand since the typical inflaton mass during infla-
tion is m	 � H and so when T > H, thermal fluctuations
of the inflaton field will become important. This criteria for
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entering the warm inflation regime turns out to require the
dissipation of a very tiny fraction of the inflaton vacuum
energy during inflation. For example, for inflation with
vacuum (i.e., potential) energy at the grand unified theory
scale �1015–16 GeV, in order to produce radiation at the
scale of the Hubble parameter, which is � 1010–11 GeV, it
just requires dissipating one part in 1020 of this vacuum
energy density into radiation. Thus energetically not a very
significant amount of radiation production is required to
move into the warm inflation regime [10]. In fact the levels
are so small, and their eventual effects on density pertur-
bations and inflaton evolution are so significant, that care
must be taken to account for these effects in the analysis of
any inflation models.

In recent work [4,5], we have identified a key mecha-
nism which is generic in realistic inflation models and
which leads to robust warm inflation. This mechanism
involves the scalar inflaton field 	 exciting a heavy bo-
sonic field 
 which then decays to light fermions  d [3],

	! 
!  d: (1.1)

In dynamical terms, this mechanism is expressed in its
simplest form by an interaction Lagrangian density for
the coupling of the inflaton field to the other fields of the
form

L I � �1
2g

2	2
2 � g0	 
 
 
 � h
 
 d d; (1.2)

where  d are the light fermions to which 
 particles can
decay, with m
 > 2m d . Aside from the last term in
Eq. (1.2), these are the typical interactions commonly
used in studies of reheating after inflation [11,12]. How-
ever a realistic inflation model often can also have addi-
tional interactions outside the inflaton sector, with the
inclusion of the light fermions  d as depicted above being
a viable option. Moreover in minimal supersymmetry
(SUSY) extensions of the typical reheating model or multi-
field inflation models, the interactions of the form as given
in Eq. (1.2) can emerge as an automatic consequence of the
supersymmetric structure of the model. Since in the mod-
erate to strong perturbative regime, reheating and multi-
-1  2005 The American Physical Society
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field inflation models will require SUSY for controlling
radiative corrections, Eq. (1.2) with inclusion of the  d
field thus is a toy model representative of many realistic
situations.

In Ref. [5] we have presented some results for the above
mechanism in a fully expanding space-time dissipative
quantum field theory formalism. The primary purpose of
this paper is to supply the full details of the formalism used
in Ref. [5]. This paper presents the various approximations
used in the derivation, elaborates on the different aspects
of dissipative evolution and radiation production, and
discusses the impact of these results on the density pertur-
bation problem of inflation. Although the formalism pre-
sented here has general application, for most of this paper
we will focus on the mechanism of Eq. (1.1). The paper is
organized as follows. In Sec. II we compare the inflationary
dissipative process associated with Eq. (1.1) to the reheat-
ing process after inflation in the standard cold inflation
models. A simple picture of dissipation for both processes
is presented. This should help to illustrate the differences
between the two processes at work in the two cases. In
Sec. III the Lagrangian model studied in this paper is
presented. Also this section presents the real-time matrix
of Green’s functions needed for our calculations and their
evolution equations in expanding space-time. In Sec. IV
we present approximate solutions for these evolution equa-
tions using the WKB ansatz. The derivation of the effective
equation of motion for the inflaton field from a response
theory approach is done in Sec. V, where we also discuss
several simplifying assumptions for the nonlocal terms
appearing in the effective equation of motion. These basic
equations are then studied numerically in Sec. VI and the
validity of the different approximation schemes is explic-
itly tested for values of parameters of interest to inflation.
In Sec. VII we discuss SUSY models that realize the basic
interaction structure studied in this paper, Eq. (1.2). In
Sec. VIII we study the effects this dissipative process has
on density perturbations during inflation. Our concluding
remarks are given in Sec. IX. An Appendix is also included
where some details are given on the renormalization of the
effective equation of motion derived in this paper.
II. INTERPRETATION OF DISSIPATION IN THE
LINEAR AND NONLINEAR REGIMES

It is useful to contrast the dissipation process to be
discussed in the following sections to the dissipation pro-
cess in the (old) reheating studies. For this, consider for
instance the typical models for reheating, where an inflaton
field 	, with potential V�	�, is coupled either to spinor
fields  through the usual Yukawa coupling h	 
 and/or
to other scalar fields 
, with coupling g2	2
2, where in
this last case the inflaton potential has symmetry breaking,
with a minimum at 	 � 	v.

The typical reheating scenario is pictured in the time
period just after the inflationary regime, where the inflaton
023513
energy density is released in the form of decay products of
 and/or 
 particles. In the reheating regime the Hubble
constant H is smaller than the inflaton mass m	, which
means the inflaton can oscillate about the minimum, 	v,
of its potential V�	�. In addition, to have particle produc-
tion it requires m	 to be sufficiently large so 	 can decay,
m	 >min�2m ; 2m
�. Typically one takesm	 	 m ;m
.
In this regime the equation of motion is simple to treat for
small inflaton amplitude. For example in a quartic inflaton
potential with self-coupling �, a perturbative treatment is
possible under the conditions �	�0� 
 m	;m
;m . In
such a regime, the equation of motion for the homogeneous
inflaton field 	�t�, including quantum corrections, is given
by the general linearized form [11]

�	�t� � 3H _	�t� � �m2
	 ���k�
	�t� � 0; (2.1)

where ��k� is the polarization, or self-energy operator for
	, with four-momentum k � �!; 0; 0; 0�, with ! � m	.
Because of the condition m	 >min�2m ; 2m
� the 	
self-energy has a nonzero imaginary part Im�. The real
part of the self-energy only renormalizes the mass m	,
giving an effective mass to the inflaton, while the imagi-
nary part is associated with the damping of	modes due to
decay, with the decay rate given by � � �Im��!�=�2!�.
In the regime Im� 
 m2

	, the solution of (2.1) ends up
being the same as if we just replaced this equation with one
having a frictionlike term proportional to �,

�	�t� � 3H _	�t� �m2
		�t� � � _	�t� � 0: (2.2)

Note that in this derivation, since we are considering the
regime H 
 m	;m
;m , the curvature of the Universe is
not important in the calculation of the self-energy. As such
the decay rate calculation is typically just done in
Minkowski space-time. Thus for the two decay processes
of interest	! 
� 
, or	!  � 
 , in the rest frame of
the 	 particle the respective decay rates are

�	!

 �
g4	2

v

8�m	
; �	! 
 �

h2m	

8�
; (2.3)

where we have considered m	 	 m ;m
. Equation (2.2)
with Eq. (2.3) comprises the basic particle production
process in the old reheating studies.

As is well known [13], the rates � also can be expressed
in terms of the amplitude square for decay processes. This
is illustrated in Fig. 1, where the imaginary term contrib-
uting to the rate of decays can be obtained by cutting the
diagrams in half. In a dynamical problem, when the 	
modes of given energy ! and momentum k are displaced
from equilibrium, these modes get damped and it is the rate
� that describes the approach to equilibrium. This ap-
proach to equilibrium is then naturally associated to a
dissipative, or irreversible process. This picture is therefore
closely related to that of a system (e.g., 	) in interaction
with an environment (e.g., the 
 bosons and  fermions),
-2
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FIG. 1. The cut in the one-loop self-energy diagram and the
amplitude of the decay process associated to it. Full lines stand
for the scalar 	 and dotted lines to the spinors  , 
 . An
analogous process follows for the decay 	! 

.
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in which dissipation (and also noise) results from these
interactions. More formally stated in quantum mechanical
terms [14], we describe the state of the system by its
reduced density matrix (by integrating out the bath de-
grees). Because of interactions, the state of the system gets
entangled with the state of the bath and therefore some
initial pure state of the system will end up turning into a
mixture. This is an irreversible process, often called deco-
herence, that results from the nonunitary system evolution.

We should also point out that although dissipation ap-
pears as a generic consequence for a system in interaction
with a bath or environment, the simple representation for
the dissipation, as in Eq. (2.2) and the derivation of it,
implies a number of simplifying assumptions whose valid-
ity needs to be checked. For instance, the derivation of
Eq. (2.2) refers just to a very particular regime for the
inflaton field, when it is oscillating around the minimum
of its potential, with small field amplitudes and in the
perturbative regime (or the linear relaxation regime). For
this case the effective equation of motion of 	 has the
simplified linearized form Eq. (2.2). This simplified equa-
tion would not apply in nonlinear regimes, when large field
amplitudes dominate the dynamics, for example, in the
description for the field modes during preheating, or in
any other situation where nonperturbative effects play a
relevant role in the description of field dynamics. Even in
the linear regimes, Eq. (2.2) can be shown to be valid only
up to a time interval �t & 1=� [15], beyond which the
decay of 	 is no longer exponential but power law, which
itself indicates the breakdown of the perturbative approxi-
mation used to derive Eq. (2.2). It is clear that in more
general cases of large field amplitudes or beyond the
perturbative approximation, the expected effective equa-
tion of motion for the scalar field 	 must become very
different than the simple equation (2.2). Indeed, in general
the effective equation of motion for an arbitrary scalar
background field is a nonlocal equation. For example, in
=

FIG. 2. The lowest order terms of the effective propagator for the s
black ellipse stands for the spinors quantum corrections and the das
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the nonlinear regime or for high field amplitudes, the
description of the effective dynamics is not a simple local
equation of motion (see, e.g., Refs. [1,3,16]). In addition,
as we move away from the regime of validity of linear
relaxation dynamics, it may become possible to find other
dissipative mechanisms not directly associated to the direct
decay process that leads to Eq. (2.2). In fact, as shown in
recent work [3,4], even in the case where the inflaton
cannot decay, but fields coupled to it do (actually, 	 does
not even need to be the heaviest field), dissipative regimes
arise that are not available in the linear or perturbative
regime.

An example of interactions leading to a nontrivial in-
flaton dissipative dynamics is for instance the ones shown
in Eq. (1.2), where now m
 >min�2m d;m	� and m	 <
min�m 
;m
�. Here the 
 particles can decay into fermi-
ons  d that are coupled to it, but there are no kinematically
allowed direct decays of 	 into other particles. Never-
theless it is simple to understand from elementary particle
physics the origin and nature of dissipation for the inflaton
in this case. We look at those processes involving 	 that
may have an imaginary term and so in analogy to (2.1) can
be associated to dissipation. This is better interpreted in
terms of an effective theory for 	 after integrating over the
other fields. We can start doing this by first integrating over
the  d fermion field. Since this field only couples to 
, its
main effect is to dress the 
 scalar propagator, as shown
schematically in Fig. 2. Note that the lowest order correc-
tion to 
 goes exactly like the previous case analyzed
above, in which the 	 field could decay into  particles.
The leading order one-loop self-energy contribution to 
,
�
�k�, has a real part that represents a shift in the mass
squared of the 
 and an imaginary part that represents the
rate of its decay, as is kinematically allowed. This is the
same kind of process shown in Fig. 1, by replacing the ex-
ternal lines by 
 and the internal ones by the spinors  d.
Next we can now perform the integration over the (dressed)

 scalar particles and the  
 spinors coupled to 	. The
relevant contributions to our dissipative mechanism are
due to the 
 decay (see, however, later in Sec. V a dis-
cussion on the role of the  
 spinors). We now have
processes contributing to the effective action to 	 like
the ones shown in Fig. 3. At leading order, the important
contribution to dissipation in the effective equation of
motion for 	 arises now from the one-loop vertex diagram
shown in Fig. 4. By cutting that diagram in half we are now
led to an imaginary contribution that can be seen as a
dissipative term appearing in the effective equation of
. . . .++

calar 
 after integrating over the fermion fields coupled to it. The
hed lines to the 
 propagator.
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FIG. 3. Some of the lowest order diagrams contributing to the
action of	 after integrating over the scalar 
 and spinors  d, 
 d.
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motion of 	. This can be understood from the amplitude
shown in Fig. 4, which represents a scattering process of a
	 by a virtual 
 that then decays into the fermion particles.
This process can be interpreted in terms of the effective
theory for 	, where an evolving background 	-field con-
figuration excites 	-energy modes which then decay into
the light fermions  d, with that decay mediated by (virtual)

 particles. The resulting dissipative term appearing in
the effective equation of motion for 	 can be seen from
the square amplitude shown in Fig. 4 to be of order
O�	2g4�
! d 
 d�. This result is in fact corroborated by
the explicit derivation of the dissipation term in Sec. V.
We can also note that this result is nonlinear in the 	 field
amplitude, since it originates from a scattering process
(involving two 	 particles and two virtual 
 particles)
and it is nonperturbative in nature, since it involves the
FIG. 4. The cut in the lowest order nontrivial diagram appearing in
amplitude associated to it.
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dressed 
 propagators based on a resummation, which
means that physically the 	 field is not interacting with
vacuum like 
 excitations but rather with the collective 

excitations.

It should be noted that the dissipative processes as
represented in Fig. 4 are of higher order than the ones
shown in Fig. 1. However, due to the nontrivial nature of
the latter, they may become important in those regimes
characterized by high 	 amplitudes (and then outside the
region of validity of linear relaxation theory), and cou-
plings [g and h in Eq. (1.2)] that are not perturbatively
small. It is exactly in this region of parameters that we will
find the relevance to inflationary dynamics of the nonlinear
dissipative mechanism discussed here and derived in this
paper.

III. A WORKING MODEL OF A SCALAR FIELD IN
INTERACTION WITH MULTIPLE OTHER FIELDS

Consider the following model initially presented in [4],
which consists of a scalar field � interacting with a set of
scalar fields 
j, j � 1; . . . ; N
 and these scalar fields in
turn interact with fermion fields  k, k � 1; . . . ; N . Here
we work in the Friedmann-Robertson-Walker (FRW) back-
ground metric ds2 � dt2 � a�t�2dx2. The Lagrangian den-
sity for the matter fields coupled to the gravitational field
tensor g�� is given by
L��; 
j; 
 k;  k; g��
 �
�������
�g

p
�
1

2
g��@��@���

m2
	

2
�2 �

�
4!

�4 �
 
2
R�2 �

XN

j�1

�
g��

1

2
@�
j@�
j �

m2

j

2

2
j

�
fj
4!

4
j �

g2j
2

�2
2
j �

 
2
R
2

j

�
�
XN 
k�1

�
i k$

��@� �!�� k � 
 k

�
m k �

XN

j�1

hkj;

j

�
 k

��
; (3.1)
where R is the curvature scalar,

R � 6
�
�a
a
�

_a2

a2

�
; (3.2)

 is the dimensionless parameter describing the coupling
of the matter fields to the gravitational background and all
coupling constants are positive: �, fj; g2j ; hkj;
 > 0. In the
last term involving the fermion fields, the $� matrices are
related to the vierbein ea� (where g�� � ea�eb�'ab, with'ab
the usual Minkowski metric tensor) by [17] $��x� �
$ae�a �x�, where $a are the usual Dirac matrices and !� �
��i=4�)abe�ar�eb�, with )ab � i�$a; $b
=2.

We are interested in obtaining the effective equation of
motion (EOM) for a scalar field configuration ’ � h�i
after integrating out the � fluctuations, the scalars 
j, and
2
ψ

ψ

φ

φ χ

χ

Γχ
4gφ2O( ψψ)

the effective action of 	 that has an imaginary part and the main
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spinors  k, 
 k. This is a typical ’’system-environment’’
decomposition of the problem in which’ is regarded as the
system field and everything else is the environment, which,
in particular, means the � fluctuation modes, the scalars

j, and the spinors  k, 
 k are regarded as the environment
bath. In a Minkowski background, at T � 0, the EOM for
’ has been derived in [3] using the Schwinger closed-time
path formalism. Here we follow a completely analogous
approach and derive the EOM in a FRW background. The
field equation for � can be readily obtained from Eq. (3.1)
and it is given by

��� 3
_a
a

_��
r2

a2
��m2

	��
�
6
�3 �  R��

XN

j�1

g2j��x�
2
j �x� � 0: (3.3)

In order to obtain the effective EOM for ’, we use the
tadpole method. In this method we split � in Eq. (3.3), as
usual, into the (homogeneous) classical expectation value
’�t� � h�i and a quantum fluctuation 	�x�, ��x� �
’�t� �	�x�. This way, the field equation for �, after
taking the average (with h	�x�i � 0), becomes
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�’�t� � 3
_a�t�
a�t�

_’�t� �m2
	’�t� �

�
6
’3�t��

 R�t�’�t� �
�
2
’�t�h	2i �

�
6
h	3i�

XN

j�1

g2j �’�t�h

2
j i � h	
2

j i
 � 0; (3.4)

where h	2i, h	3i, h
2
j i, and h	
2

j i can be expressed [3] in
terms of the coincidence limit of the (causal) two-point
Green’s functionsG��

	 �x; x0� andG��

j �x; x0�, for the � and


j fields, respectively. These Green’s functions are appro-
priately defined in the context of the Schwinger closed-
time path (CTP) formalism [18]. They are obtained from
the �1; 1� component of the real-time matrix of effective
propagators, which satisfy the appropriate Schwinger-
Dyson equations (see, e.g., [1,19] for further details).
These equations satisfied by the effective (or dressed)
propagators emerge from the successive integrations over
the bath fields in (3.1). The integration over the spinors  k,

 k leads to dressed propagators for the 
j fields (see, e.g.,

Fig. 2), which are then given by (in the FRW background)
�
@2

@t2
� 3

_a
a
@
@t

�
r2

a2
�m2


j � g2j’�t�
2 �  R�t�

�
G
j�x; x

0� �
Z
d4z�
j�x; z�G
j�z; x

0� � i
-�x; x0�

a3=2�t�a3=2�t0�
; (3.5)

where �
j�x; y� is the self-energy for 
j due to the coupling to the spinors  k, 
 k. Next, by integrating over the 
j and 	
fluctuations we are left with an effective propagator for the � fields that is also formally defined by�

@2

@t2
� 3

_a
a
@
@t

�
r2

a2
�m2

	 �
�
2
’�t�2 �  R�t�

�
G	�x; x

0� �
Z
d4z�	�x; z�G	�z; x

0� � i
-�x; x0�

a3=2�t�a3=2�t0�
; (3.6)

where �	�x; y� denotes now the self-energy for � after integrating over the remaining bath fields.
In the CTP formalism of quantum field theory, Eqs. (3.5) and (3.6) are matrix equations for the propagators and self-

energies, where, for instance, by expressingG	�x; x0� in terms of its momentum-space Fourier transform (and analogously
for G
j), it can be expressed in the form

G	�x; x
0� � i

Z d3q

�2��3
eiq��x�x0�

�G��
	 �q; t; t0� G��

	 �q; t; t0�
G��
	 �q; t; t0� G��

	 �q; t; t0�

�
; (3.7)
where

G��
	 �q; t; t0� � G>

	�q; t; t
0�0�t� t0� �G<

	�q; t; t
0�0�t0 � t�;

G��
	 �q; t; t0� � G>

	�q; t; t
0�0�t0 � t� �G<

	�q; t; t
0�0�t� t0�;

G��
	 �q; t; t0� � G<

	�q; t; t
0�;

G��
	 �q; t; t0� � G>

	�q; t; t
0�; (3.8)

with each matrix element defined in terms of two-point
correlations of the fields that are on each branch of the CTP
contour [18]. In writing (3.7) we are assuming that G�x; x0�
depends only on the difference x� x0, which follows for
homogeneous field configurations, as is our interest here.
The elements of the propagator matrix, Eq. (3.8), for both
the scalar bosons 	 and 
j, are found to satisfy the con-
ditions

G>�x; x0� � G<�x0; x�;

�iG>�<��x; x0�
y � iG<�>��x; x0�;

�G>�<��q; t; t0�
y � G>�<��q; t0; t�;

d
dt

�G>�q; t; t0� �G>�q; t0; t�
jt�t0 � i-�t� t0�; (3.9)

where the third condition in (3.9) is just a result of the first
two conditions. The definitions of the retarded and ad-
-5
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vanced propagators are also given in terms of the matrix
elements of the two-point function in the CTP formalism:

Gret�x; x0� � 0�t� t0��G>�x; x0� �G<�x; x0�


� G���x; x0� �G���x; x0�; (3.10)

Gadv�x; x0� � 0�t0 � t��G<�x; x0� �G>�x; x0�


� G���x; x0� �G���x; x0�: (3.11)

In particular, we have the known result that Gret�x; x0� �
Gadv�x0; x�.

The self-energy matrix elements are also expressed in a
similar way to the propagators in the CTP formalism as

���
	 �x; x0� � �>

	�x; x
0�0�t� t0� � �<

	�x; x
0�0�t0 � t�;

���
	 �x; x0� � �>

	�x; x
0�0�t0 � t� � �<

	�x; x
0�0�t� t0�;

���
	 �x; x0� � ��<

	�x; x
0�; ���

	 �x; x0� � ��>
	�x; x

0�;

(3.12)

with analogous expressions for the 
j self-energy ele-
ments. From (3.12) the following property follows:

����x; x0� �����x; x0� � ����x; x0� � ����x; x0� � 0:

(3.13)
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In addition the elements in (3.12) are found in general to
satisfy conditions similar to those in (3.9), which are valid
for both the scalar bosons 	 and 
j,
�>�x; x0� � �<�x0; x�; �i�>�<��x; x0�
y � i�<�>��x; x0�:

(3.14)
In terms of Eq. (3.12) and the equations for the fluctua-
tion field modes derived from Eq. (3.1), we can write
general expressions for the solutions for the G>�<� propa-
gator functions. For instance, consider the fluctuations
equation for the 
j fields that can be obtained after inte-
grating over the fermion  k; 
 k. This equation is obtained
from the quadratic action in the 
j scalar fields, S2�
j

obtained from Eq. (3.1). In the CTP formalism it is ob-
tained by identifying fields in each branch of the
Schwinger’s closed-time path contour, with fields in
the forward and backward segments of the CTP time
contour identified as 
�

j and 
�
j , respectively (see, e.g.,

[16]). In term of these fields, we can express the quadratic
action for the 
j fields, after integration over the fermions
as
S2�
�
j ; 


�
j 
 �

1

2

Z
d4xa3�t�

���@
�
j

@t

�
2
� 
�

j

�
�

r2

a2�t�
�M2


j

�

�
j

�
�

��@
�
j

@t

�
2
� 
�

j

�
�

r2

a2�t�
�M2


j

�

�
j

��

�
Z
d4xa3�t�

Z
d4x0a3�t0�

1

2
�
�

j �x��
��

j �x; x0�
�

j �x
0� � 
�

j �x��
��

j �x; x0�
�

j �x
0�

� 
�
j �x��

��

j �x; x0�
�

j �x
0� � 
�

j �x��
��

j �x; x0�
�

j �x
0�
; (3.15)

where M2

j � m2


j � g2j’
2�t� �  R�t�, ’�t� is the background � field, and �
j�x; x

0� denotes the fermion loop contribu-
tions, which dress the 
j fields. It is now useful to use in Eq. (3.15) the redefined fields given by [16]


cj �
1
2�


�
j � 
�

j �; 
�
j � 
�

j � 
�
j ; (3.16)

along with the identity (3.13), which leads to the result

S2�
cj ; 

�
j 
 �

Z
d4xa3�t�

�

�
j

�
�
@2

@t2
� 3

_a
a
@
@t

�
r2

a2
�M2


j

�

cj

�
�
Z
d4xa3�t�

Z
d4x0a3�t0�f
�

j �x���
��

j �x; x0�

����

j �x; x0� � ���


j �x; x0� ����

j �x; x0�

cj�x

0� � 
�
j �x���

��

j �x; x0� � ���


j �x; x0� � ���

j �x; x0�

����

j �x; x0�

�

j �x
0�g: (3.17)

Using Eqs. (3.12) and (3.13), the argument involving the self-energies in the second term in Eq. (3.17) becomes

���

j �x; x0� ����


j �x; x0� � ���

j �x; x0� � ���


j �x; x0� � 2����

j �x; x0� � ���


j �x; x0�


� 20�t1 � t2���
>

j�x; x

0� ��<

j�x; x

0�
 � �
j�x; x
0�

� �1;
j�x; x
0� ��2;
j�x; x

0�; (3.18)

where

�1;
j�x; x
0� � �20�t1 � t2� � 1
��>


j�x; x
0� � �<


j�x; x
0�
; �2;
j�x; x

0� � �>

j�x; x

0� � �<

j�x; x

0�; (3.19)
-6
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which, from (3.14) have the properties �1;
j�x; x
0� �

�1;
j�x
0; x� and �2;
j�x; x

0� � ��2;
j�x
0; x�. Similarly,

the self-energy contributions in the third term in
Eq. (3.17) can be written as

���

j �x; x0� � ���


j �x; x0� ����

j �x; x0� ����


j �x; x0�

� 2��>

j�x; x

0� � �<

j�x; x

0�


� 2iIm��>

j�x; x

0� � �<

j�x; x

0�
; (3.20)

where the last equality in (3.20) follows from (3.14), from
which we see that �>


j�x; x
0� ��<


j�x; x
0� must be purely

imaginary.
By substituting Eqs. (3.18) and (3.20) in (3.17), due to

the result (3.20), we are led to an imaginary contribution to
the effective action for the 
j fields. This imaginary term
can be appropriately interpreted as coming from a func-
tional integral over a stochastic field, which then turns the
evolution equation for 
j into a stochastic form due to the
presence of a noise term [16]. Thus the complete evolution
equation for the modes and background fields includes
noise terms. Though their study is particularly difficult,
previous estimates of their effects on the background dy-
namics during inflation and reheating [20] show that
changes in the dynamics and energy densities are marginal
for a chaotic inflation kind of models and within parameter
values for coupling constants (�; gj; hk) corresponding to
the cases of interest in this paper. Because of this we can
neglect the stochastic noise terms appearing in (3.17). On
the other hand these noise terms are important in obtaining
the first principles evolution equation for the fluctuating
modes of the inflaton, such as for studying density fluctua-
tions during inflation; however in this paper we will not go
that far. Thus by defining the evolution equation for 
j
modes from [16],

-S2�

c
j ; 


�
j 



�
j

j
�
j �0 � 0; (3.21)

we are led to the following equation for the 
j modes
f
j�q; t� in momentum space:�

d2

dt2
� 3

_a
a
@
@t

�
q2

a2
�M2


j�t�
�
f
j�q; t��Z

dt0a3�t0��
j�q; t; t
0�f
j�q; t

0� � 0; (3.22)

where �
j�q; t; t
0� is the spatial Fourier transform of the 
j

field self-energy term given by Eq. (3.18). An analogous
expression for the fluctuation 	 modes also follows, like
Eq. (3.22), with M2

	�t� � m2
	 � �

2’�t�
2 �  R�t� and self-

energy terms coming from the dressing due to 
j and 	
loops. The initial conditions for these field mode differen-
tial equations will be explicitly stated below for the case of
conformal time. Though this is not of special concern in
this work, this is a convenient way to circumvent known
023513
subtle issues of renormalization dependence on the initial
conditions in gravitational backgrounds when formulated
in comoving time [21].

In terms of the general solutions of (3.22), f1;2�q; t� and
their complex conjugate solutions, obtained equivalently
from, e.g., the complex conjugate of Eq. (3.22) [note that
when the bath self-energy term entering in (3.22) has an
imaginary part, the equation becomes non-Hermitian], we
then can write general expressions for the CTP propagator
terms, for both the scalars 	 and 
j, in agreement with the
continuity conditions expressed in Eq. (3.9), in the general
form [22,23]

G>�q; t; t0� � f1�q; t�f2�q; t0�0�t� t0�

� f�1�q; t
0�f�2�q; t�0�t

0 � t�;

G<�q; t; t0� � f�1�q; t�f
�
2�q; t

0�0�t� t0�

� f1�q; t0�f2�q; t�0�t0 � t�:

(3.23)

The solutions f1;2�q; t� and the appropriated initial condi-
tions needed to determine them are discussed below.
IV. SOLVING FOR THE MODE FUNCTIONS AND
REAL-TIME INTERACTING PROPAGATORS

Typically, equations for the mode functions for an inter-
acting model, of the general form as given by Eq. (3.22),
can be very difficult to solve analytically, in particular, for
an expanding background. There are, however, a few par-
ticular cases, like for de Sitter expansion H � const, so
a�t� � exp�Ht�, and power law expansion a�t� � tn, where
solutions for the mode equation for free fluctuations are
known in exact analytical form (see, e.g., Ref. [21]). For
instance the mode equation for free fluctuations in de Sitter
is (where in this case the scalar of curvature becomes R �
12H2)�
d2

dt2
� 3H

d
dt

�q2e�2Ht�m2 � 12 H2

�
fde Sitter�q; t� � 0;

(4.1)

which has known solutions given in terms of Bessel func-
tions of the first and second kinds,

f1;2�q; t� � J��qe�Ht=H�; Y��qe�Ht=H�; (4.2)

with � � �i
�������������������������������������������
m2=H2 � 12 � 9=4

p
. The other case where

we can find an exact solution for the modes corresponds to
power law expansion, where, by considering a�t� � �t=t0�

n

and massless (free) fields with minimal coupling ( � 0),
the solutions are given by [24]

f1;2�q; t� � t1=2H�1�
�

�
qtn0t

1�n

n� 1

�
; t1=2H�2�

�

�
qtn0t

1�n

n� 1

�
;

(4.3)
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with � � �1� 3n�=�2�1� n�
 and H�1;2�
� �x� �

J��x� � iY��x� are the Hankel functions.
Alternatively, for deriving an approximate solution for

the mode functions in the interacting case, we can apply a
WKB approximation for equations of the general form
Eq. (3.22) and then check the validity of the approximation
for the parameter and dynamical regime of interest to us.
As will be seen below, under the dynamical conditions we
are interested in studying in this paper, this approximation
will suit our purposes. Let us briefly recall the WKB
approximation and its general validity regime, when ap-
plied to obtaining approximate solutions for field mode
equations. An approximated WKB solution for a mode
equation like �

d2

dt2
�!2�q; t�

�
f�q; t� � 0; (4.4)

is of the form fWKB�q; t� � 1=�!�q; t�
1=2 �
exp��i

R
t dt00!�q; t00�
, which holds under the general

adiabatic condition _!�q; t� 
 !2�q; t�. We must point
out that there are no problems in extending this approxi-
mation to an expanding background and in fact it is a
common approximation taken for instance in the analysis
of perturbation modes in the adiabatic regime [25]. In that
case, however, massless modes are considered and so the
approximation holds only for large enough physical mo-
menta q=a	 H, corresponding to wavelengths deep in-
side the horizon. Here, instead, we work in the large mass
scale regime, e.g., m
 	 H. In this regime the WKB
approximation is also valid. This can easily be checked
by comparing the WKB solution fWKB with the one ob-
tained from the exact solution for the modes equations,
e.g., given by (4.2), fexact�q; t�, for free fields in de Sitter
space-time. For example, it is useful to examine the ratio
jfWKB=fexactj. For both solutions the same initial/boundary
conditions are taken (in conformity to the Bunch-Davies
vacuum [21]) at t0 (and let’s say t0 � 0), so both results
match at the initial time. They also match in the asymptotic
q! 1 or H ! 0 limits, as they should, so as to correctly
reproduce the Minkowski results. But they are also found
to match very well for masses m	 H, independent of the
value of the physical momenta (in particular even for
q=a
 H 
 m). For example, it can easily be checked
that for (in units of H)  � 0, q=a � 0:01H and for m �
10H, the overall numerical difference between the exact
and approximated WKB forms for the modes is at most not
more than 1% for an evolution in the first ten e folds and
this discrepancy gets smaller for longer evolutions. For the
typical parameters we consider in this work (in Sec. VI)
and relevant for the dissipation mechanism discussed in
Sec. II, we have for example m
 * 106H, and so the WKB
approximation is expected to be excellent, which is indeed
confirmed by the numerical results to be shown later in this
paper. In addition, note also that large mass scales, m	
H, imply that curvature effects in the field quantum cor-
023513
rections to be considered for the background inflaton field
are subleading, with the dominant terms being the
Minkowski-like corrections.

Proceeding with our derivations, consider then a differ-
ential equation in the form of Eq. (3.22). Instead of work-
ing in cosmic time, it is more convenient to work in
conformal time 7, defined by d7 � dt=a�t�, in which
case the metric becomes conformally flat,

ds2 � a�7�2�d72 � dx2�: (4.5)

By also defining a rescaled mode field in conformal time
by

1

a�7�

f�q; 7� � f�q; t�; (4.6)

we can then reexpress Eq. (3.22) in the form (generically
valid for either 	 or 
j scalar fluctuations)

d2

d72

f�q;7�� 
!�q;7�2 
f�q;7��

Z
d70 
��q;7;70� 
f�q;70�� 0;

(4.7)

where we have defined


!�q; 7�2 � q2 � a�7�2
�
M2 �

�
 �

1

6

�
R�7�

�
: (4.8)

In (4.8) the conformal symmetry appears in an explicit
form, with  � 1=6 referring to fields conformally coupled
to the curvature, while  � 0 gives the minimally coupled
case. Note also that in conformal time the scalar curvature
becomes

R�7� �
6

a3
d2a

d72
: (4.9)

In Eq. (4.7) we have also defined the self-energy in con-
formal time as


��q; 7; 70�

a�7�3=2a�70�3=2
� ��q; t; t0�; (4.10)

where the self-energy contribution �, coming from the
integration over the bath fields, is given by the space
Fourier transformed form for Eq. (3.18). In (3.18), � was
split into symmetric and antisymmetric pieces with respect
to its argument as defined in Eq. (3.19) Thus based on
Eq. (3.19), the self-energy term in (4.7) can then be written
as 
��q; 7; 70� � 
�1�q; 7; 70� � 
�2�q; 7; 70�. In addition,
by writing the self-energy term in a diagonal (local) form
[26,27]


��q; 7; 70� � 
��q; 7�-�7� 70�

� � 
�1�q; 7� � 
�2�q; 7�
-�7� 70�; (4.11)

and from the properties satisfied by �1 and �2, it results
that 
�1�q; 7� must be real, while 
�2�q; 7� must be purely
imaginary. The real part of the self-energy contributes to
-8
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both mass and wave function renormalization terms that
can be taken into account by a proper redefinition of both
the field and mass M. On the other hand, the imaginary
term of the self-energy is associated with decaying pro-
cesses, as discussed previously. So, we can now relate the
decay width in terms of the CTP self-energy terms as


� � �
Im 
�

2 
!
�


�> � 
�<

2 
!
; (4.12)

and Eq. (4.7) can be put in the form

�
d2

d72
� 
!�q; 7�2 � 2i 
!�q; 7� 
��q; 7�

�

f�q; 7� � 0: (4.13)

We can now proceed to obtain a standard WKB solution for
Eq. (4.13). To do this, following the usual WKB procedure,
we assume the solution to have the form 
f�q; 7� �
c exp�i$�q; 7�
, where c is some constant that can be fixed
by the initial conditions, given by (4.18) below. This form
of the solution is then substituted into (4.13) to give

i$00 � $02 � 
!2 � 2i 
! 
� � 0: (4.14)

Working in the standard WKB approximation, for the
zeroth order approximation we neglect the second deriva-
tive term in (4.14). Then, by taking 
� 
 
!, we obtain

$0 � �
Z 7

70
d70� 
!� i 
��; (4.15)

which is then used back in (4.14) for the second derivative
term to determine the next order approximation,

$1 � �
Z 7

70
d70� 
!� i 
��O� 
!02= 
!3�
 � i ln

����

!

p
: (4.16)

The next and following orders in the approximation bring
higher powers and derivatives of 
!0= 
!2, which in the
adiabatic regime, 
!0= 
!2 
 1, are negligible and we are
then led to the result


f 1;2�q; 7� �
c����

!

p exp
�
�i

Z 7

70
d70� 
!� i 
��

�
: (4.17)

The solutions for the modes of the form (4.17) and their
complex conjugate are general within the adiabatic, or
WKB, approximation regime of dynamics. Finally, we
completely and uniquely determine the modes by fixing
the initial conditions at some initial reference time 70,
which can be chosen such that in the limit of k! 1 or
H ! 0 we reproduce the Minkowski results. These con-
ditions, which correspond to the ones for the Bunch-Davis
vacuum [21], can be written as
023513

f 1;2�q; 70� �
1���������������

2 
!�70�
p ; 
f01;2�q; 70� � �i

�����������������

!�70�=2

q
;

(4.18)

which already fixes the constant c in (4.17) as c � 1=
���
2

p
.

Using the above results in (3.23) and after returning to
cosmic time t, we obtain the result, valid within the WKB
approximation, or adiabatic regime,

G>�<��q; t; t0� �
1

�a�t�a�t0�
3=2
~G>�<��q; t; t0�; (4.19)

where

~G>�q; t; t0� �
1

2�!�t�!�t0�
1=2
fe�i

R
t

t0
dt00�!�t00��i��t00�
0�t� t0�

� e�i
R
t

t0
dt00�!�t00��i��t00�
0�t0 � t�g;

~G<�q; t; t0� � ~G>�q; t0; t�; (4.20)

where � is the field decay width in cosmic time, obtained
from (4.12) and

!�t� �

����������������������������
q2

a�t�2
�M2�t�

s
; (4.21)

with M2�t�, for � particles, given by

M2
	�t� � m2

	 �
�
2
’�t�2 �

�
 �

1

6

�
R�t�; (4.22)

while for 
j particles,

M2

j�t� � m2


j � g2j’�t�
2 �

�
 �

1

6

�
R�t�: (4.23)

The same result (4.20) could in principle be inferred in
an alternative way by expressing the propagator expres-
sions in terms of a spectral function, defined by a Fourier
transform for the difference between the retarded and
advanced dressed propagators, given by Eqs. (3.10) and
(3.11), and approximating the spectral function as a stan-
dard Breit-Wigner form with width given by � and poles
determining the arguments of the exponential in (4.17) and
its complex conjugate [16]. The validity of this approxi-
mation, in particular, was recently numerically tested and
verified in Ref. [28] for a 1� 1d scalar field in Minkowski
space-time. In the Minkowski space-time case, results
analogous to Eq. (4.20) were explicitly derived in
Refs. [1,3,16,19]. Indeed, for the case of no expansion
a�t� � const, Eq. (4.20) reproduces the same analogous
expressions as found in the case of Minkowski space-time.

The result (4.20), from the previous approximations used
to derive the WKB solution (4.17), is valid under the
requirements

�	 
 !	; �
j 
 !
j; (4.24)

and the adiabatic conditions,
-9
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!0
	


!2
	

�
_a=a
!	

�
_!	

!2
	


 1;

!0

j


!2

j

�
_a=a
!
j

�
_!
j

!2

j


 1;

(4.25)

where in the second term in the Eqs. (4.25) we have made

the change back to comoving time and used 
! �

a�t�!�t� � a
��������������������������
q2=a2 �M2

p
. The conditions (4.24) are ge-

nerically valid in perturbation theory. The second set of
conditions given by (4.25) are the usual conditions imposed
in the derivative expansion for the WKB solution (which
recall was here obtained for convenience in conformal
time). These conditions are valid whenever the adiabatic
conditions for the background field ’�t� are satisfied,
which is the case for a slowly moving field. They are
also satisfied for those modes deep inside the horizon, q	
aH, which is useful when expressing the WKB solution as
a large momentum expansion and for explicit renormaliza-
tion purposes. Finally, the condition (4.25) is also found to
be satisfied for those modes outside the horizon, q
 aH,
provided the masses M	 and M
j are much larger than the
Hubble scale and their time dependence evolves in an
adiabatic manner. To better see these different regimes of
validity of Eq. (4.25), we look at the two extreme cases of
parameter regimes of interest in this paper. For both these
cases M 	 H. In the first extreme, the modes are outside
the horizon, q=a
 H 
 M, in which case Eq. (4.25)
becomes

_a=a
!	

�
_!	

!2
	

�
_M	

M2
	


 1;
_a=a
!
j

�
_!
j

!2

j

�
_M
j

M2

j


 1:

(4.26)

For the other extreme case, the modes are deep inside the
horizon, q=a	 M 	 H, in which case the conditions
Eq. (4.25) automatically become satisfied, since

_a=a
!	

�
_!	

!2
	

���!q=a	M		H
0;

_a=a
!
j

�
_!
j

!2

j

���!q=a	M
j
	H

0:

(4.27)

This last case is the weakest condition, since during in-
flation the tremendous growth of the scale factor makes the
modes rapidly go outside the horizon, thus going over to
the regime of the first set of constraints Eq. (4.26).
Condition Eq. (4.26) can be satisfied provided the back-
ground field moves sufficiently slowly, which is the regime
we will be interested in probing in this work. It should also
be noted that in the parameter region of masses M 	 H,
curvature effects become subleading and so Minkowski-
like expressions can apply to leading order. We therefore
expect that in the adiabatic regime the approximations used
to derive Eq. (4.20) readily hold. This will be tested nu-
merically later on in Sec. VI.
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V. DERIVING THE EFFECTIVE EQUATION OF
MOTION FOR THE INFLATON

We now turn our attention to the EOM Eq. (3.4), where
we will work it out in the response theory approximation
similar to the treatment in our recent paper [4]. Consider
the Lagrangian density (3.1) in terms of the background
(system) field ’�t� and the fluctuation (bath) fields,

L �� � ’�t� �	�x�; 
j; 
 k;  k; g��


� L’�’�t�; g��


�Lbath�’�t�; 	�x�; 
j; 
 k;  k; g��
; (5.1)

where

L’�’�t�; g��
 � a�t�3
�
1

2
_’�t�2 �

m2
	

2
’�t�2

�
�
4!
’�t�4 �

 
2
R’�t�2

�
(5.2)

is the sector of the Lagrangian independent of the fluctua-
tion bath fields, while Lbath denotes the sector of the
Lagrangian that depends on the bath fields. In the following
derivation it will be assumed that the background field ’�t�
is slowly varying, something that must be checked for self-
consistency. Thus, if we consider the decomposition of
’�t� around some arbitrary time t0 as ’�t� � ’�t0� �
-’�t�, -’�t� can be regarded as a perturbation, for which
a response theory approximation can be used for the deri-
vation of the field averages in (3.4). In order to implement
the response theory approximation, we consider the terms
in Lbath that contribute to the derivation of those field
averages in the ’-EOM Eq. (3.4) and take ’�t� � ’�t0� �
-’�t�. We denote those terms that depend on -’�t� as L-’

int ,

L-’
int � a�t�3

�
�
�
4
�2’�t0�-’�t��-’�t�2
	2 �

4�
4!
-’�t�	3

�
XN

j�1

�
�
g2j
2
�2’�t0�-’�t��-’�t�2�
2

j

�g2j-’�t�	

2
j

��
; (5.3)

and we treat these terms in L-’
int as additional (perturbative)

interactions.

A. The response theory approximation

In response theory we express the change in the expec-
tation value of some operator Ô�t�, -hÔ�t�i � hÔ�t�ipert �

hÔ�t�i, under the influence of some external perturbation
described by Ĥpert which is turned on at some time t0, as
(for an introductory account of the response theory, see for
instance Ref. [29])
-10
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-hÔ�t�i � i
Z t

t0
dt0h�Ĥpert�t

0�; Ô�t�
i0; (5.4)

where the expectation value on the right-hand side of (5.4)
is evaluated in the unperturbed ensemble. The response
function defined by Eq. (5.4) can be readily generalized for
the derivation of the field averages. Provided that the
amplitude -’�t� is small relative to the background field
’�t0�, perturbation theory through the response function
can be used to deduce the expectation values of the fields
that enter in the EOM Eq. (3.4). In this case the perturbing
Hamiltonian Ĥpert is obtained from L-’

int , Eq. (5.3). From
Eqs. (5.3) and (5.4) we can then determine the averages of
the bath fields, for example h	2�t�i, as an expansion in
-’�t�, starting from the time t0 and in a one-loop approxi-
mation, as

h	2i ’ h	2i0 � i
Z t

t0
dt0a�t0�3

�
4
�2’�t0�-’�t

0� � -’�t0�2


� h�	2�x; t�; 	2�x; t0�
i0 �O�-’3�; (5.5)

where h� � �i0 means the correlation function evaluated for
the background field taken at the initial time, h� � �i0 �

h� � �ij’�t0�. The first term in (5.5) is just the leading order
one-loop tadpole term in the linear response approxima-
tion, while the second one is the one-loop tadpole made
up with the interaction term from (5.3), �a�t�3��=4��
�2’�t0�-’�t� � -’�t�2
	2, that is used in calculating the
leading order one-loop bubble diagram that gives the two-
point function. The interaction vertex coming from the
above term can also be put in the more convenient form
�ia�t�3��=4��’�t�2 � ’�t0�

2
, which we will use in eval-
uating (5.5).

Using translational invariance we can now write
h�	2�x; t�; 	2�x; t0�
i, in Eq. (5.5), in terms of the causal
two-point Green’s function for the 	 field, G��

	 �x; x0�, as

h�	2�x; t�; 	2�x; t0�
i � 2iImhT	2�x; t�	2�x; t0�i

� 4i
1

�a�t�a�t0�
3

�
Z d3q

�2��3
Im� ~G��

	 �q; t; t0�
2t>t0 ;

(5.6)

with ~G��
	 �q; t� t0� as obtained from Eqs. (3.8) and (4.20).

Equation (5.5) in the response approximation then be-
comes

h	2i ’ h	2i0 �
1

a�t�3
Z t

t0
dt0��’�t0�2 � ’�t0�2


�
Z d3q

�2��3
Im� ~G��

	 �q; t; t0�j’�t0�

2
t>t0 : (5.7)
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Analogously for the other field averages we find

h
2
j i ’ h
2

j i0 �
1

a�t�3
Z t

t0
dt02g2j �’�t

0�2 � ’�t0�2


�
Z d3q

�2��3
Im� ~G��


j �q; t; t0�j’�t0�

2
t>t0 ; (5.8)
h	
2
j i ’ h	
2

j i0 �
1

a�t�3
Z t

t0
dt02g2j’�t

0�
1

�a�t�a�t0�
3=2

�
Z d3q1

�2��3
d3q2

�2��3
Im� ~G��

	 �q1; t; t0�

� ~G��

j �q2; t; t0� ~G

��

j �q1 � q2; t; t0�
t>t0 j’�t0�;

(5.9)

and

h	3i ’ h	3i0 �
1

a�t�3
Z t

t0
dt02�’�t0�

1

�a�t�a�t0�
3=2

�
Z d3q1

�2��3
d3q2

�2��3
Im� ~G��

	 �q1; t; t0�

� ~G��
	 �q2; t; t0� ~G

��
	 �q1 � q2; t; t0�
t>t0 j’�t0�:

(5.10)

Equations (5.7), (5.8), (5.9), and (5.10) are analogous to
the ones obtained in [3] but derived there in the context of
the Schwinger’s closed-time-path formalism in Minkowski
space. The leading order terms in the linear response
approximation, h	2i0, h
2

j i0, etc., are divergent and need
appropriate renormalization in expanding space-time, as,
e.g., described in Ref. [30]; below we will give the explicit
expressions for the relevant terms. While the first two
expressions, Eqs. (5.7) and (5.8) correspond, when ex-
pressed diagrammatically, to the one-loop tadpoles of
one and two vertices in the ’-EOM, the last two expres-
sions, Eqs. (5.9) and (5.10), represent two-loop contribu-
tions to the EOM. In the following, as in Ref. [4], we will
restrict our study of the EOM at one-loop order. This
makes our analysis tractable and simple. Moreover there
is no loss in our analysis of the dissipative dynamics for ’,
since the one-loop terms will already suffice to demon-
strate the possible different dissipative regimes and the
higher order terms only enhance the dissipation effects
obtained in the analysis that follows.

B. The ’-effective EOM

We then obtain that the EOM Eq. (3.4), with bath field
averages evaluated from the response function and at one-
loop order, becomes
-11



ARJUN BERERA AND RUDNEI O. RAMOS PHYSICAL REVIEW D 71, 023513 (2005)
�’�t� � 3
_a�t�
a�t�

_’�t� �m2
	’�t� �

�
6
’�t�3 �  R�t�’�t� �

�
2
’�t�

1

a�t�3
Z d3q

�2��3
~G��
	 �q; t; t�j’�t0��

XN

j�1

g2j’�t�
1

a�t�3
Z d3q

�2��3
~G��

j �q; t; t�j’�t0� �

�
2
’�t�

1

a�t�3
Z t

t0
dt0��’�t0�2 � ’�t0�

2
�

Z d3q
�2��3

Im� ~G��
	 �q; t; t0�j’�t0�


2
t>t0 �

XN

j�1

g2j’�t�
1

a�t�3
Z t

t0
dt02g2j �’�t

0�2 � ’�t0�2
�

Z d3q
�2��3

Im� ~G��

j �q; t; t0�j’�t0�


2
t>t0 � 0: (5.11)

We can now use Eqs. (3.8) and (4.20) and the equivalent expressions for the 
j propagator in the above equation to obtain

�’�t� � 3
_a�t�
a�t�

_’�t� �m2
	’�t� �

�
6
’�t�3 �  R�t�’�t� �

�
2
’�t�

1

a�t�3
Z d3q

�2��3
1

2!	�t�

��������’�t0�
�

XN

j�1

g2j’�t�
1

a�t�3
Z d3q

�2��3
1

2!
�t�

��������’�t0�
�
�2

2
’�t�

Z t

t0
dt0�’�t0�2 � ’�t0�

2
D	�t; t
0��

XN

j�1

2g4j’�t�
Z t

t0
dt0�’�t0�2 � ’�t0�2
D
j�t; t

0� � 0; (5.12)
where the kernels D	�t; t0� and D
j�t; t
0� in the above

equation are given, respectively, by

D	�t; t
0� �

1

a�t�3
Z d3q

�2��3
sin
�
2
Z t

t0
dt00!	�t

00�

�

�
exp��2

R
t
t0 dt

00�	�q; t00�

4!	�t�!	�t0�

��������t>t0
; (5.13)

and

D
j�t; t
0� �

1

a�t�3
Z d3q

�2��3
sin
�
2
Z t

t0
dt00!
�t00�

�

�
exp��2

R
t
t0 dt

00�
�q; t00�

4!
�t�!
�t

0�

��������t>t0
; (5.14)

where �	 and �
j are the decay rates for the � and 
j
particles with momentum q, respectively. These depend
explicitly on the decay channels available for both the �
and 
j fields, within the kinematically allowed masses.
These we will fix explicitly below. Note also that, as a
consequence of the linear response approximation, all the
frequencies appearing in the above expressions are ex-
pressed in terms of ’ � ’�t0�,

!	�t� �
�
q2=a�t�2 �m2

	 �
�
2
’�t0�2 � � 

� 1=6�R�t�
�
1=2
; (5.15)

!
j�t� � �q2=a�t�2 �m2

j � g2j’�t0�

2 � � � 1=6�R�t�
1=2:

(5.16)
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In Sec. V C we show how the next order corrections in the
linear response approximation (at one-loop order) can be
resummed to give back the full time dependence for ’
inside the above expressions.

Equation (5.12), with Eqs. (5.13) and (5.14), is our
general expression for the one-loop effective EOM for
the background (inflaton) field ’. As in the Minkowski
space case [3,4] we expect that the last two, nonlocal terms
in Eq. (5.12) will lead to dissipation. This can be made
apparent once we integrate them by parts with respect to t0.
This way we obtain explicitly first order (nonlocal) time
derivative terms in the background and separate additional
local terms that, when combined with the first two mo-
mentum integral terms appearing in Eq. (5.12), will corre-
spond to the first derivative, d=d’, of the one-loop
quantum correction to the effective potential Veff�’� [in
the Eq. (5.12) we have the corrections from both the scalar
field � self-coupling and due to its coupling to the 
j
fields]. In the absence of the nonlocal dissipative terms and
the additional couplings to �, this way of obtaining the
(field derivative of the) one-loop effective potential was
shown explicitly by Semenoff and Weiss in [22] and its
renormalization later studied by Ringwald in [30].

To make more transparent the interpretation of the dif-
ferent terms that can be derived from Eq. (5.12), let us
define here dissipative kernels K	�t; t0� and K
j�t; t

0� as
related to the kernels Eqs. (5.13) and (5.14), respectively,
by

dK	�t; t0�

dt0
� D	�t; t0�; (5.17)

and
-12
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dK
j�t; t
0�

dt0
� D
j�t; t

0�; (5.18)

whose solutions we choose here so that in the limit of flat space and as we take t0 ! �1 the kernels K	 and K
j become
the ones obtained in Minkowski space calculations [3]. From this we then have the solutions

K	�t; t
0� �

Z t0

t0
d7D	�t; 7�; (5.19)

and

K
j�t; t
0� �

Z t0

t0
d7D
j�t; 7�: (5.20)

Using Eqs. (5.17) and (5.18) in (5.12) we obtain that

�’�t� � 3
_a�t�
a�t�

_’�t� �m2
	’�t� �

�
6
’�t�3 �  R�t�’�t� �

�
2
’�t�

1

a�t�3
Z d3q

�2��3
1

2!	�t�

��������’�t0�
�

�2

2
’�t��’�t�2 � ’�t0�

2
K	�t; t� �
XN

j�1

g2j’�t�
1

a�t�3
Z d3q

�2��3
1

2!
�t�

��������’�t0�
�

XN

j�1

2g4j’�t��’�t�
2 � ’�t0�

2
K
j�t; t� � �2’�t�
Z t

t0
dt0’�t0� _’�t0�K	�t; t

0��

XN

j�1

4g4j’�t�
Z t

t0
dt0’�t0� _’�t0�K
j�t; t

0� � 0: (5.21)

C. The local terms and the effective potential corrections

Note that the local terms in the second and third lines in Eq. (5.21) can be written as a field derivative of the one-loop
quantum corrections from the 
j and 	 scalar field fluctuations, to the effective potential for the ’ background
configuration. This is easily seen by writing the local terms as

�
2
’�t�

1

a�t�3
Z d3q

�2��3
1

2!	�t�

��������’�t0�
�
�2

2
’�t��’�t�2 � ’�t0�

2
K	�t; t� �
XN

j�1

g2j’�t�
1

a�t�3
Z d3q

�2��3
1

2!
�t�

��������’�t0�

�
XN

j�1

2g4j’�t��’�t�
2 � ’�t0�

2
K
j�t; t�

�
�
2
’�t�

�
1

a�t�3
Z d3q

�2��3
1

2!	

��������’�t0�
���’�t�2 � ’�t0�

2

1

a�t�3
Z d3q

�2��3

�
1

8!3
	

��������’�t0�
�O��2

	=!
5
	�

��

�
XN

j�1

g2j’�t�
�

1

a�t�3
Z d3q

�2��3
1

2!
j

��������’�t0�
�2g2j �’�t�

2 � ’�t0�
2


1

a�t�3
Z d3q

�2��3

�
1

8!3

j

��������’�t0�
�O��2


j=!
5

j�

��
; (5.22)

where the O��2
	=!

5
	� and O��2


j=!
5

j� explicit contributions would correspond to higher than one-loop contributions

resulting from the use of the full (resummed) propagators obtained from Eqs. (3.5) and (3.6). Equation (5.22) can now
easily be recognized as originating from the -’ amplitude expansion of the local (free) propagators G	�t; t� and G
j�t; t�,
respectively,

G��
	 �t; t� �

1

a�t�3
Z d3q

�2��3
1

2�q2=a�t�2 �m2
	 � �

2’�t�
2 � � � 1=6�R�t�
1=2

�
1

a�t�3
Z d3q

�2��3
1

2!	
� ��’�t�2 � ’�t0�2


1

a�t�3
Z d3q

�2��3
1

8!3
	

�O�-’3�; (5.23)
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and

G��

j �t; t� �

1

a�t�3
Z d3q

�2��3
1

2�q2=a�t�2 �m2

j � g2j’�t�

2 � � � 1=6�R�t�
1=2

�
1

a�t�3
Z d3q

�2��3
1

2!
j

� 2g2j �’�t�
2 � ’�t0�2


1

a�t�3
Z d3q

�2��3
1

8!3

j

�O�-’3�: (5.24)
1When the 
 and  
 couplings to � are treated in a SUSY
context, this last restriction on the number of fields is not
important, since 
 are then actually complex fields while their
fermionic partners are Majorana spinors and the two contribu-
tions appear in (5.26) with the same number of degrees of
freedom.
This confirms our above statement that these terms arise
from the field derivative of the (unrenormalized) one-loop
effective potential quantum corrections coming from the �
self-interaction and 
j coupling. Combining the result
(5.22) with the tree level part of the potential and using
(5.23) and (5.24), we can then write

dVeff�’;R�
d’

� m2
	’�t� �

�
6
’�t�3 �  R�t�’�t�

�
�
2
’�t�G��

	 �t; t� �
XN

j�1

g2j’�t�G
��

j �t; t�:

(5.25)

The two last terms in Eq. (5.25) are of course ultraviolet
(UV) divergent as expected and so need to be properly
renormalized. This is done in the usual way by adding to
the original Lagrangian, or in the effective EOM for ’, the
appropriate counterterms of renormalization, -m	, -�,
and - , for the mass, scalar � self-coupling and the
gravitational coupling, respectively. The details of this
renormalization process are discussed in the Appendix,
where explicit evaluation and renormalization are done.
After renormalization we can just rename the couplings
and masses in the dissipative and quantum corrections as
the renormalized ones. Note also, as evident from
Eq. (5.25) and the explicit results shown in the Appendix,
that the quantum corrections can be kept relatively under
control for perturbative small couplings (and a small num-
ber of fields). This is certainly true for the contributions
coming from the � scalar field self-coupling, associated to
the inflaton, which is required to be tiny (� & 10�13) due
to the density perturbation constraints requiring a very flat
potential. However, for the 
 field contributions there are
no physical constraints that require the couplings gj or the
number of fields N
 to be sufficiently small. In fact, in
Refs. [4,5] relevant scenarios of strong dissipation are
found for cases of intermediate to large couplings
O�10�4� & N
gj & O�1�. In these cases we must worry
about the large quantum corrections appearing in (5.25)
and, in particular, that they will not spoil the flatness of the
potential. We here follow the same procedure adopted in
Refs. [4,5] to overcome this problem and add to the origi-
nal Lagrangian density (3.1) an additional coupling of � to
N 
 extra fermion fields, �

PN i
i�1 g

0
i� 
 i;
 i;
, where  


are fermion fields, which are different from the light ones
coupled to 
 in (3.1). For appropriately tuned coupling
023513
g0 � g this modification just mimics supersymmetry,
where � couples to both the boson scalars 
 and their
fermion partners, with large cancellations occurring be-
tween the quantum corrections from the 
 and  
 fields.
This can be seen explicitly in Veff�’�, when the  
 fermion
coupling to � is included, which to one-loop order gives

Veff�’;R� �
m2
	

2
’2 �

�
4!
’4 �

 
2
R’2

�
1

2

Z d3kp
�2��3

 
Em	

�
XN

i�1

Em
i

!

� 2
Z d3kp

�2��3
XN i
i�1

Em i;

; (5.26)

where kp � k=a is the physical momentum and

Em	
�

������������������������������������������������������������������������
kp

2 �m2
	 � �’2=2� � � 1=6�R

q
;

Em
i
�

���������������������������������������������������������������������
kp

2 �m2

i � g2i ’

2 � � � 1=6�R
q

;

Em i;

�

��������������������������������������������
kp

2 � �m i;
 � g0i’�
2

q
:

(5.27)

Thus, with appropriately tuned parameters gi, g0i and with
zero explicit masses m i;
 � m
i � 0 and N i � N
=4,1

the one-loop quantum corrections to Veff cancel to all
orders in gi, g



i in the nonexpanding case (R � 0). Even

when a vacuum energy is considered (e.g., in de Sitter
where R � 12H2), the combined nonvanishing contribu-
tions from 
 and  
 can still be made small enough
compared to the three level potential [31]. Further discus-
sion about SUSY models is in Sec. VII.

Note also that adding the interaction term

�
PN i
i�1 g

0
i� 
 i;
 i;
 (with the corresponding kinetic term

for the additional fermion species) to the original
Lagrangian density (3.1) will also yield an additional con-

tribution to the EOM for ’, given by
PN i
i�1 g

0
ih

 i;
 i;
i.

This term can be worked out analogous to the scalar case.
Aside from the local corrections discussed above, this term
will lead to an additional dissipative kernel in (5.21). As
-14
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shown explicitly in [3], where this term was derived, it will
not be directly proportional to the ’ field amplitude, unlike
the two nonlocal terms in (5.21) coming from the scalar
field quantum corrections that are directly proportional to
the square of ’. As in the old reheatinglike scenario
discussed in Sec. II, the fermionic nonlocal term will
then be relevant in the linear regime (or small ’ ampli-
tude), while the last two terms in (5.21) will contribute
mainly in the nonlinear regime of interest here. Thus, we
can just restrict our following analysis of the dissipative
kernels to the ones given in (5.21) and neglect the contri-
bution to the dynamics coming from the  i;
 interaction,
keeping in mind that the addition of any other bath fields
coupled to � will also add to dissipation or nontrivial
effects that can play a role in different dynamical regimes.
We will briefly return to this again in the conclusions in
connection to the description of late time effects in the
dynamics of ’.

D. The effective nonlocal EOM and energy densities
system of equations

With the considerations above, we can now write the
effective equation of motion for the background field ’ as

�’�t� � 3H�t� _’�t� �
dVreff�’�t�; R�t��

d’�t�
�

�2’�t�
Z t

t0
dt0’�t0� _’�t0�K	�t; t

0��

XN

j�1

4g4j’�t�
Z t

t0
dt0’�t0� _’�t0�K
j�t; t

0� � 0; (5.28)

where Vreff stand for the renormalized effective potential
(see the Appendix) and, from (5.13), (5.14), (5.19), and
(5.20),

K	�t; t0� �
Z t0

t0
d7

1

a�t�3
Z d3q

�2��3
sin
�
2
Z t

7
dt00!	�t00�

�

�
exp��2

R
t
7 dt

00�	�q; t00�

4!	�t�!	�7�

��������t>t0
; (5.29)

and

K
j�t; t
0� �

Z t0

t0
d7

1

a�t�3
Z d3q

�2��3
sin
�
2
Z t

7
dt00!
�t00�

�

�
exp��2

R
t
7 dt

00�
�q; t00�

4!
�t�!
�t

0�

��������t>t0
; (5.30)

are the dissipative nonlocal kernels.
The complete evolution of the inflaton field is then

determined from Eq. (5.28) and the Einstein equations
for the background cosmology. Together, these equations
form a complete set of dynamical equations for both ’ and
the metric. The Einstein equations for the background
cosmology can be formed in terms of the matter and
023513
radiation components as usual by the equations

H2 �
8�G
3

��m � �r� �
k

a2
; (5.31)

and

2 _H � 3H2 �
k

a2
� �8�G�pm � pr�; (5.32)

where G � 1=m2
Pl, with mPl the Planck mass. The parame-

ter k � 0;�1;�1 for a flat, closed or open universe,
respectively. In this work we consider only the flat case,
k � 0. �m�r� and pm�r� are the energy and pressure densities
for matter (radiation), respectively. We also have the stan-
dard relations:

�m � 1
2 _’2 � Vreff�’;R�; (5.33)

pm � 1
2 _’2 � Vreff�’;R�; (5.34)

and pr �
1
3�r.

The matter and radiation energy densities �m and �r
evolve in time as

_�m � 3H _’2 � �2’�t� _’�t�
Z t

t0
dt0’�t0� _’�t0�K	�t; t

0��

XN

j�1

4g4j’�t� _’�t�
Z t

t0
dt0’�t0� _’�t0�K
j�t; t

0� � 0

(5.35)

and (from the energy conservation law)

_�r � 4H�r � �2’�t� _’�t�
Z t

t0
dt0’�t0� _’�t0�K	�t; t

0��

XN

j�1

4g4j’�t� _’�t�
Z t

t0
dt0’�t0� _’�t0�K
j�t; t

0� � 0:

(5.36)

Assuming a flat universe (k � 0), from Eq. (5.31), we
can consider

�r �
3

8�G
H2 � �m �

3

8�G
H2 �

_’2

2
� Vreff�’;R�

(5.37)

as the first integral of Eq. (5.36). Using Eqs. (5.31), (5.32),
(5.33), and (5.34), we can also express the equation for the
acceleration in the following form:

�a
a
�

8�G
3

��m � �r� � 4�G _’2: (5.38)

The above equations together with Eq. (5.21) form a
closed, general set of (integro-) differential equations for
the effective evolution for the background field ’�t� and
metric at one loop and leading order in the linear response
approach.
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E. The equation of motion in a local approximation

The derived equation of motion for ’, Eq. (5.28), in
expanding space-time is a considerably more complicated
expression than, e.g., the analogous one that would be
derived in the Minkowski case. It is therefore interesting
first to see when and whether we can recover expressions
equivalent to the Minkowski space ones in [3]. This can be
the case for instance if we restrict the dynamics in the
adiabatic regime close to equilibrium, which then requires
in general that the decay rates are larger than the Hubble
constant, � 	 H. Using this and restricting to time inter-
vals t� t0 � 1=�, where the scale factor consequently
changes very little, the frequency terms in the inner time
integrals inside the kernels expressions Eqs. (5.13) and
(5.14) will change very little, and they can be taken just
as constant terms. Under these circumstances we can then
easily see that Eqs. (5.13) and (5.14) can be approximated
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to

D	�t; t0� �
1

a�t�3
Z d3q

�2��3
sin�2!	�t�jt� t0j


�
exp��2�	�q; t�jt� t0j


4!	�t�
2 ; (5.39)

and

D	�t; t
0� �

1

a�t�3
Z d3q

�2��3
sin�2!
j�t�jt� t0j


�
exp��2�
�q; t�jt� t0j


4!
j�t�
2 ; (5.40)

which are equivalent to the kernels derived in [3]. In terms
of (5.19), (5.20), (5.39), and (5.40), the EOM Eq. (5.21)
now becomes
�’�t� � 3H _’�t� �
dVreff�’;R�

d’
� �2’�t�

Z t

t0
dt0’�t0� _’�t0�

1

a�t�3
�

Z d3q

�2��3
�!	 cos�2!	jt� t0j� � �	 sin�2!	jt� t0j�


8!2
	��

2
	 �!2

	�
e�2�	jt�t0j�

XN

j�1

g4j’�t�
Z t

t0
dt0’�t0� _’�t0�

1

a�t�3
Z d3q

�2��3
�!
j cos�2!
j jt� t0j� � �
j sin�2!
j jt� t0j�


2!2

j��

2

j �!2


j�
e�2�
j jt�t

0j
� 0: (5.41)
In this paper we restrict the analysis to zero temperature
(or in a nonthermalized bath) and use the same regime of
parameters as studied recently in [4], where the masses (the
renormalized and, if relevant, background field dependent
ones) satisfy the conditionM
j > 2M k >M	. In this case
�	 vanishes, while �
j gives the decay width for the
kinematically available decay channel of the scalar 
j
fields into the fermion fields  k; 
 k. To obtain an expres-
sion for �
j , first note that under the condition M
j 	 H,
which is satisfied for the couplings and values of the
inflaton amplitude taken here, the curvature effects become
negligible in the computation of �
j and, therefore, it can
be well approximated by the Minkowski decay rate at
leading order. Thus, we can write its expression in terms
of the decay rate in the rest frame, �
j�0�, and then boost it
to give (a similar form for the decay of a scalar particle into
fermions in de Sitter space-time was also used by
Ringwald in Ref. [26])

�
j�t� �
M
j

!
j�t�
�
j�0�; (5.42)

where �
j�0� is the standard on-shell rate, as evaluated in
Minkowski space-time [3],

�
j�0� �
XN 
k�1

h2kj
M
j

8�

�
1�

4M2
 k

M2

j

�
3=2
: (5.43)
This result quoted for �
j�0� based on the Minkowski
space-time result, in the regime of field mass M 	 H, is
corroborated by the derivation of a decay rate expression in
de Sitter space-time shown in Ref. [32], where it was
shown that the decay rate behaves similar to the
Minkowski one, but in a thermal bath at the Hawking
temperature. However since in our calculation M
 	 H,
this modification has negligible effect. There is also a
simple way of understanding the result (5.42) in the case
of an expanding space-time within the regime of parame-
ters we are examining. Recall in conformal time (with
conformal rescaled fields) our original model is no differ-
ent from the one of a Minkowski space-time, except for the
proper rescalings of dispersion relations and masses, ! ���������������������������
q2=a2 �M2

p
! 
! �

������������������
q2 � 
M2

p
, where 
M � aM. Thus a

rate evaluated in a conformally invariant theory, in confor-
mal variables, is identical to that in flat space-time. For
instance, consider the change of the number of particles
given in its simplest form, in conformal time, as

dn
d7

� 
�n; (5.44)

which in terms of physical time becomes

dn
dt

�
d7
dt


�n �

�

a
n: (5.45)

The above expression explicitly displays the (conformal)
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rate as suppressed by the scale factor. However take the
case of, e.g., fermion production as given before, but in
conformal rescaled quantities. Since the rate in conformal
variables is identical to that of flat space-time, we have that


�

a
�

1

a


M
j


!
j

XN 
k�1

h2kj

M
j

8�

�
1�

4 
M2
 k


M2

j

�
3=2

�
M
j

!
j

XN 
k�1

h2kj
M
j

8�

�
1�

4M2
 k

M2

j

�
3=2
; (5.46)
which then reproduces the above stated result Eq. (5.42).
We now substitute �	 � 0 and �
 given by (5.42) in

(5.41) and consider the parameter regime relevant to our
analysis here, where the couplings are ��O�10�13� and
g; g0; h * O�10�2�. In this regime, we can generically drop
the first nonlocal term in (5.41), which comes from the �
scalar self-coupling, since this term is much smaller in
magnitude than the dissipative term due to the 
 correc-
tions. Equivalently stated, since for the above parameter
values the contribution to the dynamics of the background
field ’ coming from the 	 quantum modes are negligible
compared to those due to the 
j ones, we could as well
consider from the beginning the original inflaton field � in
Eq. (3.1) as simply a classical (homogeneous) field � �
’�t� in interaction with the remaining (quantum) fields in
(3.1). This was, for instance, the approach taken in [5].
Adopting this approach, the only effect on the above
calculations would be to drop all quantum inflaton self-
interactions and thus keep only the nonlocal 
 term in
Eqs. (5.28) and (5.41). This point is important to note,
since for the parameter regime to be considered here, we
will see that whileM
 	 H the same does not hold true for
the inflaton mass, M	 �H, and so applying the WKB
approximation for the 	 quantum modes could become
questionable. However the smallness of the 	 self-
coupling allows us to completely ignore the effects from
the 	 quantum fluctuations. Thus, in what follows the
quantum effects leading to the ’-effective EOM will
only arise from the terms associated with the 
j dynamical
quantum corrections in Eqs. (5.28) and (5.41).

Further approximations can be applied to (5.41) in the
dynamical regime for which the motion of’ is slow. In this
case an adiabatic-Markovian approximation can be applied
to the nonlocal 
 contributions. This converts (5.41) to one
that is completely local in time, albeit with time derivative
terms. The details of this approximation for Minkowski
space-time can be found in [3]. Its extension to an expand-
ing FRW background follows analogous lines. The
Markovian approximation amounts to substituting t0 ! t
in the arguments of the’ fields in the second nonlocal term
in Eq. (5.41). The adiabatic approximation then requires
self-consistently that all macroscopic motion is slow on the
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scale of microscopic motion, thus _’=’,H < �
. Moreover
whenH <M
, the kernel K
�t; t0� is well approximated by
the nonexpanding limit H ! 0. The validity of all these
approximations was examined in [5] and they also will be
examined in more detail in Sec. VI. The result of these
approximations is that, after trivially integrating over the
momentum integral in the last term in (5.41), the effective
EOM Eq. (5.41) becomes [5]

�’� �3H�1�’�
 _’�
dVreff�’;R�

d’
� 0: (5.47)

By setting the couplings gj � g0j � g, hkj � h� g	 �,
the mass M
 ’ g’	 m k and �
 ’ N h2M2


=�8�!

, it
leads to the friction coefficient 1�’� in (5.47)

1�’� � N


���
2

p
g4<
’

2

64�M


����������������
1� <2




q ��������������������������������������������
1� <2




q
� 1

r ; (5.48)

where <
 � N h2=�8��.
In terms of the approximations used to derive (5.47) the

Eqs. (5.35) and (5.36) also simplify. In particular, from
(5.36), we obtain that

�r �1�’�
_’2

4H
: (5.49)
VI. NUMERICAL ANALYSIS OF EOM

This section examines numerical results obtained from
the basic equations that have been derived in the previous
sections. In particular, we follow the considerations taken
in the previous section as regarding the contribution of the
nonlocal terms in the ’-effective EOM, dropping the
negligible 	 quantum corrections and keeping only the
leading correction to the dynamics, given by the 
j non-
local term. The behavior of the dissipative kernel coming
from the 
j nonlocal term and solutions to the ’-effective
EOM in the various approximations are then determined.
Also, radiation production is studied in the different ap-
proximations. Finally the adiabatic conditions underlying
the self-consistency of the basic equations in this paper are
examined.

A. The dissipation kernel

Our analysis starts with the dissipative kernel. From
D
�t; t

0� given in Eq. (5.14) and specializing our computa-
tions to the case of a de Sitter metric as appropriate for
describing the inflationary phase, we can directly perform
the time integrals appearing in D
�t; t0� and then use the
resulting expression in the dissipative kernel K
�t; t0�,
Eq. (5.20), to obtain
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K
�t; t
0� �

Z d3q

�2��3
!
�qa�t�; t� cos�2W
�qa�t�; t; t0�
 � �
�qa�t�; t� sin�2W
�qa�t�; t; t0�


!
�qa�t�; t�!
�qa�t�; t0��!2

�qa�t�; t�� �2


�qa�t�; t�

E
�qa�t�; t; t0�; (6.1)

where

W
�q; t1; t2� �
Z t2

t1
dt00!
�q; t00�

� �
1

H

8<:!
�q; t� �!
�t0� �
1

2

����������������������������������������
m2

 � 2�6 � 1�H2

q
ln

240@!
�t� �
����������������������������������������
m2

 � 2�6 � 1�H2

q
!
�t

0� �
����������������������������������������
m2

 � 2�6 � 1�H2

q
1A

�

0@!
�t0� �
����������������������������������������
m2

 � 2�6 � 1�H2

q
!
�t� �

����������������������������������������
m2

 � 2�6 � 1�H2

q
1A359=; (6.2)

and

E
�q; t1; t2� � exp
�
�2m
�
j�0�

Z t2

t1
dt001=!
�t

00�

�

�

8<:�!
�t� �
����������������������������������������
m2

 � 2�6 � 1�H2

q

�!
�t0� �

����������������������������������������
m2

 � 2�6 � 1�H2

q



�!
�t� �
����������������������������������������
m2

 � 2�6 � 1�H2

q

�!
�t0� �

����������������������������������������
m2

 � 2�6 � 1�H2

q



9=;
��
�0�=H

: (6.3)

Note in arriving at Eq. (6.1), the factor of 1=a�t�3 in Eq. (5.14) has been absorbed by a change of variable on the momentum
integration. The solution for K
 in Eq. (6.1) is valid up to errors of O� _!=!2�. It is useful to examine the behavior not only
FIG. 5. The kernel K
�t; 0� of Eq. (6.1) for various interaction couplings g and h � g, with m
 � g’�0�, ’�0� � mPl, � � 10�13,
and  � 0.
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FIG. 6. The integrated kernel I
�t; 0� of Eq. (6.4) for various interaction couplings g and h � g, with m
 � g’�0�, ’�0� � mPl,
� � 10�13, and  � 0.
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of K
�t; t0� but also the integrated kernel

I
�t� �
Z t

0
dt0K
�t

0; 0�: (6.4)

In Figs. 5 and 6, K
�t; 0� and I
�t� respectively are
plotted for the cases g � 0:1, 0.37, 0.4, and 0.5 in (a)–
(d), respectively. In all the graphs the time interval 1=�0�g�
has been indicated, where �0�g� � �
�0� as defined in
Eq. (5.43) is the 
 decay width at zero momentum q �
0. The kernelK
�t; 0� is seen to oscillate about zero with an
overall enveloping amplitude that decays in a time interval
�1=�
. The graphs of the integrated kernels I
�t�, Fig. 6,
show that there is an overall skewness, and within the time
interval of order 1=�
, the integrated kernels converge to
almost constant values. Thus, although the kernel does not
have a simple Gaussian or exponential decay behavior, the
rapid oscillatory behavior that it does have effectively
causes it to retain memory only over a time interval of
order 1=�
. It is also interesting to compare the kernel for
the nonexpanding versus expanding cases, which is shown
in Figs. 7 and 8 for K
�t; 0� and I
�t� respectively at
coupling g � 0:37. The graphs show very little difference
between the two cases, which was expected since m
 	

H, and here is explicitly confirmed. For the parameters
used in the figures we have that m
 * 106H. What differ-
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ences there are between the nonexpanding and expanding
space-time kernels become increasingly pronounced as t
increases. This also is expected, since for very early times
t
 1=H, the effect of expansion should be negligible.
Note also in comparing Fig. 6 with Fig. 8 the y axis is
-19
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much more refined in the latter to help facilitate the desired
comparison. However because of this in Fig. 8 the rapid
decay of the integrated kernel below t < 1=�0 cannot be
seen.

From the graphs of I
�t�, the origin and validity of the
local approximation Eq. (5.47) of the ’-evolution equation
(5.28) can be understood. For this, first note that irrespec-
tive of the effects that dissipative damping have on slowing
the evolution of ’, a minimal damping always arises from
the 3H _’ term combined with the flatness of the potential,
which, in particular, implies that within a time interval
�1=H, ’ and _’ do not change significantly. In particular
in integrating over the temporally nonlocal term in the
’-EOM Eq. (5.28) over a time interval of order 1=H, ’
and _’ can be treated as constant and so taken out of the
time integration. This leaves integration over only K
�t; 0�
and as shown in Fig. 6, within a time interval �1=�
, this
integral rapidly converges to an almost constant value,
which is precisely 1=’2 of Eq. (5.48). Since �
 	 H in
all the cases in Fig. 6 it also means I
�t� converges within a
time t
 1=H.

B. ’ effective equation of motion

The solutions for ’�t� from the effective evolution equa-
tion are plotted in Fig. 9 for g � 0:1 and Figs. 10(a)–10(c)
for g � 0:37, 0.4, and 0.5, respectively. For each case the
solution is plotted from the exact one-loop evolution equa-
tion (5.28) (solid curves), the same nonlocal evolution
equation except with the kernel being replaced with its
nonexpanding space-time counterpart (dashed curves), the
adiabatic-Markovian evolution equation (5.47) (dot-dashed
curves), and the evolution equation where no account for
dissipative effects is treated (dotted curves). The latter
dotted curves are the ones assumed in cold inflation stud-
ies, where the effects of dissipation are simply ignored. As
Figs. 9 and 10 indicate, this assumption can be critically
wrong. In particular, for the large coupling cases in Fig. 10,
one sees that the effect of dissipation drastically affects the
behavior of ’�t� from the underdamped evolution found in
023513
the dotted curves to overdamped evolution once dissipative
effects are properly accounted for. Comparing the three
curves in each frame which treat dissipative effects at
different levels of approximation, we see that they are all
in excellent agreement. In particular, the adiabatic-
Markovian approximation, which is based on the simpli-
fied evolution equation (5.47), is in excellent agreement
with the exact evolution equation (5.28), where the non-
local kernel is fully treated numerically. Based on our
examination of the kernels in Figs. 5 and 6, and the fact
that the integrated kernels rapidly converge in a time t

1=H, these results for ’�t� come as no surprise.

For the g � 0:37 and 0.4 cases, the long time behavior
appears to show oscillations as opposed to a complete
overdamped relaxation. This is an artifact of our approxi-
mation of treating the ’-dependent 
 field mass as fixed to
the value of the field amplitude at the initial time t0. This is
done since then we can compute the kernel once and for all,
-20
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before evolving ’ in Eq. (5.28). Allowing the 
 mass to
vary would require the kernel to be recomputed at every
step of the evolution and that would be far too time con-
suming for this calculation to be tractable. However by
doing this simplification, it leads to the nonlocal damping
term depending on the field amplitude as ’2 whereas it
should be ’. This means as ’! 0, our approximation
causes the nonlocal term to go to zero faster than it actually
should and, in particular, faster than the curvature of the
FIG. 11. Evolution of radiation density �r, plotted as the ratio R
couplings g, with h � g, � � 10�13,  � 0, ’�0� � mPl, and _’�0�
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potential, thus leading to the oscillations. Thus for g �
0:37 and 0.4, the oscillations are simply an artifact of
approximations used in numerically computing the ’ ef-
fective evolution equation.

Turning to Fig. 9 for g � 0:1, we find that the effect of
dissipation is not significant enough to alter the evolution
of ’�t� by very much. This is a weak dissipative regime,
where in the adiabatic-Markovian approximation 1< 3H.
However the effect of dissipation is not entirely negligible.
� �1=4
r =H from various approximations and various interaction

� 0.
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The two inset boxes in this figure close up on ’�t� at the
two extrema. They show that the amplitude of ’�t� is
slightly less in the cases where dissipation is treated in
comparison with the no dissipation (dotted curve) case.
This indicates that energy is being depleted from the ’
system into radiation.

C. Radiation production

In particular, Fig. 11 shows the ratio �1=4
r =H for the

cases g � 0:1, 0.37, 0.4, and 0.5 in (a)–(d), respectively.
In each frame there is a plot of �r from the exact evolution
equations, Eqs. (5.28) and (5.36) (solid curves) and based
on the adiabatic-Markovian evolution equations,
Eqs. (5.47) and (5.49) (dashed curves). In all cases, the
results show the exact and adiabatic-Markovian approxi-
mations are in good agreement. In particular, not only in
the strong dissipative regime 1> 3H but also in the weak
dissipative regime 1< 3H, the simple formula Eq. (5.49)
for determining radiation production is valid.

D. Equilibration and thermalization: the asymptotic
long time behavior

So far we have not discussed the long time behavior of
our results, in particular the equilibration and thermaliza-
tion of the radiation produced by the dissipation mecha-
nism discussed in this paper. Before doing that it is useful
to show whether and how our results, particularly the
numerical ones given above for both the dissipative kernel
and for the evolution of the ’ background field, can
compare to recent numerical results obtained from the
full evolution of fields far from equilibrium [33] and there-
fore not restricted to quasiequilibrium conditions only.
Though here we have restricted our study of the dynamics
for field configurations close to equilibrium and that evolve
adiabatically, as we will see, our study still is able to
capture many characteristics observed in the recent studies
of the dynamics of scalar fields.

Recently the authors in [33] have shown extensive nu-
merical solutions for the kinetic (two-point correlation)
equations for a scalar field in 1� 1 D. Since these results
seem also qualitatively to apply to 3� 1 D, it is useful to
see whether there is any similarity with the general char-
acteristics observed for the dynamics, for both kernel and
background fields, obtained here compared to those ob-
tained in [33]. In particular, the authors of [33] have shown
that the dynamics of correlations (that also applies to the
time dependent number density evolution) can generically
be divided into three basic regimes: a damping regime
characterized by an exponential suppression of the corre-
lations in a time scale tdamp � 1=�, followed by a drifting-
like evolution behavior characterized by smooth and slow
changing of the modes, which typically lasts much longer
than the initial damping evolution, after which a last re-
gime sets in, the thermalization itself, in which thermal
equilibrium is achieved, within a time scale tthermal 	
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tdamp. In the kinetic (or Boltzmann-like) approach in which
the time evolutions of correlations are solved, thermaliza-
tion is seen as a direct consequence of self-consistently
including scattering processes in the kinetic equations [33–
35]. In our case, this would be equivalent to self-
consistently take into account in our evolution equation
and in the derivation of the nonequilibrium propagators,
the backreaction of the produced radiation. This is funda-
mental in order to describe the thermalization process,
since in this way proper equipartition of energy among
the modes is taken into account and that will then lead to
thermal equilibration in the long time evolution of the
system field. Therefore, our results will not account for
the very long time thermalization regime. On the other
hand, we can check from our numerical results, in particu-
lar, for the temporal behavior for both the nonlocal dis-
sipative kernel and also for its time integrated form, Figs. 5
and 6, respectively, that they show similar behavior to the
correlations obtained by the authors in Ref. [33]. In par-
ticular Figs. 5 and 6 show for the kernel a quick damping of
oscillations within the time scale 1=�
, which is then
followed by a driftlike behavior of almost unperturbed,
small amplitude oscillatorylike evolution over a much
larger time scale than 1=�
. Up to the time scales we
have studied the dynamics, we have seen no appreciable
change in this behavior. Thus the way our kernel evolves
with these two regimes is analogous to those observed in
the full kinetic equations approach of [33]. This gives us an
indication that, even though backreaction due to radiation
production is not being fully taken into account, we are still
capturing the relevant dynamics from the initial time of
evolution (of no radiation) up to some very long time scale.
Furthermore, it can be checked from the results shown in
Fig. 11 that during the time scale of evolution that we have
studied, the produced radiation maintains a level that is
only a fraction of the inflaton energy density, �r=�’ &

10�5, and, therefore, we expect its overall effect back on
the evolution of the inflaton field to be only marginal.

The full inclusion of scattering and then the description
of the final, asymptotic equilibration and thermalization
regime, could in principle be done within the kinetic,
Boltzmann-like approach of [33–35], or within other
equivalent approaches able to describe the thermalization
and equilibration process such as [36,37]. The extension of
these approaches to our expanding space-time multifield
setting is an interesting (and most likely more complex)
avenue for future work, but it is beyond the scope of this
paper.

E. Adiabatic and WKB approximations

Finally we come to the analysis of some of our basic
approximations used to derive the ’-EOM in its different
forms. In Fig. 12 the validity of the adiabatic approxima-
tion is examined. From Eq. (4.25), recall this approxima-
tion is valid whenH=!� _!=!2 
 1 (y axis in the figure).
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FIG. 12. Checking the adiabatic approximation Eqs. (4.25), for
various interaction couplings g � 0:1, 0.37, 0.4, and 0.5, with
h � g, � � 10�13,  � 0, ’�0� � mPl, and _’�0� � 0.
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For g � 0:5, Fig. 10 shows that ’ remains overdamped
throughout evolution and correspondingly Fig. 12 shows
the adiabatic approximation remains excellent. However
for g � 0:1, 0.37, and 0.4 there are peaks crossing above
one in Fig. 12, thus meaning the adiabatic approximation
breaks down in those regions. In comparing to Figs. 9 and
10, all these peaks correspond to when the ’�t� evolution
seizes to be overdamped and it goes through a maxima or
minima. In these underdamped regimes, in any event the
dissipative term has no significant influence on the evolu-
tion of the system and so the breakdown of this approxi-
mation is of little consequence. Moreover, in the context of
inflation, for g � 0:37 and 0.4 these breakdown regimes
first occur at very late stages near the end of inflation, and
so are not in a regime of interest for large scale structure
formation. Also as commented earlier, in order to make our
calculation tractable on the computer, we treated the
’-dependent 
 field mass as fixed to the value of the field
amplitude at the initial time t0. This was done since then
we can compute the kernel once and for all, before evolv-
ing ’ in Eq. (5.28), and thus cutting computation time by
well over an order of magnitude and so bringing the
computation time in the range of days as opposed to weeks.
However by doing this simplification, it leads to the non-
local damping term depending on the field amplitude as ’2

whereas it should be ’. This means as ’! 0, our approxi-
mation causes the nonlocal term to go to zero faster than it
actually should and, in particular, faster than the curvature
of the potential, thus leading to the oscillations. Thus for
g � 0:37 and 0.4, the oscillations are simply an artifact of
approximations used in numerically computing the ’ ef-
fective evolution equation. For g � 0:1 the breakdown
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regimes of the adiabatic-Markovian approximation are
real, however at early times, t & 50 in the units shown in
Fig. 12, this approximation is excellent, so, for instance,
results for radiation production at this time are reliable.
VII. DISSIPATIVE MECHANISM IN
SUPERSYMMETRY MODELS

In the regimes where our dissipative mechanism is large
enough to affect inflation, the interaction couplings also are
significantly large to yield radiative corrections that harm
the flatness of the inflaton effective potential. As such
supersymmetry is needed, since it can cancel temporally
local radiative effects from Bose and Fermi sectors, thus
almost completely preserving the tree level potential. On
the other hand, temporally nonlocal radiative effects, such
as those that lead to dissipation, have very different space-
time structure between Bose and Fermi sectors, and so are
not canceled by SUSY.

As discussed in Sec. V C, the  
 fermions were included
to mimic the effect of SUSY by canceling the quantum
corrections from the 
 bosons. However the basic dissipa-
tive mechanism we have been studying in this paper, light
boson (inflaton) ! heavy boson ! light fermions, can be
realized in very simple SUSY models. For example, in
Ref. [5] we proposed the following model of two super-
fields � and X:

W � 1
3

����
�

p
�3 � g�X2 � 4mX2; (7.1)

where � � 	�  0� 02F and X � 
� 0 
 � 02F
 are
chiral superfields. The field 	 will be identified as the
inflaton in this model with 	 � ’� ) and h	i � ’.
This is the simplest SUSY model in which the inflaton
has a monomial potential, in this case

V0�’� �
�
4
’4; (7.2)

and which includes the standard reheating interaction term
to an additional boson g2	2
2. When ’ � 0 there is a
nonzero vacuum energy and so SUSY is broken. This
manifests in the splitting of masses between the 
 and
 
 SUSY partners with in particular

m2
 


� �2g2’2 � 16
���
2

p
mg’� 64m2
;

m2

1

� �18�g
2 � 1

2

����
�

p
g�’2 �

���
2

p
mg’� 4m2


� m2
 


�
����
�

p
g’2;

m2

2

� �18�g
2 � 1

2

����
�

p
g�’2 �

���
2

p
mg’� 4m2


� m2
 


�
����
�

p
g’2:

(7.3)

One can check that the one-loop zero-temperature effective
potential correction in this case is not significant to alter the
flatness of the tree level inflaton potential,
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V1�’� �
9

128�2 �g
2’4

�
ln
m2
 


m2 � 2
�

 V0�’� �

�
4
’4:

(7.4)

The authors of Ref. [38] have recently studied indepen-
dently the corrections in the model (7.1) including also the
effect of finite temperature and reached an analogous con-
clusion for the quantum corrections, that the T � 0 and
now also the thermal corrections can be kept under control.
On the other hand this model has the interaction structure
of the form Eq. (1.2), and so leads to the dissipative
mechanism studied in this paper. In particular, one of the
Yukawa couplings of this model is 4g
i 
 . Noting the
mass splittings in Eqs. (7.3), it means that the heavier 

boson, 
1 can decay into a  
 fermion and an effectively
massless inflatino  . There will be a phase space suppres-
sion in this process due to the closeness in masses of  

and 
1 so that the decay width now is

�
1! 
; �
g�

4
���
2

p
�
’; (7.5)

and this leads to the dissipative coefficient being

1 �

���
2

p
g4�

256�2m

’: (7.6)

So in this case in general �
1! 
; ;1<H. The radiation
level, R, during inflation is found from Eq. (5.49) to be

R �
�1=4
r

H
� 0:03

g3=4

�1=8

�
mPl

’

�
7=4
: (7.7)

Thus for � � 10�13 and ’ � mPl, R> 1 arises for g >
0:73. However for ’much larger than mPl, R> 1 requires
g > 1. Thus this model is not very robust in producing
radiation during inflation, but nevertheless the effect also is
not negligible.

The radiation production during inflation in the model
Eq. (7.1) can be greatly enhanced by adding some light
fermions into which the 
i bosons can decay. In any event,
in a realistic particle physics model the inflaton sector, such
as the model Eq. (7.1), would interact with other fields.
This could be done, for example, with another superfield Y
added to the superpotential Eq. (7.1) as hXYY=2, which
leads to the Yukawa interaction term h
 Y Y . Provided
2mY 
 m
, the 
 decay width is unsuppressed and, in
particular, would be just Eq. (5.42) with all other subse-
quent expressions there also applicable here. For this
model we find in the strong dissipative regime 1> 3H that

R �
�1=4
r

H
� 2:66

1

g3=4h1=2�1=8

�
mPl

’

�
5=4
: (7.8)

For � � 10�13 and ’ � 5mPl, which in cold inflation
analysis of this model would be approximately where the
60th e fold of inflation occurs, we get R> 1 for g3=2h >
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0:09. In the weak dissipative regime 1< 3H we find

R �
�1=4
r

H
� 0:036

g3=4h1=2

�3=8

�
mPl

’

�
7=4
; (7.9)

for which R> 1 and the weak dissipation condition holds
in the regime 0:000 04< g3=2h < 0:09. Thus warm infla-
tion is very robust in this model.
VIII. INFLUENCE OF DISSIPATION ON DENSITY
PERTURBATIONS

Provided that the radiation component present during
inflation is bigger than the inflaton mass, �1=4

r > m	, one
should generally expect that this radiation component will
influence the fluctuations of the inflaton. Since the typical
mass of the inflaton is �H, this amounts to the criteria
already mentioned in the Introduction �1=4

r > H. More-
over, if one assumes thermalization, so that �1=4

r � T, the
inflaton fluctuations are then thermal. In this case the effect
that the radiation component has on density fluctuations
can be explicitly computed. Although it is beyond the
scope of this paper to address the issue of thermalization,
as a reasonable guideline thermalization is expected pro-
vided the decay width �
 > H. In this section, some
examples of density perturbations during the warm infla-
tion regime will be presented and the differences will be
compared to the comparable results that would be obtained
under the assumption of cold inflation.

For either ground state or thermal fluctuations of the
inflaton, the density perturbations are obtained by the same
expression [39],

-H �
2

5

H
_’
-’: (8.1)

In the warm inflation regime the fluctuations of the inflaton
go in the strong dissipative regime as [40]

-’2 �

�
�
4

�
1=2 ��������

H1
p

T; for warm inflation �1> 3H�;

T > m	; (8.2)

and in the weak dissipative regime as [41]

-’2 �

�
3�
4

�
1=2
HT; for warm inflation �1< 3H�;

T > m	:

(8.3)

In contrast, for cold inflation, where inflaton fluctuations
are exclusively quantum [39],

-’2 �
H2

�2��2
; for cold inflation; T < m	: (8.4)

The associated spectral indices, ns, for these three cases are
[42]
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ns � 1 �
d ln-2

H

d lnk
�

1

r

�
�

9

4
@�

3

2
'�

9

4
A
�
;

for warm inflation �1> 3H�; T > m	;

(8.5)
ns � 1 �

�
�

17

4
@�

3

2
'�

1

4
A
�
;

for warm inflation �1< 3H�; T > m	; (8.6)

and [43]

ns � 1 � ��6@� 2'�; for cold inflation; T < m	;

(8.7)

where k is the wave number of the inflaton mode and the
slow-roll parameters are defined as @ � m2

pV 02=�16�V2�,
' � m2

pV00=�8�V�, and A � m2
p1

0V0=�8�1V�.
The spectral index will now be compared between the

warm and cold inflation cases for the �	4=4 potential. For
cold inflation the results are well known to be ns � 1 �
�3=N3 [43], where Ne denotes the number of e folds of
inflation. So at Ne � 60, for example, ns � 1 � �1=20,
with the model parameters � � 8� 10�14 and ’60 �
4:37mPl. These parameters correspond to the amplitude
of the density perturbations of -H � 10�5.

Turning to the warm inflation case, we now consider this
potential coupled to additional fields in the manner of the
Lagrangian Eq. (3.1) and account for the effects of radia-
tion on density perturbations given by Eqs. (8.2) and (8.3).
In this case for the same model parameters and this same
value ’60 of the field amplitude, these thermal effects
increase the density perturbation normalization in the
strong dissipative regime to 1� 10�3. Thus the effect of
dissipation and radiation production during inflation lead
to a noticeable change in the behavior of the inflaton and its
fluctuations. We now readjust the model parameters to
properly normalize the density perturbations to the same
value as before so that at Ne � 60, -H � 10�5.
Nevertheless the spectral index will still differ. In particular
normalizing the density perturbations as before requires
the parameters in the strong dissipative regime to now be
�� 10�17 and the spectral index at 60 e folds becomes
ns � 1 � �1:5=Ne. So for Ne � 60 this implies in the
strong dissipative warm inflation regime the �	4=4 poten-
tial leads to ns � 1 � 0:025 which is half the size of the
correspond cold inflation result. Since the recent CMB
satellite experiments, Wilkinson Microwave Anisotropy
Probe and upcoming Planck, should be able to discriminate
spectral indices at the 1% level, the difference between
warm and cold inflation might be detectable. This section
was simply illustrating some points regarding density per-
turbation differences in warm versus cold inflation. A de-
tailed analysis of this issue will be presented in [44].
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IX. CONCLUSION

In this paper we have developed a formalism for treating
dissipation in quantum field theory models with slowly
evolving backgrounds in an expanding space-time. The
key steps for doing this were first computing the real-
time matrix of dressed expanding space-time two-point
Green’s functions for the respective quantum fields in our
system. The solution of these Green’s functions was ob-
tained in a WKB approximation, which is valid for slow
moving evolution of the background fields and for fields
with masses much bigger than the Hubble scale. Having
derived these Green’s functions, we then used a standard
response theory approximation approach for the derivation
of the field averages appearing in the effective evolution
equation for the background component of a scalar field
’ � h�i. The integration of the quantum field fluctuations
employed a nonperturbative resummation. The resulting
effective evolution equation for the background field ’
showed dissipative features.

As seen, our dissipative formalism differs from those
used in treatments of reheating after inflation. In those
cases, one is studying a fast moving, oscillating back-
ground component, typically in a linear relaxation (small
field amplitude) regime. In contrast our analysis is appli-
cable for slowly moving background fields that do not
oscillate and in the nonlinear regime for the system field
(the inflaton). As shown in Sec. II, the basic physics that
underlies the dissipation in the two cases are markedly
different. We have applied the nonlinear dissipative mecha-
nism developed here to the inflationary regime. However,
this same dissipation mechanism could also apply to pre-
heating scenarios (if they are allowed by the model and
given set of parameters), where the linearized, perturbative
approximation for the inflaton breaks down and nonlinear,
nonperturbative effects, such as the one studied in this
paper, become important.

In addition to deriving the basic equations for our dis-
sipative formalism, a detailed numerical analysis was
done. In particular, the key quantity that our formalism
determines is temporally nonlocal terms that must be in-
cluded in the ’ background field effective evolution equa-
tion. In Sec. VI these nonlocal kernels were numerically
calculated and compared at various levels of approxima-
tions. For instance, the ’ effective EOM was computed
with the exact one-loop expression in Eq. (5.28). A key
question was the regime of validity of the simplified
adiabatic-Markovian approximation Eq. (5.47) to the exact
equation. In Figs. 9 and 10 these comparisons were made.
In the regime where the WKB self-consistency conditions
Eq. (4.25), together with the condition �
j > H are satis-
fied, we found in Figs. 9 and 10 that the evolution equations
computed from the exact one-loop expression and from the
adiabatic-Markovian approximation agree very well within
the region of parameters we have concentrated our study.
We also checked in Sec. VI the radiation production from
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the ’ system that emerges through dissipation. Once again
the exact numerical treatment and the adiabatic-Markovian
approximation agreed very well in the same regimes as for
the evolution equation. These results are of great practical
use, since calculating the exact numerical solution to the
effective evolution equation is very time consuming on the
computer, whereas the evolution equation in the adiabatic-
Markovian approximation can be analyzed analytically.

The immediate application of our dissipative formalism
is to inflationary cosmology, in particular, to determine
warm inflation regimes and their properties. In Secs. VII
and VIII we examined some consequences. In general
there are two sorts of qualitative effects that dissipation
can have on the inflationary phase. First, the evolution of
the background field can be altered due to the nonlocal
terms. The most dramatic example of that was shown in
Fig. 10 where accounting for dissipation, ’ evolution was
overdamped, whereas if one simply ignored these effects,
the evolution would have the underdamped oscillatory
behavior typically assumed in cold inflation studies. In
particular, in the larger perturbative coupling regimes
studied in Fig. 10, the inflaton field would never have a
reheating phase (in the sense of a fast oscillatorylike
regime for ’). It would simply relax to the minimum of
the potential monotonically, dissipating radiation along the
way, thus ending the inflation phase and initiating a radia-
tion dominated phase. Less dramatic to this, but down to
much lower interaction couplings, even though the back-
ground inflaton field evolution is not noticeably altered
from dissipative effects, radiation is still being produced
during inflation from conversion of vacuum energy.
Although there are detailed questions about thermalization
that are beyond the scope of this paper to address, as a
reasonable criteria when �1=4

r > H during inflation, one
should expect that this radiation component will influence
the inflaton fluctuations significantly from its zero-
temperature zero-point level. To gain a better understand-
ing of the extent that this radiation can influence the
inflaton fluctuations, and hence the primordial seeds of
density fluctuations, in Sec. VIII we computed the density
perturbations when the radiation component is accounted
for, and compared that to the naive expectation when the
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fluctuations are assumed to be zero-point ground state
fluctuations.

The key result of this study when applied to inflation has
been that dissipative effects are predicted to occur during
inflation in typical inflation models. These effects alter the
single picture of inflationary dynamics assumed up to now,
which we call cold inflation, into another possibility which
we call warm inflation. To make accurate predictions from
inflation models, which is now required for current high-
precision CMB measurements, these dissipative effects
must be treated. Moreover, dissipation effects can lead to
some attractive theoretical consequences in inflation mod-
els. For example, for those parameter regions feasible to
inflation and where the nonlinear and nonperturbative ef-
fects we studied here can become important, the emer-
gence of effective strong dissipative phenomena are able,
for instance, to sustain and drive inflation longer than when
these dynamical effects are neglected [45]. Several other
results also can follow as a consequence of the dissipative
regimes studied here. In particular various problems,
namely ' [46], graceful exit [9], quantum-to-classical
transition [9,47], large inflaton amplitude [46], and aspects
of initial conditions [48,49], can be remedied simply by
properly accounting for the dissipative effects already in
the model, rather than relying on additional modifications
to the model, as is often done.
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APPENDIX: THE EFFECTIVE POTENTIAL AND
RENORMALIZATION

Consider the local terms (5.25) appearing in the
’-effective EOM and associated to the field derivative of
the effective potential for ’,
@Veff�’;R�
@’

� m2
	’�t� �

�
6
’�t�3 �  R�t�’�t� �

�
2
’�t�

1

a�t�3
Z d3q

�2��3
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2�q2=a�t�2 �m2
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2 � � � 1=6�R�t�
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XN
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g2j’�t�
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Z d3q

�2��3
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2�q2=a�t�2 �m2

j � g2j’�t�

2 � � � 1=6�R�t�
1=2
; (A1)

where we used Eqs. (5.23) and (5.24). The momentum integrals in Eq. (A1) are divergent and require appropriate
renormalization, which we perform here just as in standard Minkowski space-time. In Eq. (A1) we add mass and couplings
renormalization counterterms to the classical potential so as

@Veff�’;R�
@’

!
@Veff�’;R�
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� -m2

	’�t� �
-�
6
’�t�3 � - R�t�’�t�; (A2)
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and we will consider from now on the masses and coupling constants as being the renormalized ones. The counterterms
-m2

	, - , and -� are fixed by the choice of renormalization conditions [26,30]
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@R@’2
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��������’��’;R�0
� �; (A3)

where we have chosen renormalization points ’ � �’ and R � �2
R in the above conditions so that the results are infrared

finite in the limit of vanishing masses m	 and m
j . Of course, these renormalization points are completely arbitrary and
related to different choices by the corresponding renormalization group equations.

Using an upper momentum cutoff 3 and changing to the physical momentum kp � k=a and cutoff 3p � 3=a, the
momentum integrals in Eq. (A1) are easily evaluated leading to (for 3 ! 1)
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We can now use the renormalization conditions (A3) in (A4) leading, for massless bare fields m	 � m
j � 0, to the
renormalized expression
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We can also extend the result for the renormalized effective potential when there is an additional coupling of � to
fermions  
, in which case there is the additional contribution to (A1)
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which leads to the additional contribution to (A5) (for bare massless  
 fermions, m � 0)
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