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Particle decay during inflation: Self-decay of inflaton quantum fluctuations during slow roll
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Particle decay during inflation is studied by implementing a dynamical renormalization group
resummation combined with a small � expansion. � measures the deviation from the scale invariant
power spectrum and regulates the infrared. In slow-roll inflation, � is a simple function of the slow-roll
parameters �V; �V . We find that quantum fluctuations can self-decay as a consequence of the inflationary
expansion through processes which are forbidden in Minkowski space-time. We compute the self-decay of
the inflaton quantum fluctuations during slow-roll inflation. For wavelengths deep inside the Hubble
radius the decay is enhanced by the emission of ultrasoft collinear quanta, i.e., bremsstrahlung radiation
of superhorizon quanta which becomes the leading decay channel for physical wavelengths H �
kph��� � H=��V � �V�. The decay of short wavelength fluctuations hastens as the physical wave vector
approaches the horizon. Superhorizon fluctuations decay with a power law �� in conformal time where in
terms of the amplitude of curvature perturbations 42R, the scalar spectral index ns, the tensor to scalar
ratio r and slow-roll parameters: � ’ �32�2V 42R =�ns � 1�

r
4�
2	�1�O��V; �V�	. The behavior of the

growing mode ��V��V��=� features an anomalous scaling dimension �. We discuss the implications of
these results for scalar and tensor perturbations as well as for non-Gaussianities in the power spectrum.
The recent Wilkinson Map Anisotropy Probe data suggests � * 3:6
 10�9.
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I. INTRODUCTION

A period of accelerated expansion in the early Universe,
namely, inflation, is nowadays part of standard cosmology
since explains the homogeneity, isotropy and flatness of the
observed Universe [1–6]. At the same time, inflation pro-
vides a mechanism for generating metric fluctuations
which seed large scale structure: during inflation physical
scales grow faster than the Hubble radius but slower than it
during both radiation or matter domination eras, therefore
physical wavelengths cross the horizon (Hubble radius)
twice. Quantum fluctuations generated during inflation
with wavelengths smaller than the Hubble radius become
classical and are amplified upon first crossing the horizon.
As they reenter the horizon during the decelerated stage
these fluctuations provide the seed for matter and radiation
inhomogeneities which generate structure upon gravita-
tional collapse [7–12]. Most of the inflationary models
predict fairly generic features: a Gaussian, nearly scale
invariant spectrum of adiabatic scalar and tensor primor-
dial perturbations (gravitational waves). These generic
predictions are in spectacular agreement with cosmic mi-
crowave background (CMB) observations. Gaussian [13]
and adiabatic nearly scale invariant primordial fluctuations
[14] provide an excellent fit to the Wilkinson Map
Anisotropy Probe (WMAP) data as well as to a variety of
large scale structure observations. Perhaps the most strik-
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ing confirmation of inflation as the mechanism for gener-
ating superhorizon (‘‘acausal’’) perturbations is the
anticorrelation peak in the temperature-polarization (TE)
angular power spectra at l� 150 corresponding to super-
horizon scales [15,16]. The anticorrelation between the
E-mode (parity even) polarization fluctuation and the tem-
perature fluctuation is a distinctive feature of superhorizon
adiabatic fluctuations [17]: the (peculiar) velocity gradient
generates a quadrupole temperature anisotropy field
around electrons which in turn generates an
E-polarization mode. By continuity, the gradient of the
peculiar velocity field is related to the time derivative of
the density (temperature) fluctuations, hence the peculiar
velocity and the initial (adiabatic) contribution to the
(acoustic) oscillations of the photon baryon fluid are out
of phase by �=2 [17]. Thus, the product of these two terms
gives an anticorrelation peak at kcs�dec � 3�=4 which
corresponds to superhorizon wavelengths since the size
of the horizon is

���
3

p
larger than the size of the sound

horizon. The WMAP (TE) data [15,16] clearly displays
the anticorrelation peak at l� 150 providing perhaps one
of the most striking confirmations of adiabatic superhor-
izon fluctuations as predicted by inflation. While the robust
predictions of a generic inflationary model seem to provide
an excellent fit to the WMAP data, different models predict
slight differences. Therefore, theoretical differences be-
tween different models as well as potential experimental
deviations from the most generic features are the focus of
intense study. With the ever increasing precision of CMB
observations it is conceivable that forthcoming observa-
-1  2005 The American Physical Society
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tions will allow a narrower determination of inflationary
models. Relevant discriminants between models are non-
Gaussianity, a running spectral index either for scalar and/
or tensor perturbations, an isocurvature component of pri-
mordial fluctuations, etc. Already WMAP reports a hint of
running spectral index of scalar perturbations from the blue
on large scales to the red on small scales [16]. Quantum
effects associated with interactions can potentially lead to
non-Gaussian correlations [18–23]. Therefore the detec-
tion of a running index (as hinted in the WMAP data) or
small non-Gaussianities in the temperature correlations
imply potentially interesting quantum phenomena during
the inflationary stage that was imprinted on superhorizon
scales.

The inflaton is usually studied as a homogeneous clas-
sical scalar field [4–6]. However, important aspects of the
dynamics require a full quantum treatment for their con-
sistent description. The quantum dynamics of the inflaton
is systematically treated within a nonperturbative frame-
work and some consequences on the CMB anisotropy
spectrum were analyzed in Ref. [24].

In this article we study quantum phenomena during
inflation which contribute to relevant observables in the
CMB anisotropies and polarization. In particular, we focus
on inflaton decay during inflation as a potential source of
quantum phenomena contributing to deviations from scale
invariance in the primordial power spectrum and/or to non-
Gaussian features. If the inflaton couples to other particles,
then its quantum fluctuations which seed scalar density
perturbations also couple to these other fields.
Consequently, the decay of the amplitude of the quantum
fluctuations of the inflaton may lead to a modification of
the power spectrum of density perturbations. The same
coupling that is responsible for the decay of the inflaton
quantum fluctuations can be also the source of non-
Gaussian correlations.

Particle decay is a distinct feature of interacting quan-
tum field theories and is necessarily an important part of
the inflationary paradigm: the decay of the inflaton into
lighter particles after inflation may yield to the radiation
dominated stage. Recently, inflaton decay during a post-
inflationary stage has been considered as a possible source
of metric perturbations arising from an inhomogeneity in
the inflaton coupling [25]. Inflaton decay has also been
studied as a dissipative mechanism in the dynamics of the
inflaton [26], however these studies only apply when the
expansion rate is much smaller than the typical mass
scales.

In a previous article [27] we introduced and imple-
mented a systematic program to study the relaxational
dynamics and particle decay in the case of a rapidly
expanding inflationary stage. Rapid expansion refers to
the Hubble parameter during inflation being much larger
than the mass of the particles. In the case of the inflaton,
this is the situation of relevance for slow-roll inflation and a
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necessary (although not sufficient) condition for an almost
scale invariant power spectrum of scalar fluctuations
[3,4,6,28]. In Ref. [29] inflaton decay was studied in
some particular cases for which a solution of the equations
of motion was available. The method of Ref. [29] was
recently applied to the study of the decay of the inflation
in alternative de Sitter invariant vacua [30].

The Minkowski space-time computation of the decay
rate is not suitable for a stage of rapid expansion (as
quantified above): the rapid expansion of the Universe
and the manifest lack of a global timelike Killing vector
allow processes that would be forbidden by energy con-
servation in Minkowski space-time. As emphasized in
Refs. [27,31], the lack of energy conservation in a rapidly
expanding cosmology requires a different approach to
study particle decay. The correct decay law follows from
the relaxation in time of the expectation value of the field
out of equilibrium. The relaxation of the nonequilibrium
expectation value of the field is computed in Ref. [27]
using the dynamical renormalization group (DRG) which
allows one to extract the decay law directly from the real
time equations of motion. The reliability and predictive
power of the DRG has been tested for a wide range of
physical situations including hot and dense plasmas in and
out of equilibrium [32].

The goals of this article: We compute the particle decay
of quantum fields minimally coupled to gravity with
masses M much smaller than the Hubble parameter, which
is the relevant case for slow-roll inflation. This entails a
much stronger infrared behavior than for massless particles
conformally coupled to gravity. The emergence of infrared
divergences in quantum processes with gravitons during
de Sitter inflation has been the focus of a thorough study
[33,34]. As we will see in detail below, similar strong
infrared behavior enters in the decay of minimally coupled
particles with masses M much smaller than the Hubble
parameter H. When M � H there is a small parameter
��M2=H2 which regulates the infrared behavior in
de Sitter inflation. We find that a similar parameter � exists
in quasi-de Sitter slow-roll inflation which is a simple
function of the slow-roll parameters. � regulates the infra-
red in the self-energy corrections even for massless parti-
cles (gravitons).

We begin by studying the general case of a cubic inter-
action of scalar particles minimally coupled to gravity,
allowing the decay of one field into two others during
de Sitter inflation. The masses of all particles are much
smaller than the Hubble constant, which leads to a strong
infrared behavior in the self-energy loops. We introduce an
expansion in terms of a small parameter � which regulates
the infrared and which in the case of de Sitter inflation is
determined by the ratio of the mass of the particle in the
loop to the Hubble constant. Long-time divergences asso-
ciated with secular terms in the solutions of the equations
of motion are systematically resummed by implementing
-2
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the DRG introduced in Refs. [27,32] and lead to the decay
law. We then apply these general results to the case of
quasi-de Sitter slow-roll inflation. We show that in this case
a similar small parameter � emerges which is a simple
function of slow-roll parameters and regulates the infrared
behavior even for massless particles. We study the decay of
superhorizon fluctuations as well as of fluctuations with
wavelengths deep inside the horizon. A rather striking
aspect is that a particle can decay into itself precisely as
a consequence of the lack of energy conservation in a
rapidly expanding cosmology. We then focus on studying
the decay of the inflaton quantum fluctuations into their
own quanta, namely, the self-decay of the inflaton fluctua-
tions, discussing the potential implications on the power
spectra of primordial perturbations and to non-Gaussianity.

Brief summary of results
(i) I
n the case of de Sitter inflation for particles with
mass M � H a small parameter ��M2=H2 reg-
ulates the infrared. We introduce an expansion in
this small parameter � akin to the " expansion in
dimensionally regularized critical theories. We ob-
tain the decay laws in a � expansion after imple-
menting the DRG resummation.
(ii) M
inimally coupled particles decay faster than
those conformally coupled to gravity due to the
strong infrared behavior both for superhorizon
modes as well as for modes with wavelengths
well inside the Hubble radius.
(iii) T
he decay of short wavelength modes, those inside
the horizon during inflation, is enhanced by soft
collinear bremsstrahlung radiation of superhorizon
quanta which becomes the dominant decay channel
when the physical wave vector obeys

kph��� &
H

�V � �V
; (1)

where �V; �V are the standard potential slow-roll
parameters.
(iv) A
n expanding cosmology allows processes that are
forbidden in Minkowski space-time by energy con-
servation [27,31]: in particular, for masses � H,
kinematic thresholds are absent allowing a particle
to decay into itself. Namely, the self-decay of
quantum fluctuations is a feature of an interacting
theory in a rapidly expanding cosmology. A self-
coupling of the inflaton leads to the self-decay of its
quantum fluctuations both for modes inside as well
as outside the Hubble radius.
(v) T
he results obtained in de Sitter directly apply to
the self-decay of the quantum fluctuations of the
inflaton during slow-roll (quasi-de Sitter) expan-
sion. In this case, � is a simple function of the
slow-roll parameters. For superhorizon modes we
find that the amplitude of the inflaton quantum
023509-3
fluctuations relaxes as a power law�� in conformal
time. To lowest order in slow roll, we find � com-
pletely determined by slow-roll parameters and the
amplitude of the power spectrum of curvature per-
turbations 42R:

� �
8�2V4

2
R

��V � �V�
2 �1�O��V; �V�	 (2)

where � is conformal time and �V; �V; �V are the
standard slow-roll parameters. As a consequence,
the growing mode which dominates at late time
evolves as

��V��V��

�
(3)

featuring an anomalous dimension � slowing down
the growth of the dominant mode. The decay of the
inflaton quantum fluctuations with wavelengths
deep within the Hubble radius during slow-roll
inflation is enhanced by the infrared behavior asso-
ciated with the collinear emission of ultrasoft
quanta, namely, bremsstrahlung radiation of super-
horizon fluctuations. The decay hastens as the
physical wavelength approaches the horizon be-
cause the phase space for the emission of super-
horizon quanta opens up as the wavelength nears
horizon crossing.
(vi) W
e discuss the implications of these results for
scalar and tensor perturbations, and establish a
connection with previous calculations of non-
Gaussian correlations.
The article is organized as follows: In Sec. II we intro-
duce the models, in Sec. III we present the equations of
motion, describe the approach to obtaining the decay law
via the DRG and introduce the � expansion. We consider
the decay of a scalar field coupled to other scalar fields via
a cubic coupling in pure de Sitter inflation. We study the
decay of superhorizon fluctuations as well as of fluctua-
tions with wave vectors deep inside the Hubble radius. In
Sec. IV we apply the results of Sec. III to the self-decay of
the inflaton quantum fluctuations during quasi-de Sitter
slow-roll inflation. In Sec. V we discuss the implications
of our results for scalar and tensor metric perturbations as
well as the connection between the quantum decay pro-
cesses and the emergence of non-Gaussian correlations.
Our conclusions and further discussions are contained in
Sec. VI. Two appendices are devoted to the calculation of
the self-energy kernel in the � expansion for arbitrary
wave vector including the order �0.
II. THE MODELS

We consider a general interacting scalar field theory
with cubic couplings in a spatially flat Friedmann-
Robertson-Walker (FRW) cosmological space-time with
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scale factor a�t�. The cubic couplings are the lowest order
nonlinearities. Our study applies to two different scenarios,
(i) the inflaton � coupled to another scalar field ’, (ii) the
inflaton field self-coupled via a trilinear coupling. We
consider the fields to be minimally coupled to gravity.

In comoving coordinates the action for case (i) is given
by

A �
Z
d3xdta3�t�

�
1

2
_�2 �

�r��2

2a2
�
1

2
M2�2 �

1

2
_’2

�
�r’�2

2a2
�
1

2
m2’2 � g�’2 � J�t��

� higher nonlinear terms
�

(4)

and for case (ii),

A �
Z
d3xdta3�t�

�
1

2
_�2 �

�r��2

2a2
�
1

2
M2�2 �

g
3
�3

� J�t��� higher nonlinear terms
�
: (5)

The linear term in � is a counterterm that will be used to
cancel the tadpole diagram in the equations of motion. The
higher nonlinear terms do not affect our results but they are
necessary to stabilize the theory.

In order to study the decay of particles associated with a
field we must first obtain the self-energy corrections to the
equations of motion. We study the decay of inflaton fluc-
tuations up to one-loop order in the coupling either into
other fields or in self-decay. The calculation of the self-
energy correction up to one loop is similar in both cases,
the extra factor 1=3 in the trilinear coupling in Eq. (5)
accounts for the combinatorial factor in the corresponding
Feynman diagram. Figure 1 shows the self-energy contri-
butions to the inflaton propagator up to one loop.
Figure 1(a) displays a loop of ’ particles and Fig. 1(b)
displays the one-loop self-energy for a cubic self-
interaction which is the lowest order nonlinearity around
the classical inflaton (expectation value) driving inflation.

It is clear from these figures that we need to obtain the
self-energy in only one of the cases, since one case is
obtained from the other by a simple replacement of the
φ

ϕ

φ

ϕ

(a)

φ φ

φ

φ

(b)

FIG. 1. Self-energies: (a) depicts the self-energy contribution
from a loop of ’ particles, (b) depicts the self-energy from the
self-interaction of the inflaton.
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masses of the particles that run in the loop. Therefore, we
will study the self-energy for the case of Fig. 1(a).

It is convenient to pass to conformal time � with d� �
dt=a�t� and introduce a conformal rescaling of the fields

a�t��� ~x; t� � �� ~x; ��; a�t�’� ~x; t� �  � ~x; ��: (6)

The action Eq. (4) (after discarding surface terms that do
not affect the equations of motion) reads:

A��;  	 �
Z
d3xd�

�
�02

2
�

�r��2

2
�

M2
����

2
�2 �

 02

2

�
�r �2

2
�

M2
 ���
2

 2 � gC���� 2

� C3���J����
�

(7)

with primes denoting derivatives with respect to conformal
time �;C��� � a�t���	 is the scale factor as a function of
� and

M2
���� � M2C2��� �

C00���
C���

;

M2
 ��� � m2C2��� �

C00���
C���

:
(8)

In this section we focus on a de Sitter inflationary cosmol-
ogy, we treat slow roll and quasi-de Sitter inflation in
Sec. IV. For de Sitter space-time the scale factor is given by

a�t� � eHt; C��� � �
1

H�
; (9)

with H the Hubble constant and the conformal time � is
given by

� � �
e�Ht

H
; (10)

where � � � 1
H corresponds to the initial time t � 0.

The Heisenberg equations of motion for the Fourier field
modes of wave vector k in the free (g � 0) theory are given
by

�00
~k
��� �

�
k2 �

1

�2

�
"2 �

1

4

��
�~k��� � 0; (11)

 00~k ��� �
�
k2 �

1

�2

�
�"2 �

1

4

��
 ~k��� � 0 (12)

where

"2 �
9

4
�
M2

H2
; �"2 �

9

4
�
m2

H2
: (13)

The Heisenberg free field operators can be expanded in
terms of the linearly independent solutions of the mode
equation
-4



PARTICLE DECAY DURING INFLATION: SELF- . . . PHYSICAL REVIEW D 71, 023509 (2005)
S00"�k;�� �
�
k2 �

1

�2

�
"2 �

1

4

��
S"�k;�� � 0; (14)

for "; �", respectively. We choose the usual Bunch-Davies
initial conditions for the mode functions, namely, the usual
plane waves for wavelengths deep inside the Hubble radius
jk�j � 1. The mode functions S"�q; �� associated with
the Bunch-Davies vacuum are given by

S �"�k; �� �
1

2
i�"��1=2� ��������

��
p

H�2�
" �k��: (15)

For wavelengths much smaller than the Hubble radius
(jk�j � 1), the mode functions with Bunch-Davies vac-
uum initial condition behave as plane waves in Minkowski
space-time, namely,

S"�k;�� �
jk�j�1 1�����

2k
p e�ik�: (16)

In particular for " � 3=2, Eq. (15) becomes

S3=2�k; �� �
1�����
2k

p e�ik�
�
1�

i
k�

�
: (17)

The spatial Fourier transform of the free Heisenberg field
operators �~k���;  ~k��� are therefore written as

�~k��� � &~kS"�k;�� � &y

� ~k
S�"�k;��;

 ~k��� � '~kS �"�k;�� � 'y

� ~k
S��"�k;��

(18)

where the Heisenberg operators &~k;&
y
~k

and '~k;'
y
~k

obey
the usual canonical commutation relations. The Bunch-
Davies vacuum state j0i is annihilated by &~k; ' ~k.
III. EQUATIONS OF MOTION, DYNAMICAL
RENORMALIZATION GROUP AND DECAY LAWS:

THE � EXPANSION IN DE SITTER INFLATION

As described in detail in Ref. [27], in a rapidly expand-
ing cosmology the notion of decay ‘‘rate’’ requires a care-
ful analysis. In Minkowski space-time the decay rate is
obtained from the transition probability per unit time, or
alternatively from the imaginary part of the space-time
Fourier transform of the self-energy evaluated on the par-
ticle’s mass shell. In the transition probability, the square of
the energy-momentum delta functions accounts for the
space-time volume times an overall delta function of
energy-momentum conservation: the transition probability
divided by this volume is the decay rate. In Minkowski
space-time, the self-energy is a function of the difference
of the space-time coordinates due to translational invari-
ance. Hence, a space-time Fourier transform is available,
from which the imaginary part is extracted. Energy-
momentum conservation is of paramount importance to
define the decay rate in Minkowski space-time, and to
determine the kinematic thresholds for particle production
and decay.
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In a rapidly expanding cosmology the lack of a global
timelike Killing vector prevents energy-momentum con-
servation, although energy is covariantly conserved. As a
result: (i) a new definition of the decay rate that does not
rely on energy-momentum conservation, and a different
approach to studying the decay law is necessary (ii) since
energy is no longer conserved, novel processes are possible
which are forbidden in Minkowski space-time, therefore
we expect novel decay channels which are absent in
Minkowski space-time.

In Ref. [27] the decay of a particle into massless con-
formally coupled particles was studied as a test example to
present the main concepts: the mode functions are the same
as in Minkowski space-time, this simplified the calculation
of the self-energy kernel, allowed a systematic study of the
reliability of the dynamical renormalization group method
and a direct comparison to the Minkowski limit. This
simple case, however, does not feature several important
aspects of the more relevant situation of the dynamics of
quantum fields which are massless or nearly so but mini-
mally coupled to gravity. This latter case features infrared
divergences which are not present in the simpler case of
conformally coupled massless fields [29,33]. In this article
we study the case in which the inflaton is massive and
minimally coupled to gravity which is precisely the rele-
vant case for studying the decay of quantum fluctuations
during slow-roll inflation.

While the main aspects of the dynamical renormaliza-
tion group method to study decay were introduced in
Ref. [27], we briefly highlight here the main aspects rele-
vant to this work.

The method relies on studying the real time relaxation of
the expectation value of a field induced by an external
source in linear response: as the source is switched off
the expectation value relaxes revealing the decay law of the
amplitude. While an exact solution of the equations of
motion is readily available in Minkowski space-time be-
cause the self-energy is a function of the difference of the
time coordinates (allowing the use of Fourier-Laplace
transforms), this is, in general, not the case during inflation.
Solving the equation of motion in a perturbative expansion
in the coupling, secular terms emerge, these terms grow in
time when the conformal time �! 0, limiting the validity
of the perturbative expansion. The dynamical renormaliza-
tion group precisely allows a systematic resummation of
these secular terms and the uniform asymptotic expansion
provided by the resummation lead to the identification of
the decay law of the amplitude. Thus, the main steps of the
method are the following:
(i) F
-5
irst, obtain the (retarded) equations of motion for
the expectation value of the field in linear response
after switching off the source that induces the
expectation value.
(ii) S
econd, obtain a perturbative expansion of the
solution in terms of the coupling. Such perturbative
solution features secular terms, namely, terms that
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grow in time (when conformal time �! 0 during
inflation) and limit the validity of the perturbative
expansion.
(iii) T
hird, implement the DRG to provide a systematic
resummation of these secular terms. The solution
of the DRG equation gives the decay law of the
amplitude of quantum fluctuations.
We implement these steps in the general case described
by the action Eq. (4) which couples two fields: � and ’
with masses M and m, respectively, and a cubic coupling
g�’2 in exact de Sitter space-time. In Sec. IV we apply
these results to the case of the self-coupling of inflaton
fluctuations.

We focus on obtaining the decay law for the quantum
fluctuations of the field � which will be later identified
with the inflaton field. We derive the equation of motion for
the expectation value of the field using the nonequilibrium
generating functional which involves forward and back-
ward time evolution, typical of a density matrix. Unlike the
S-matrix case (which is an in-out transition where only
forward time evolution is required), the time evolution of
an expectation value is an initial value problem which
requires an in-in matrix element. Real time equations of
motion obtained from the nonequilibrium generating func-
tional are guaranteed to be retarded.

It is convenient to write the spatial Fourier transform of
the conformally rescaled field � as follows:

��
~k
��� � X~k��� � )�

~k
���;

h��
~k
���i � X~k���;

h)�
~k
���i � 0

(19)

where the superscripts � refer to the forward and back-
ward time branches in the nonequilibrium generating func-
tional, respectively. The expectation value is the same for
both branches since the c-number external source is the
same. The equation of motion for the expectation value
X~k��� is obtained by requiring h)�

~k
���i � 0 systematically

order by order in perturbation theory. This is the basis of
the tadpole method to obtain the equations of motion,
which up to O�g2� (one loop) are given by [see Eq. (37)
in Ref. [27]]

X00
~k
��� �

�
k2 �

"2 � 1
4

�2

�
X~k��� �

2g2

�H2
Z �

�0

d�0

�0
K �"�k;�;�0�X~k��

0� � 0; (20)

where the counterterm J��� in the action (7) has been used
to cancel the tadpole term proportional to h 2� ~x; ��i, this is
independent of X~k��� and acts as a source term in the
equation of motion. " and �" are given by Eq. (13).

The retarded one-loop self-energy kernel K �"�k;�;�0�
is given by [27]
023509
K �"�k;�;�
0� � 2

Z d3q

�2��3
Im�S �"�q; ��S

�
�"�q; �

0�


 S �"�j ~q� ~kj; ��S��"�j ~q� ~kj; �0�	 (21)

and is depicted in Fig. 1(a). The mode functions S �"�q; ��
are given by Eq. (15). We consider M2=H2 � 1 and
m2=H2 � 1which for the inflaton case to be studied below
corresponds to the slow-roll approximation, and define

� �
3

2
� �"; � �

1

3

m2

H2
�O

�
m4

H4

�
(22)

hence �� 1. This small parameter � will be related with
the slow-roll parameters and plays an important role in
regulating the infrared behavior in the self-energy.
Anticipating a renormalization of the inflaton mass we
write

M2 � M2
R � g2 M2

1 �O�g4� ) "2

� "2R � g2
 M2

1

H2
�O�g4�; (23)

with "2R � 9=4�M2
R=H

2. The equation of motion up to
order g2 becomes

X00
~k
��� �

�
k2 �

"2R �
1
4

�2

�
X~k��� � g2

 M2
1

H2�2
X~k��� �

2g2

�H2
Z �

�0

d�0

�0
K �"�k;�;�

0�X~k��
0� � 0:

(24)

In what follows we suppress the subscript R to avoid
cluttering the notation, therefore " and the mass must be
understood as the renormalized ones. A perturbative solu-
tion of Eq. (20) is obtained by writing

X~k��� � X0; ~k��� � g2X1; ~k��� �O�g4� (25)

and comparing powers of g leads to a hierarchy of coupled
equations: up to second order in g, (one-loop order), they
are

X00

0; ~k
��� �

�
k2 �

1

�2

�
"2 �

1

4

��
X0; ~k��� � 0; (26)

X00

1; ~k
��� �

�
k2 �

1

�2

�
"2 �

1

4

��
X1; ~k��� � R1�k; ��; (27)

where the inhomogeneity is given by
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R1�k; �� � �
 M2

1

H2�2
X0; ~k���

�
2

H2�

Z �

�0

d�0

�0
K �"�k;�;�

0�X0; ~k��
0�: (28)

The mass counterterm  M2
1 is fixed by requiring that it

cancels the term proportional to X0; ~k���=�
2 arising from

the integral in Eq. (28). The first order correction to the
solution is given by

X1; ~k��� �
Z 0

�0
d�0G"�k;�;�

0�R1�k; �
0�; (29)

where G�k;�;�0� is the retarded Green’s function obeying�
d2

d�2
� k2 �

1

�2

�
"2 �

1

4

��
G"�k;�;�

0� �  ��� �0�;

G"�k;�;�
0� � 0 for �0 >�:

(30)

To compute X1; ~k��� we first need the kernel K �"�k;�;�
0�.

As it will become clear in the following, this kernel in-
volves (logarithmic) infrared divergences for �" � 3=2, but
it is an analytic function of � that features simple poles at
� � 0. Since in slow roll�� 1we will use the parameter
� as a regulator much in the same manner as the "
expansion in dimensional regularization. We will therefore
compute the kernel K �"�k;�;�

0� at leading order in � by
extracting the poles and the logarithmic terms; terms pro-
portional to powers of � give subleading contributions.
This is akin to the minimal subtraction in dimensional
regularization.

A. Secular terms, DRG and decay law

Let g"�k; �� and f"�k; �� be two independent solutions
of the zeroth order Eq. (26), the most general solution is

X0; ~k��� � A~kg"�k; �� � B~kf"�k; �� (31)

where A~k and B~k are arbitrary constants. The linear struc-
ture of the perturbative series indicates that the perturbative
solution of the equation of motion has the form

X~k��� � A~kg"�k; ���1� g2F1�k; �� �O�g4�	

� B~kf"�k; ���1� g2H1�k; �� �O�g4�	: (32)

The functions F1�k; ��;H1�k; �� are determined by the first
order solution Eq. (29) and they feature secular terms,
namely, divergent terms in the limit �! 0. Therefore we
write

F1�k;�� � F1;s�k;�� � F1;f�k;��;

H1�k;�� � H1;s�k;�� �H1;f�k;��
(33)
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where F1;s�k;��; H1;s�k;�� are secular terms, whereas
F1;f�k;��; H1;f�k;�� remain bounded as functions of con-
formal time. The dynamical renormalization group absorbs
the secular terms into a renormalization of the amplitudes
A~k; B ~k at a given time scale ~� (wave-function renormal-
ization) [27,32], namely,

A~k � A~k�~��Z
A
~k
�~��; ZA~k �~�� � 1� g2zA

1; ~k
�~�� �O�g4�;

(34)

B~k � B~k�~��Z
B
~k
�~��; ZB~k �~�� � 1� g2zB

1; ~k
�~�� �O�g4�:

(35)

The coefficients zA
1; ~k
�~��; zB

1; ~k
�~�� are chosen to cancel the

secular terms in the perturbative solution at � � ~� order
by order in the perturbative expansion. Since the scale ~� is
arbitrary and the perturbative solution does not depend on
this scale, the renormalized amplitudes A~k�~��; B ~k�~�� obey
the following dynamical renormalization group equation to
lowest order [Eqs.(55)–(56) of Refs. [27,32]]:

@A~k�~��

@~�
� g2A~k�~��

@F1;s�k; ~��
@~�

�O�g4� � 0 (36)

@B~k�~��

@~�
� g2B~k�~��

@H1;s�k; ~��
@~�

�O�g4� � 0: (37)

The solution of these DRG equations is given by

A~k�~�� � A~k�~�0�e
g2�F1;s�k; ~���F1;s�k; ~�0�	�O�g4�;

B ~k�~�� � B~k�~�0�e
g2�H1;s�k; ~���H1;s�k; ~�0�	�O�g4�:

(38)

Setting ~� � � we obtain the renormalization group im-
proved solution,

X~k��� � A~k���g"�k;���1� g2F1;f�k; �� �O�g4�	

� B~k���f"�k;���1� g2H1;f�k; �� �O�g4�	

(39)

A~k��� � A~k��0�e
g2�F1;s�k;���F1;s�k;�0�	;

B ~k��� � B~k��0�e
g2�H1;s�k;���H1;s�k;�0�	:

(40)

The terms in the brackets in Eq. (39) are truly perturba-
tively small at all conformal times. The real part of the
exponential factors in the complex amplitudes Eq. (40)
determine the decay law of the amplitude (or growth law
in the case of instabilities).

B. The � expansion

When the inflaton decays into minimally coupled mass-
less particles, infrared divergences in the self-energy ker-
nel are present [29]. These divergences are a hallmark of
minimally coupled massless particles, namely, �" � " �
3=2 in the intermediate state, and are similar to those found
-7
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for gravitons in de Sitter space-time [33]. We are instead
considering the case in which both the inflaton and the
decay products are massive with masses M and m, respec-
tively, and �M2=H2; m2=H2� � 1. The mass of the parti-
cles in the loop cuts off the infrared divergences here (since
m2=H2 � 0 then �" � 3=2 and� � 0 [Eq. (22)]). As it will
become clear in the explicit calculations below, the infra-
red divergences in the self-energy kernel manifest as sim-
ple poles at � � 0. Thus, 0< �� 1 emerges as an
infrared regulator akin to the dimensional regularization
parameter " � 4�D in the loop expansion in
D-dimensional Minkowski space-time.

Since �� 1 for slow-roll inflation, we compute the
self-energy kernel in an expansion in � keeping the poles
at � � 0 and the leading logarithms in � just like the "
expansion in dimensional regularization. (The leading
log� terms are the remnant of the infrared divergence
regulated by � just like in the " expansion of critical
phenomena.)

The details of the calculation of K �"�k; �; �0� in the �
expansion for arbitrary k is presented in Appendix B and
the result for the kernel is given by Eqs. (B13) and (B14).
We now have all the elements necessary to study the decay
law.

C. Superhorizon modes: k � 0

We begin by the superhorizon modes and take k � 0.
The general solution of the unperturbed mode Eq. (26) and
the retarded Green’s function G"�0; �; �0� Eq. (30) for k �
0 are given by

X0;~0��� � A����'� � B����'� ; '� �
1

2
� ";

(41)

G"�0; �; �0� �
1

2"
�����'����0�'�

� ����'����0�'�	 ��� �0�: (42)

We compute the kernel K �"�0; �; �
0� in Appendix A high-

lighting the most relevant physical processes and display-
ing the origin of infrared divergences as poles at� � 0 and
the leading logarithms in �. K �"�0; �; �0� can also be
obtained in the limit k! 0 of the k � 0 kernel treated in
Appendix B [Eq. (B13)].

For k � 0 the self-energy kernel is given by

K �"�0;�;�0� �
1

�2
Z 1

0
q2dqImf�S �"�q; ��S��"�q; �

0�	2g;

�" �
3

2
� �:

(43)

The infrared divergences at � � 3
2� �" � 0 arise from the

small momenta behavior of the integrand in Eq. (43).
Keeping � small but nonzero, we find for the kernel (see
Appendix A)
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K �"�0;�;�0� � K1=2�0;�;�0� �
1

6�2

��
1

2�
�
2

3

�




�
�0

�2
�

�

�02

�
�
�0

�2
ln
�
�0

�

�
�

�
�

�02 �
�0

�2

�


 ln
�
1�

�
�0

�
�
1

�0
�
1

�

�
(44)

where

K1=2�0;�;�0� � �
1

8�2
P

�
1

�� �0

�

� �
1

8�2
�� �0

��� �0�2 � ���0�2

� �
1

8�2
1

2

�
1

�� �0 � i��0

�
1

�� �0 � i��0

�
;

�! 0: (45)

This prescription for the principal part regulates the short-
distance divergence in the operator product expansion with
a dimensionless infinitesimal � independent of time. This
choice of regularization is consistent with the short-
distance singularities of the operator product expansion
in Minkowski space-time, and leads to a time-independent
mass renormalization (see also Ref. [27]).

The two terms in Eq. (44), namely, K1=2�0;�;�0� and
the term in braces have very different origin.
K1=2�0;�;�

0� accounts for the large loop momentum
contribution q�; q�0 � 1 where the behavior of the
mode functions is the same as for conformally coupled
massless fields, in particular, the short-distance (ultravio-
let) divergence is present only in this term. The terms in the
braces account for the strong infrared behavior of super-
horizon wavelengths reflected by the pole at � � 0 and the
logarithms in �. This calculation exhibits clearly the origin
of the different contributions.

It remains to integrate over �0 in the second term in
Eq. (28) with the kernel given by Eq. (44). The integral
involving K1=2�0;�;�

0� in Eq. (44) was given in Ref. [27].
The integrals over �0 for the second term (between braces)
in Eq. (44) can be done easily by expanding the ln�1�
�=�0	 in a power series in �=�0 and integrating term by
term. The result of the integral over �0 in Eq. (28) is of the
form

2

H2�

Z �

�0

d�0

�0
K �"�0;�;�0�X0;0��0�

� A����'�
&�

�2
� B����'�

&�

�2
� F��;�0	 (46)

where F��;�0	 refers to the contribution of the lower
integration limit and does not produce secular terms in
X~0���.
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FIG. 2. Decay of the field � (solid line) for k � 0 into super-
horizon modes of the field ’ (dashed lines).
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Integrating over �0 in Eq. (46) yields

&� �
1

�2�H�2

�
ln�� 4�  

�
1

2
� "

��

�
1

3��H�2

�
1

"2 � 9
4

�
3

2�
� 2� 34

�
�

1

"2 � 1
4

�
1

�"� 3
2�
2
�
 �52� "�
3
2� "

�
 �� 1

2� "�
3
2� "

�
; (47)

where we used Eq. (44), 4 is the Euler-Mascheroni con-
stant, and the contribution from K1=2�0; �; �0� [27]. &�

follows from &� by changing "! �" while �" is un-
changed. Introducing the symmetric and antisymmetric
combinations,

&s �
1

2
�&� � &�	; &a �

1

2
�&� � &�	; (48)

the symmetric term

�A����'� � B����'�	
&s
�2

�
X0;~0���

�2
&s (49)

is identified with a contribution to mass renormalization
and is cancelled by the counterterm  M2

1 including the
logarithmic ultraviolet divergence ln� [� the short-distance
regulator Eq. (45)]. Equations (47) and (48) yield

&a �
1

8�H2
tan��"	

�
1�

4
9
4� "2

�
: (50)

The unit term in the bracket arises from the contribution of
K1=2�0; �; �0�. After cancelling the term given by Eq. (49)
with a proper choice of the mass counterterm, and taking
into account that F��;�0	 does not contribute to the secu-
lar terms, we find the solution of the equation of motion up
to O�g2�

X~0��� � X0;~0���
�
1� � ln

�
�0

� nonsecular terms
�

(51)

with

� �
g2

16�H2"
tan��"	

�
1�

4
9
4� "2

�

�
g2

16�H2"
tan��"	

�
1�

4H2

M2

�
;

" �

����������������
9

4
�
M2

H2

s
:

(52)

The dynamical renormalization group resummation expo-
nentiates the secular terms in Eq. (51) [see Eqs. (39) and
(40)] and leads to the improved solution

X~0��� �
�
�
�0

�
�
fA��0�����'��1�O�g2�	

� B��0�����
'��1�O�g2�	g: (53)
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The first term inside the square bracket in Eq. (52) (namely,
the unit term) corresponds to the case in which the inflaton
decays into massless particles conformally coupled to
gravity [27,29].

The calculation leading to Eq. (52) is valid for �"! 3
2

(namely, m� H) and we keep " as well as M arbitrary.
We can analytically continue the formula (52) to H <M
and then take the m� H � M limit. In this limit �
becomes the decay rate of a particle with mass M into
massless particles in Minkowski space-time:

lim
m�H!0

H� � �Mink � g2=�16�M�;

as it must be.

D. Modes inside the horizon during inflation: jk�j � 1

The kernel K �"�k;�;�0� for arbitrary k has been com-
puted in Appendix B in leading order in the � expansion
and up to leading logarithms. It is given by Eqs. (B13) and
(B14). Obtaining the perturbative solution and extracting
the secular terms leading to the decay law for arbitrary k is
an extremely difficult task which requires a full numerical
study. However, explicit expressions can be derived for
wavelengths deep inside the Hubble radius all throughout
inflation, namely, jk�j; jk�0j � 1. In Appendix B we show
that in the short wavelength limit the kernel simplifies to
the following expression [Eq. (B16)]:

K �"�k; �; �0� � K1=2�k; �; �0� �
1

4�2k��0

�
sink��� �0�




�
1

�
� C� lnk��� �0�

� lnk2��0 � Ci�2k��� �0��

�
� cosk��� �0�




�
�
2
� Si�2k��� �0��

��
; (54)

where C � ln2� 4� 2. Again, the first term in this ex-
pression is the self-energy kernel for conformally coupled
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massless fields in the loop,

K 1=2�k; �; �0� � �
1

8�2
cosk��� �0�P

�
1

�� �0

�
:

(55)

The principal part is defined by Eq. (45). A close exami-
nation of the steps leading to this expression in Appendix B
shows that this contribution originates solely from the high
loop momenta q�; q�0 � 1 for which the mode functions
coincide with those of massless conformally coupled
fields. The second term within brackets which features
the 1=� and the logarithms originate in the process of
emission of superhorizon modes. Two regions in the inte-
gral over the loop momentum q give rise to these contri-
butions: q� 1=� and j ~k� ~qj � 1=�, corresponding to
the case when either line in the loop transfers very small
momentum (superhorizon modes). These processes can be
described as bremsstrahlung radiation of superhorizon
quanta and are depicted in Fig. 3.

This process is analogous to the generation of Hawking
radiation from black holes. In the case of Hawking radia-
tion, a pair is created from the vacuum, a particle falling
inside the horizon and the other one being emitted outside.
In the present case a particle inside the Hubble radius
decays into a pair: a particle goes outside the Hubble radius
and the other inside. Analysis of the phase space integra-
tion carried out in Appendix B reveals that the emitted
superhorizon quanta are almost collinear with the (large)
external momentum k.

In summary, the processes which yield the leading in-
frared behavior responsible for the term 1=� and the lead-
ing logarithm in the kernel Eq. (54) correspond to collinear
bremsstrahlung radiation of superhorizon quanta.

In the limit jk�j � 1 the zeroth order equation of mo-
tion is

X00

0; ~k
��� � k2X0; ~k��� � 0 (56)

whose solutions are simple plane waves describing short
wavelength modes deep inside the Hubble radius,
kk

q ∼ 0

k − q

k − q

q ∼ 0

+

→→

→→

→

→→

→→

→

FIG. 3. Infrared contributions to �! ’’. The external parti-
cle has a wavelength deep inside the horizon but one of the
intermediate lines has superhorizon wavelengths. This process is
identified as bremsstrahlung radiation of superhorizon quanta.
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X0; ~k��� � A~ke
�ik� � B~ke

ik�: (57)

The equation of motion for the first order perturbation is
given by

X00

1; ~k
��� � k2X1; ~k��� � R1�k; ��; (58)

where the inhomogeneity is given by Eq. (28) with X0; ~k���
given by Eq. (57). The calculation of R1�k; �� for general
k is very complicated, but the leading order terms in the
limit jk�j � 1 can be extracted systematically. There are
two distinct contributions: (i) the first term in Eq. (54),
namely, the short wavelength modes which yield the kernel
of conformally massless fields K1=2�k; �; �

0�, and (ii) the
superhorizon modes yielding the second term in Eq. (54)
with the 1=� and the leading logarithms.

The first term contains a short-distance divergence pro-
portional to X0; ~k����ln�	=�

2 where � is defined in Eq. (45).
This term is canceled by the proper choice of the mass
counterterm in the inhomogeneity Eq. (28). The second
term does not yield a mass renormalization to leading order
in �. After a proper choice of the mass renormalization
counterterm, we find

R1�k; �� �
i

8�2�2H2

�
A~ke

�ik�
�
�
2
� i ln

�
�0

�

� B~ke
ik�

�
�
2
� i ln

�
�0

��
�

i

4�2kH2�3




�
A~ke

�ik�
�
1

�
� ln��k�� � i

�
2

�

� B~ke
ik�

�
1

�
� ln��k�� � i

�
2

��
(59)

where we have displayed separately the contributions from
the high momentum modes yielding the first term and
arising from K1=2�k; �; �0�, and those from the superhor-
izon modes yielding the second term which feature the
hallmark 1=� and logarithms. We have kept the leading
order terms in the real and imaginary parts inside the
brackets neglecting terms suppressed by higher powers of
1=jk�j � 1. A noteworthy feature of the contribution of
the superhorizon modes is the extra factor 1=k�. The
origin of the extra factor 1=k can be traced from the phase
space angular integration Eq. (B2). The integrals yielding
K1=2�k;�;�

0� are dominated by momenta q � k which
compensate the factor 1=k. The integration over the super-
horizon modes cannot compensate the 1=k for large k
corresponding to modes well within the horizon. Hence,
the extra factor 1=k is a consequence of the small phase
space available for the coupling between high and small
momentum modes. For dimensional reasons this extra
factor k appears with an extra factor � which is the only
other scale in the integrals. In summary, the contribution of
the superhorizon modes yields a strong infrared behavior
which is regulated by � and is suppressed by phase space
by an extra power of 1=jk�j � HC���=k� 1 in the limit
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jk�j � 1, (i.e., for wavelengths much smaller than the
Hubble radius during inflation).

The solution of the equation of motion (58) is found by
using the retarded Green’s function in the short wavelength
limit, which is given by

G "�k;�;�
0� �

1

k
sink��� �0� ��� �0�: (60)

Therefore, the first order correction becomes

X1; ~k��� �
1

k

Z �

�0
sink��� �0�R1�k; �

0�d�0: (61)

The final integral with the retarded Green’s function as in
Eq. (61) can now be performed extracting again the leading
order terms for jk�j � 1. We find

X1; ~k��� � �X0; ~k���
�

1

32�kH
�C��� � C��0�	

�
1

16�2k2

�
C2���

�
1

�
� ln��k��

�

� C��0�
�
1

�
� ln��k�0�

���
� nonsecular (62)

where C��� � �1=H� is the scale factor and we have
omitted purely imaginary secular terms since the dynami-
cal renormalization group exponentiates them [Eq. (38)] to
a (time dependent) phase. The terms displayed in Eq. (62)
are truly secular, since logj�j grows by about 60 during
inflation. From the dynamical renormalization group re-
summation Eq. (38) we find the following improved solu-
tion of the equations of motion:

X~k��� � A~k���e
�ik��1�O�g2�	

� B~k���e
ik��1�O�g2�	;

A ~k��� � A~k��0�e
����k;�����k;�0�	ei��k;��;

B ~k��� � B~k��0�e
����k;�����k;�0�	e�i��k;��

(63)

where the real phase ��k; �� is not relevant for the decay
rate, and the decay law of the amplitudes is given by

��jk�j � 1�

�
g2

32�H2
H

kph���

�
1�

2H
�kph���

�
1

�
� ln

kph���

H

��
;

kph��� �
k

C���
: (64)

Modes with k deep within the horizon satisfy kph���=H �

1. The unit term in the bracket in Eq. (64) corresponds to
the particles in the loop being massless and conformally
coupled to gravity. The second term which features the
factors 1=� and the logarithmic term arise from the emis-
sion of superhorizon quanta. We see that the infrared
regularization provided by � yields a finite result for the
decay law. Furthermore, the factors associated with the
infrared processes are suppressed by an extra power of
023509
H=kph��� � 1. This suppression is a consequence of the
small phase space available for the coupling between high
and small momentum modes as can be seen directly from
Eq. (B2).

The contributions to the decay law Eq. (64) from the
emission of superhorizon quanta become larger the closer
is the wavelength to horizon crossing. For H=kph��� � 1
they can even dominate � for sufficiently small �.

An important aspect of the decay law, either for modes
inside or outside the Hubble radius, is that there are no
kinematic thresholds. This is a consequence of the infla-
tionary expansion [�M;m� � H] and the lack of energy
conservation. In Minkowski space-time, energy-
momentum conservation leads to kinematic thresholds, in
particular, a massive particle cannot decay in its own
quanta. However, in an inflationary cosmology this process
is allowed, namely, a particle can decay into itself.
IV. SELF-DECAY OF INFLATON QUANTUM
FLUCTUATIONS DURING
SLOW-ROLL INFLATION

Fluctuations of the inflaton in exact de Sitter inflation do
not seed density perturbations: scalar metric perturbations
couple to the inflaton fluctuations through the time deriva-
tive of the inflaton expectation value. Therefore, the rele-
vant case for density perturbations is quasi-de Sitter
inflation, in particular, slow-roll inflation [6,28], which
serves as the basis of CMB data analysis [16]. Our ultimate
goal is to understand how quantum effects from interac-
tions, such as the decay of fluctuations, can affect the
power spectrum of scalar and tensor metric perturbations.
During slow roll, the scalar field fluctuations are sources
for scalar metric fluctuations, therefore quantum effects as
studied here can produce novel signatures on the power
spectrum. While a complete gauge invariant description is
ultimately required to treat this issue, we focus here on the
decay of the inflaton quantum fluctuations, which in lon-
gitudinal gauge are directly related to the scalar metric
fluctuations [12,35].

Therefore, we apply our results above to the quantum
self-decay of the inflaton fluctuations. We consider only
one scalar field, namely, the inflaton whose Lagrangian
density is given by

L �
1

2
@6'@6'� V�'	: (65)

We write

'� ~x; t� � '0�t� ��� ~x; t� (66)

where t is the cosmic time,'0�t� is the expectation value of
the inflaton field which drives the FRW background metric
and �� ~x; t� describes the inflaton quantum fluctuations.
Expanding around the expectation value, the Lagrangian
density for the quantum fluctuations reads
-11
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FIG. 4. Self-decay of quantum fluctuations of the inflaton. All
lines correspond to the field �, i.e., the quantum fluctuations of
the inflaton.
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 L��; '0	 �
1

2
�@6�@6�� V00�'0	�2� �

g
3
�3

� higher order terms; (67)

where the primes applied to the potential V�'	 stand for
derivatives with respect to the argument (not to be con-
fused with derivatives with respect to conformal time) and
we have used the equation of motion for '0�t� which in
cosmic time is given by

)' 0 � 3H _'0�t� � V0�'0	 � 0: (68)

We have kept the lowest order term in the nonlinearity and
defined the (dimensionful) coupling constant

g �
1

2
V 000�'0	: (69)

As it is clear from the study in the previous section, the
perturbative treatment of the nonlinearity will be reliable
provided g=H � 1.

In the slow-roll approximation the equation of motion
simplifies to

3H _'0�t� � V0�'0	 � 0: (70)

The slow-roll parameters relevant to our discussion are the
following [either in terms of H (Hubble) or V (potential)]
[6,28]:

�H � 2M2
Pl

�
H0

H

�
2
; �V �

M2
Pl

2

�
V 0�'0	

V�'0	

�
2
� �H (71)

�H � 2M2
Pl

H00

H
; �V � M2

Pl

V00�'0	

V�'0	
� �H � �V

(72)

�H � 4M2
Pl

H0H000

H2
;

�V � M4
Pl

V 0�'0	V
000�'0	

V2�'0	
� �H � 3�H�H:

(73)

Here, M2
Pl � 1=�8�G	 � m2Pl=�8�� and MPl �

2:41018 GeV. Slow roll implies ��V; �V; �V; �H;
�H; �H� � 1, and �V; �H are formally of second order in
slow roll.

In terms of the slow-roll parameters the Friedmann
equation reads

H2 �
V

3M2
Pl

�
1�

�V
3
�O��2V; �V�V�

�
(74)

and the effective mass of the inflaton quantum fluctuations
is given by

M2 � V 00�'0	 � 3H
2�V �O��V�V�: (75)

During slow-roll inflation the scale factor is quasi-de Sitter
and to lowest order in slow roll:
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C��� � �
1

H�
1

1� �V
� �

1

H�
�1� �V� �O��2V�: (76)

We are now in a position to apply the results obtained in the
previous sections to study the self-decay of the quantum
fluctuations of the inflaton via the cubic coupling. The
decay process �! �� is depicted in Fig. 4. The self-
energy has the same form as for an interaction �’2 ana-
lyzed in the previous section, the only difference is that in
the self-energy we have " instead of �".

Within slow roll, the linearized equation of motion for
the quantum fluctuations of the inflaton � is precisely
given by

�00
~k
��� �

�
k2 �M2C2��� �

C00���
C���

�
�~k��� � 0; (77)

with the quasi-de Sitter scale factor C��� given by Eq. (76)
and M2 given by Eq. (75). Let us compute the expression
within brackets in Eq. (77) to first order in slow roll. We
have in cosmic time:

C00���
C���

� a2�t�� _H � 2H2	; (78)

and Eqs. (70), (71), and (74) yield

_H

H2
� ��V �O��2V�: (79)

Equations (76), (78), and (79) thus imply

C00���
C���

�
1

�2
�2� 3�V � higher orders in slow roll	

(80)

and

M2C2��� �
C00���
C���

� �
1

�2
�2� 3��V � �V�

� higher orders in slow roll	 (81)

where we also used Eq. (75). In summary, during slow roll
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the quantum fluctuations of the inflaton behave in a similar
way as in pure de Sitter space-time [Secs. II and III] but
with the index " of the mode functions given by

" � �" �
3

2
� �V � �V � higher orders in slow roll;

(82)

where

M2C2��� �
C00���
C���

� �
"2 � 1

4

�2

� higher orders in slow roll:

In this case � expresses in terms of the slow-roll parame-
ters as

� �
3

2
� "

� �V � �V � higher orders in slow roll

�
1

2
�nS � 1� � nT (83)

where

nS � 1� 6�V � 2�V; nT � �2�V � �r=8 (84)

are the scalar and tensor spectral indices, respectively, and
r is the tensor to scalar ratio. Thus, we can apply the results
obtained in the previous sections to this case in which the
inflaton quantum fluctuations decay into themselves via the
trilinear coupling. To leading order in slow roll this is done
simply by setting " � �" � 3=2� ��V � �V� in the results
previously obtained. The slow-roll parameters remain con-
stant to leading order in slow roll.

Superhorizon modes: k � 0

For superhorizon modes the results Eqs. (52) and (53)
show that the amplitude of the quantum fluctuations decay
as �! 0 with the power law given by Eq. (53) with '� �
2� �V � �V , '� � �1� �V � �V and

� �
8

9

�
g

�H��V � �V�

�
2
�1�O��V; �V�	: (85)

The effective dimensionless coupling g=H [see Eq. (69)] is
related to the scale of inflation and the slow-roll parame-
ters:

g
H

�
V000�'0	

2H
�

�V��������
2�V

p
3H
2MPl

: (86)

To lowest order in slow roll the power spectrum of curva-
ture perturbations 42R is given by [6]

42R �
H2

8�2M2
Pl�V

�
1

12�2M6
Pl

V3

V 02 : (87)

This allows one to relate the effective dimensionless cou-
pling g=H to quantities that are observable from CMB
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data:
g
H

� 3��V�4
2
R�1=2�1�O��V; �V�	: (88)

Then, we can write � [Eq. (85)] completely in terms of
slow-roll parameters and the power spectrum of curvature
perturbations,

� �
8�2V4

2
R

��V � �V�
2 �1�O��V; �V�	; (89)

and in terms of the scalar index and the tensor/scalar rate
we have using Eq. (84),

� � 32
�2V4

2
R

�nS � 1�
r
4�
2 �1�O��V; �V�	: (90)

Of particular importance is the behavior of the growing
mode of the inflaton which gives the dominant term for
�! 0 after the wavelengths of the fluctuations cross the
horizon. From Eqs. (41), (53), and (82), it is given by

�'��� �
��V��V��

�
: (91)

We see that the decay constant � acts as an anomalous
scaling dimension for the growing mode of the superhor-
izon fluctuations of the inflaton. The decay rate � slows
down the growth of the dominant mode for �! 0 and
fastens the decrease of the subdominant modes.

Modes inside the Hubble radius during
slow-roll inflation jk�j � 1

The decay law of the quantum fluctuations of the in-
flaton with wavelengths deep inside the Hubble radius
jk�j � kph���=H � 1 is given by Eqs. (63) with

��jk�j � 1�

�
g2

32�H2
H

kph���

�
1�

2H
�kph���

�
1

�V � �V

� ln
kph���

H

��
;

kph��� �
k

C���
; C��� � �

1� �V
H�

:

(92)

The term that is inversely proportional to the slow-roll
parameters and the logarithm of kph���=H are a conse-
quence of the almost collinear emission of superhorizon
quanta. This process corresponds to one of the decay lines
in Fig. 4 carrying small momentum with superhorizon
wavelengths as explained in the previous section. This
process is identified as the emission of bremsstrahlung
radiation of superhorizon quanta.

Which of the terms in the bracket in Eq. (92) dominates
depends not only on the numerical value of the slow-roll
parameters but also on how close the physical wave vector
is to horizon crossing. For very short wavelength modes,
-13
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namely,

kph��� �
2H

�V � �V
(93)

the second term is negligible and the result is similar to the
inflaton decaying into massless conformally coupled par-
ticles. This is of course due to the fact that in this kinematic
region the modes in the internal propagators are simply
plane waves with Bunch-Davies initial conditions. On the
contrary, as kph��� approaches horizon crossing,

kph��� &
H

�V � �V
; (94)

the emission of ultrasoft collinear quanta, namely, super-
horizon bremsstrahlung radiation, becomes the dominant
decay channel and the second term dominates. This cross-
over phenomenon can be interpreted as the phase space for
collinear emission opening up near horizon crossing. This
is because the phase space factor 1=k in Eq. (B2) is
effectively 1=jk�j � H=kph��� by dimensional reasons.

Thus, in slow roll, there is a wide region of physical
momenta

H � kph��� �
H

�V � �V
; (95)

for which the first term in the bracket in Eq. (92) can be
neglected and the leading slow-roll result Eq. (88) for
g2=H2 can be used:

��jk�j � 1�

�
9

16

�
�V4R

k�

�
2
�1� 2�V�




�
1

�V � �V
� log�k��1� �V�	

�
: (96)
V. IMPLICATIONS FOR THE DECAY OF SCALAR
AND TENSOR PERTURBATIONS

AND NON-GAUSSIANITY

While we have focused on the decay of the inflaton
quantum fluctuations during slow roll we can extrapolate
our results to see how our findings may provide corrections
to the power spectra of scalar and tensor perturbations.

A. Curvature perturbations

For scalar perturbations, the action for the gauge invari-
ant perturbation

uk � C����k �
'0
0

H
 k; (97)

has a simple form at quadratic order [12] and obeys the
equation of motion
023509
u00k �
�
k2 �

z00

z

�
uk � 0; z �

'0
0

H
: (98)

Here '0 is the inflaton expectation value, �k the inflaton
fluctuation and  k are the spatial curvature perturbations.
The gauge invariant perturbation uk is related to the cur-
vature perturbation on comoving hypersurfaces R as
[6,12,28] uk � �zRk. Therefore, the power spectrum of
the curvature perturbation 42R is directly related to the
corresponding spectrum of the gauge invariant perturba-
tion uk [6,12,28]

42R �
k3

2�2









ukz








2: (99)

For superhorizon modes, k2 � z00=z, the only relevant
contribution is the growing mode uk � Akz. Therefore,
well after horizon crossing the power spectrum of the
curvature perturbation is constant in time and given by

42R �
k3

2�2
jAkj2: (100)

During slow roll [6,28]

z00

z
� 2C2���H2

�
1� �V �

3

2
�H

�

�
2

�2

�
1�

3

2
��V � �V� �O��2V; �

2
V; �V�V; �V�

�

�
"2 � 1

4

�2
(101)

where we used Eqs. (72) and (76) and which implies

" �
3

2
� �V � �V �O��2V; �

2
V; �V�V; �V�: (102)

Therefore, the small parameter � for the gauge invariant
perturbation is given by

� � ��V � �V �O��2V; �
2
V; �V�V; �V�: (103)

Without interactions among fluctuations (no decay of fluc-
tuations), the growing mode for superhorizon wavelengths
to lowest order in slow roll is given by

uk��� � Ak���1��V��V �: (104)

When a cubic interaction for the perturbation uk��� is
introduced, the results of the previous sections imply that
an anomalous scaling dimension, namely, the decay rate �
will appear in Eq. (104), i.e.,

uk��� � Ak���1��V��V���;

as in Eq. (91) for the inflaton fluctuations. Unless z ac-
quires the same anomalous dimensions, the amplitude of
the power spectrum [Eq. (99)] will depend on time.

In order to study the decay of curvature perturbations
the next step in this program is to obtain the cubic vertex
for the variable u and to compute the one-loop self-energy.
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This will ensure the gauge invariance of the results. The
gauge invariant formulation of Ref. [12] has to be extended
to higher order of perturbations, as, for example, in
Ref. [36], or alternatively, we can work in a fixed gauge.
The cubic interaction vertex for three scalars has been
computed in Ref. [21]. In particular, the contribution to
the self-energy from ghost loops must be included.

The computation of the self-energy corrections will
follow the same lines presented in the previous sections
with the extra feature of momentum dependent vertices
and ghost loops. The infrared behavior of the loops will be
regulated by � given by Eq. (103).

In order to obtain corrections for the power spectrum of
curvature perturbations, the secular terms arising from the
equations of motion will have to be resummed by DRG for
the whole range of physical momenta, until and beyond
horizon crossing, and establish the behavior of the growing
mode. At least two sources of corrections to the index of
the power spectra may be expected:
(i) f
rom the amplitude of the growing mode Ak, which
is obtained by matching the solutions deep within
the Hubble radius and well after horizon crossing;
(ii) f
rom the anomalous scaling dimension of the grow-
ing mode, namely, the decay rate �.
Furthermore, in order to extract the power spectrum, the
corrections to the dynamics of the zero mode of the inflaton
'0 from the coupling of the zero mode to the fluctuations
must be obtained. This study will indicate whether the
variable z also acquires an anomalous dimension and if
so, whether the ratio uk=z for the growing mode is time
independent when the decay process is accounted for. This
study is in progress.

B. Gravitational waves

For tensor modes, i.e., gravitational waves the action at
the quadratic level is simple [12] and the field operators for
the (gauge invariant) gravitational waves are expanded in
terms of the mode functions Vk which satisfy

V 00
k �

�
k2 �

C00

C

�
Vk � 0; (105)

where C00

C is given by Eq. (80). We then have

C00

C
�
"2 � 1

4

�2
� higher orders in slow roll; (106)

i.e.,

" �
3

2
� �V � higher orders in slow roll;

� � ��V � higher orders in slow roll:

Thus, during quasi-de Sitter slow roll, the mode functions
for gravitational waves are Hankel functions with an index
" slightly different from 3=2.

The three graviton vertex was computed in
Refs. [21,33]. The Born scattering amplitude for three
023509
gravitons in a de Sitter space-time features both infrared
as well as secular divergences [33]. These infrared diver-
gences precisely arise because the mode functions for
gravitons in de Sitter space-time are Hankel functions
with index " � 3=2. The remaining long-time (�! 0)
divergences can be considered as secular terms akin to
those found above.

During quasi-de Sitter slow-roll inflation, the parameter
� can regulate the infrared divergences found in
Refs. [33,34], and the DRG implemented here will provide
a resummation of the secular long-time divergences found
in Refs. [33,34].

While the three graviton scattering amplitude has been
computed in the Born approximation, the full self-energy
for gravitons has not yet been obtained. In order to under-
stand the decay law for gravitons, the program presented in
this article must be implemented. Such a program for
gravitons, as in the case of the scalar perturbations dis-
cussed above, may require including the contribution from
ghost loops to the graviton self-energy. Clearly, carrying
out this program in either case is a task beyond the scope of
this article.

C. Estimates of the cubic coupling and the decay rate
from the WMAP data

In the slow-roll approximation the slow-roll parameters
themselves are slowly varying functions of time, in par-
ticular

_�V
H

� 2�V�V �
��������
2�V

p 2MPl

3H
g
H

�O�g�3=2V �: (107)

The slow-roll approximation entails that _�V=H � 1which
in turn requires

g
H

�
3H

2
��������
2�V

p
MPl

: (108)

WMAP gives the following value for 42R [16]:

42R ’ 2:2
 10�9 (109)

which when combined with Eq. (87) yields the following
estimate on the scale of inflation:

H � 1015
������
�V

p
�Gev	: (110)

The WMAP data on dns=d lnk [16] suggests that �V ’
0:028� 0:015 which combined with Eq. (88) leads to the
following estimate on the cubic coupling:

g
H

’ 1:3
 10�5 (111)

which places the strength of the dimensionless coupling
within the validity of the slow-roll approximation and
perturbation theory. These results in turn lead to the fol-
lowing estimate for the rate � [Eq. (89)]:

3
 10�8 * � * 3:6
 10�9: (112)
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This gives in cosmic time for a typical value H ’
1014 GeV

10 7 GeV * �dS � H� * 106 GeV: (113)
k, η

q,η

η1

→

→

FIG. 5. Equal time three point function
h�� ~k; ���� ~q; ����� ~k� ~q; ��i in the Born approximation. The
time coordinate �1 of the vertex is integrated.
D. Connection with non-Gaussianity

Non-Gaussianity of the spectrum of fluctuations is asso-
ciated with three (and higher) point correlation functions.
An early assessment of non-Gaussian features of tempera-
ture fluctuations in an interacting field theory was given in
Ref. [18]. In Ref. [19] the simplest inflationary potential
with a cubic self-interaction for the inflaton field was
proposed as a prototype theory to study possible departures
from Gaussianity. The three point correlation function of a
scalar field in a theory with cubic interaction as well as the
four point correlation function in a theory with quartic
interaction were calculated in Refs. [22,23].

The long-time (�! 0) behavior of the equal time three
point correlation function in the scalar field theory defined
by Eq. (5) for M � 0 (and hence " � 3

2 ) is given by [19]

h�� ~k; ���� ~q; ����� ~k� ~q; ��i

�
2�3

3
C3���gH2

F� ~k; ~q;��

�kqj ~k� ~qj	3
(114)

where

F� ~k; ~q;�� � �k3 � q3 � j ~k� ~qj3	�ln�kT�� � 4	

� �k2 � q2 � j ~k� ~qj2�kT � kqj ~k� ~qj;

kT � k� q� j ~k� ~qj: (115)

A diagrammatic interpretation of the equal time expecta-
tion value Eq. (114) is depicted in Fig. 5, which illustrates
the similarity with the decay process depicted in Fig. 4.

Furthermore, the logarithmic secular term in Eq. (115)
indicates that the three point function features secular
divergences even at the tree level. It is argued in
Refs. [19,22,23] that � ln�kT�	 � 60 which is the number
of e-folds from the time when fluctuations of wave number
kT first crossed the horizon till the end of inflation.
However, such infrared logarithms are secular terms and
have precisely the same origin as in the self-energy kernel
and in the inflaton fluctuations discussed here (Secs. III C
and III D). The same holds for the infrared logarithms in
the three graviton scattering vertex [33,34].

In particular, the self-energy computation corresponds to
a further integration over the loop momentum q. In a fairly
loose manner, the self-energy is basically the square of the
three point correlation function integrated over the loop
momentum. This is akin to the unitarity relation between
the imaginary part of the forward scattering amplitude and
the square of the transition amplitude in S-matrix theory.

In summary, the interaction between the fluctuations
gives rise to non-Gaussian correlations which are deter-
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mined by the three point function which is precisely related
to the self-energy and the decay of the quantum fluctua-
tions. Therefore, the decay of the quantum fluctuations of
the scalar field will also lead to non-Gaussian correlations
and non-Gaussianity in the power spectrum.

The direct relationship between the self-energy, decay
and non-Gaussian features of the power spectrum will be
the subject of further study.

VI. CONCLUSIONS AND FURTHER QUESTIONS

In this article we have studied particle decay of fields
minimally coupled to gravity in the case when the mass of
the fields is � H during inflation. Unlike the decay into
massless fields conformally coupled to gravity, this case
features a strong infrared behavior which leads to novel
results.

We have implemented the dynamical renormalization
group resummation program introduced in Ref. [27] com-
bined with an expansion in a small parameter � which
regulates the infrared.

In the case of exact de Sitter inflation, � is a constant
equal to the ratio of the mass of the decay products to the
Hubble constant, while in slow-roll inflation � is a simple
function of slow-roll parameters. The expansion in � is
akin to the " expansion in critical phenomena in dimen-
sional regularization. The dynamical renormalization
group provides a resummation of the long-time secular
divergences which determine the decay law of quantum
fluctuations.

The lack of energy conservation in an expanding cos-
mology leads to the lack of kinematic thresholds for par-
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ticle decay. In particular, this possibility leads to the self-
decay of quantum fluctuations whenever a self-interaction
is present.

We have studied the decay of a particle for a cubic self-
coupled scalar field in de Sitter space-time and applied the
results to the self-decay of the inflaton quantum fluctua-
tions during quasi-de Sitter, slow-roll inflation. We focused
on extracting the decay law both for wavelengths well
inside and well outside the Hubble radius. In both cases
the strong infrared behavior enhances the decay.

The decay of fluctuations with wavelengths much
smaller than the Hubble radius is enhanced by the collinear
emission of ultrasoft quanta, this process is identified as
bremsstrahlung radiation of superhorizon quanta. As the
physical wavelength approaches the horizon, the phase
space for this process opens up becoming the dominant
decay channel for short wavelength modes in the region

H � kph��� &
H

�V � �V
: (116)

The decay of short wavelength modes hastens as the physi-
cal wavelength approaches the horizon as a consequence of
the opening up of the phase space.

Superhorizon quantum fluctuations decay as a power
law ��� in conformal time, where � is determined by
the following combination of the slow-roll parameters and
the amplitude of curvature perturbations:

� �
32�2V4

2
R

�ns � 1�
r
4�
2 �1�O��V; �V�	: (117)

This decay law entails that the growing mode for super-
horizon wavelengths evolves as ��V��V��=� hence � pro-
vides an anomalous scaling dimension slowing down the
growing mode for �! 0.

The recent WMAP data indicate that 3:
 10�8 * � *

3:6
 10�9. This corresponds to a decay rate in cosmic
time 107 GeV * �dS � H� * 106 GeV. Although these
values may seem small, it must be noticed that the decay
is a secular, namely, cumulative effect.

We discussed some potential applications and implica-
tions for primordial scalar and tensor perturbations as well
as the relationship between the decay processes studied in
this article and the generation of non-Gaussian features in
the primordial power spectrum.

The results of our study bring about several questions:

(i) T
he generation of superhorizon fluctuations during

inflation is usually referred to as acausal. However,
we have found that fluctuation modes deep inside
the horizon decay into superhorizon modes, there-
fore there is a coupling between modes inside and
outside the horizon. The phase space for this pro-
cess opens up as the physical wavelength ap-
proaches the horizon. It is natural to conjecture
that this process that couples modes inside and
outside the horizon with a coupling that effectively
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depends on the wave vector, will ultimately lead to
distortions in the power spectrum. This distortion
will necessarily be small in slow roll since the
coupling is of the order of the slow-roll parameters,
but it may compete with the running of the spectral
index from the noninteracting theory which is itself
of quadratic order in slow roll.
(ii) I
n the noninteracting theory, the equation of motion
for the gauge invariant Newtonian potential (equal
to curvature perturbation) features a constant of
motion for superhorizon wavelengths [11,12].
This is used to estimate the spectrum of density
perturbations in inflationary universe models. It is
conceivable that this conservation law will no lon-
ger hold in higher order in slow roll when inter-
actions are included. We expect this to be the case
for two reasons: the coupling between modes inside
and outside the horizon as well as the decay of
superhorizon modes. Clearly the violation of the
conservation law, if present, will be small in slow
roll, but this nonconservation may also lead to
distortions in the power spectrum.
(iii) W
hile we have focused on the decay process during
inflation, our results, in particular, the decay of
superhorizon fluctuations and the coupling between
modes inside and outside the Hubble radius, raise
the possibility of similar processes being available
during the radiation dominated phase. If this is the
case, the decay of short wavelength modes into
superhorizon modes can serve as an active process
for seeding superhorizon fluctuations.
Forthcoming observations of CMB anisotropies as well
as large scale surveys with ever greater precision will
provide a substantial body of high precision observational
data which may hint at corrections to the generic and robust
predictions of inflation. If such is the case these observa-
tions will pave the way for a better determination of infla-
tionary scenarios. Studying the possible observational
consequences of the quantum phenomena found in this
article will therefore prove a worthwhile endeavor.
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APPENDIX A: SELF-ENERGY KERNEL FOR ~k � 0

We compute here the kernel K �"�0; �; �0�

K �"�0;�;�
0� �

1

�2
Z 1

0
q2dqImf�S �"�q; ��S

�
�"�q; �

0�	2g;

�" �
3

2
��: (A1)
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The infrared divergences at � � 3
2� �" � 0 arise from the

small momenta behavior of the integrand in Eq. (A1). To
extract such behavior it is convenient to write the Hankel
function H�2�

�" �q�� in Eq. (15) as [37]

H�2�
�" �z� �

i
sin� �"

�J� �"�z� � ei� �"J �"�z�	: (A2)

The leading q! 0 behavior follows from the Bessel func-
tions J� �"�z� since [37]

J� �"�z� �
z!0

�
2

z

�
�" 1

��1� �"�
�1�O�z2�	:

We find upon taking the imaginary part

q2

�2
Imf�S �"�q; ��S��"�q; �

0�	2g �
q!0

�

�
4

q2��0

�
�"�1 �2� �"�

2�3 �"




��
�
�0

�
�"
�

�
�0

�

�
�"
�


 �1�O�q2�	: (A3)

The behavior q2�2 �" � q2��1 for q! 0 in the integrand of
Eq. (A1) implies a simple pole at � � 0 with a
�-independent residue [38]. It is then convenient to add
and to subtract from Eq. (A1) the low q behavior Eq. (A3).
We find

K �"�0;�;�
0� � I1��;�

0;6� � I2��;�
0;6� (A4)

with the integrals I1;2 given by

I1��;�0;6� �
Z 6

0
dq

�

q2

�2
Imf�S �"�q; ��S��"�q; �

0�	2g

�

�
2

q2��0

�
�"�1 �3� �"�

2�3��1� �"�




��
�
�0

�
�"
�

�
�0

�

�
�"
��

�

�
2

��0

�
�"�1



�3� �"�

2�3��1� �"�

��
�
�0

�
�"
�

�
�0

�

�
�"
�



Z 6

0
dqq2�2 �"; (A5)

I2��;�
0;6� �

1

�2
Z 1

6
q2dqImf�S �"�q; ��S

�
�"�q; �

0�	2g:

(A6)

Here, 6> 0 is an arbitrary parameter temporarily intro-
duced to split the integrals. The sum I1��;�0;6� �
I2��;�0;6� is clearly 6 independent. The second integral
in I1��;�0;6� [Eq. (A5)] can be done straightforwardly,

Z 6

0
q2�2 �"dq �

62�

2�
: (A7)
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This simple integral clearly displays the infrared diver-
gence and the origin of the pole in �: the emission of
superhorizon quanta for which q�; q�0 � 1 as depicted in
Fig. 2.

Keeping the pole in � plus the leading logarithmic
terms, and neglecting higher order terms in �, we find
for 6�;6�0 � 1

I1��;�0;6� �
1

6�2
1

2�

�
�0

�2
�

�

�02

�
�
1

6�2

�
�0

�2
ln��6��

�
�

�02 ln��6�
0�

�
�O���: (A8)

We can set 3=2� �" � � � 0 in the integral I2 since it is
infrared finite. After lengthy but straightforward algebra,
we find for 6�;6�0 � 1

I2��;�0;6� � �
1

8�2
P

�
1

�� �0

�
�
1

6�2

��
�

�02 �
�0

�2

�




�
ln�6��� �0�� � 4�

5

3

�
�

�
1

�0
�
1

�

��
(A9)

the principal value P is defined by Eq. (45). The first term
in Eq. (A9) is the kernel for a massless conformally
coupled field ( �" � 1=2) [27]. It is clear from Eqs. (A8)
and (A9) that the6 dependence cancels out as it should be:

K �"�0;�;�0� � K1=2�0;�;�0� �
1

6�2

��
1

2�
�
2

3

�




�
�0

�2
�

�

�02

�
�
�0

�2
ln
�
�0

�

�
�

�
�

�02 �
�0

�2

�


 ln
�
1�

�
�0

�
�
1

�0
�
1

�

�
(A10)

where K1=2�0;�;�0� is defined by Eq. (45).
APPENDIX B: SELF-ENERGY KERNEL FOR ~k � 0

The self-energy kernel K �"�k;�;�0� for the general case
is given by Eq. (21). As highlighted in the case of ~k � 0,
there are infrared divergences for �" � 3=2 which we regu-
lated with the parameter � � 3=2� �". We now compute
K �"�k;�;�0� keeping poles in � and the leading loga-
rithms in �. The strategy is to separate the regions in the
loop integral that contain the infrared divergences. Thanks
to the azimuthal invariance we can writeZ

d3q � 2�
Z 1

0
q2dq

Z �1

�1
d�cos<� (B1)

with < the angle between ~q and ~k. Furthermore, we change
from the integration variable < to p � j ~q� ~kj,
-18
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p �
�����������������������������������������
q2 � k2 � 2kq cos<

q
; d�cos<� �

dp
kq
; (B2)

which clearly displays the phase space factor 1=k.
Equation (21) takes then the symmetric form

K �"�k;�;�
0� �

��0

32k

Z 1

0
qdq

Z q�k

jq�kj
pdpIm


 �H�2�
�" �q��H�1�

�" �q�0�H�2�
�" �p��H�1�

�" �p�0�	;

(B3)

where we used Eq. (15). The integral over p can be
performed using [37]

Z
pH�2�

�" �p��H�1�
�" �p�0�dp � F �"�p;�; �0�; (B4)

where

F �"�p;�; �0� �
p

�2 � �02 ��
0H�2�
�" �p��H�1�

�"�1�p�
0�

� �H�2�
�"�1�p��H

�1�
�" �p�0�	: (B5)

We obtain thus for the kernel
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K �"�k;�;�
0� �

��0

32k
Im

Z 1

0
qdq�F �"�q� k; �; �0�

� F �"�jq� kj; �; �0�	H�2�
�" �q��H�1�

�" �q�0�:

(B6)

The infrared divergences at � � 3
2� �" � 0 arise from the

q! 0 and q! k behavior of the integrand in Eq. (B6). To
extract such divergences we use the small argument be-
havior of the Hankel functions [37]

H�2�
�" �q��H�1�

�" �q�0� �
q!0 �2� �"�

�2

�
4

q2��0

�
�"
�1�O�q2�	;

F �"�q; �; �0� �
q!0

�
�� �"��� �"� 1�

2�2

�
4

��0

�
�"


 q2�2 �"�1�O�q2�	:

(B7)

We see from Eqs. (B6) and (B7) that the integrand in
Eq. (B6) behaves as q2�2 �" � q2��1 for q! 0 and as jq�
kj2�2 �" � jq� kj2��1 for q! k. Therefore, the kernel has
a simple pole at � � 0 [38]. It is then convenient to add
and to subtract from Eq. (B6) the behavior for q! 0 and
q! k Eq. (B7) as we did in Appendix A for the k � 0
case. We find
K �"�k;�;�0� �
��0

32k
Im

Z 1

0
dq

�
q�F �"�q� k; �; �0� � F �"�jq� kj; �; �0�	H�2�

�" �q��H�1�
�" �q�0�

�
�� �"��� �"� 1�

2�2

�
4

��0

�
�"
kH�2�

�" �k��H�1�
�" �k�0��4� �"� 1�<�6� q�q2�2 �" � <�k� q�6�


 <�q� k�6�jq� kj2�2 �"	
�
�
�� �"��� �"� 1�

8�2

�
�"�

1

2

�
63�2 �"

3
2� �"

�
4

��0

�
�"�1
kImH�2�

�" �k��H�1�
�" �k�0�: (B8)
6> 0 is an arbitrary parameter temporarily introduced as
in Appendix A and we used that

F �"�q� k; �; �0� � F �"�jq� kj; �; �0� �
q!0
2q
@F �"�k; �; �

0�

@k

� 2qkH�2�
�" �k��


H�1�
�" �k�0�:

K �"�k;�;�
0� is clearly 6 independent as one can easily

check by computing the derivative with respect to 6 of the
right-hand side of Eq. (B8). Notice that <�6� q� is non-
zero for q < 6 while <�k� q�6�<�q� k�6� does not
vanish for k�6< q< k�6. The pole at 32� �" � � �
0 is explicit in the last term of Eq. (B8) while the integral
over q is finite for �" � 3

2 and k � 0.
This analysis for the self-energy kernel shows that all
infrared singularities emerge from the regions
jq�j; jq�0j � 1 and jp�j; jp�0j � 1 corresponding to
the internal line in the loop which carries momentum q
or p � jq� kj being superhorizon. Both regions give a
similar contribution because they are equivalent upon re-
routing of the loop momentum and Bose symmetry. Thus
the conclusion of this analysis is that the leading contribu-
tions to the self-energy arise from the collinear emission of
superhorizon quanta [since cos< � 1, see Eq. (B2)].

The calculation of the integral for A �"�k;�;�0�
in Eq. (B8) is straightforward albeit lengthy. These are
facilitated by the expression of the Hankel functions
H�1;2�
3=2 �q�� in terms of elementary functions. Dropping

contributions of the order� the kernel in Eq. (B8) becomes
-19
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for 6� k; j6�j; j6�0j � 1,

K �"�k;�;�
0� � K<

�" �k;�;�
0� �K>

�" �k;�;�
0� (B9)

with
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where
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where

F3=2�q; �; �0� �
2
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���������
��0
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�� �0
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�k3���0�3=2
eik��

0����1� k2��0 � ik��� �0�	:

The integral for the kernel takes the form
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�
2

q
<�6� q� �

1

jq� kj
<�k� q�6�<�q� k�6�

��
: (B12)

The remaining calculations are straightforward but tedious. Integrating over q in Eq. (B12) yields for 6�
k; j6�j; j6�0j � 1,

K>
3=2�k;�;�

0� � �
1

8�2
P
cos&
�� �0

�
1

4�2k3���0�2

�
��1� k2��0� sin&� & cos&	

�
Ci�2&� � 1� 4� log

�
2
62

k2
&
��

� 2 sin&� Si�2&���1� k2��0� cos&� & sin&	
�

(B13)

where & � k��� �0�, Ci�z� and Si�z� are the cosine and sine integral functions respectively [37]. The first term in
Eq. (B13) is the kernel for conformally coupled massless particles and the principal part prescription is given by Eq. (45).

Keeping consistently the leading order terms in�, namely, the pole plus finite parts, the dependence on6 cancels out as
it should and we find for the kernel to leading order in �
023509-20
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K �"�k;�;�0� �
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4�2k3���0�2
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Long-wavelength limit: jk�j; jk�0j � 1

The behavior of the kernel Eq. (B13) in the limit when the wave vector k corresponds to superhorizon wavelengths easily
follows from Eq. (B14). We use

C i�&	 �
&!0

ln&� 4�O�&2�; Si�&	 �
&!0

&�
&3

18
�O�&5�:

Gathering all of these results and keeping the lowest order contributions in the limit jk�j; jk�0j � 1 we find Eq. (44) for
the kernel in the long-wavelength limit.

Short-wavelength limit: jk�j; jk�0j � 1

In this limit the wave function S �"�k; �� is just like the Minkowski space-time free field mode function for massless fields,
namely,

S �"�k; �� �
e�ik������
2k

p : (B15)

It is straightforward to obtain the limit jk�j; jk�0j � 1 of the kernel from Eq. (B13). In the short-wavelength limit the
kernel simplifies to

K �"�k; �; �0� �
�"!3=2;k2��0�1
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1

8�2
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1
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� ~C� log
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�
2
cosk��� �0�

�
; (B16)

with the constant ~C given by ~C � ln2� 4� 2.
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