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It has recently been suggested that Planck scale physics may effect the evolution of cosmological
fluctuations in the early stages of cosmological inflation in a nontrivial way, leading to an excited state for
modes whose wavelength is super-Planck but sub-Hubble. In this case, the issue of how this excited state
back-reacts on the background space-time arises. In fact, it has been suggested that such back-reaction
effects may lead to tight constraints on the magnitude of possible deviations from the usual predictions of
inflation. In this note we discuss some subtle aspects of this back-reaction issue and point out that rather
than preventing inflation, the back-reaction of ultraviolet fluctuations may simply lead to a renormaliza-
tion of the cosmological constant driving inflation.
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I. INTRODUCTION

The most important success of the inflationary Universe
scenario [1] is that it provides a causal mechanism for the
origin of the observed density fluctuations and microwave
background anisotropies [2] (see also Refs. [3,4]). Key to
this success is the fact that the physical wavelength corre-
sponding to a fixed comoving scale is exponentially
stretched during the period of inflation. Thus, provided
that the period of inflation lasts sufficiently long, fluctua-
tions on scales of cosmological interest today originate on
sub-Hubble scales during inflation. Since inflation red-
shifts all initial classical fluctuations, it is reasonable to
assume that matter starts out in a quantum vacuum state (in
the frame set by the background cosmology, see, e.g.,
Ref. [5] for a discussion). Each fluctuation mode thus starts
out in its vacuum state at the time that the initial conditions
are set up (e.g., the beginning of the period of inflation),
it undergoes quantum vacuum oscillations while the
wavelength is smaller than the Hubble radius, but freezes
out when the wavelength equals the Hubble radius (see,
e.g., Ref. [6] for comprehensive reviews of the theory
of cosmological fluctuations). Subsequently, the quantum
state of the fluctuations undergoes squeezing on super-
Hubble scales, and reenters the Hubble radius during the
post-inflationary Friedman-Lemaı̂tre-Robertson-Walker
(FLRW) phase as a highly squeezed and effectively clas-
sical state (see, e.g., Ref. [7] for a discussion of the clas-
sicalization of the state).

However, as first pointed out in Ref. [8], this success of
inflationary cosmology leads to an important conceptual
problem, the trans-Planckian problem. Since the period of
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inflation in typical scalar-field-driven inflationary models
is very long (see, e.g., Ref. [9] for a review), the scales of
cosmological interest today are not only sub-Hubble, but in
fact sub-Planck at the beginning of inflation. Thus, the
formalism used to calculate the evolution of fluctuations
is in fact not justified. It is possible that the unknown trans-
Planckian physics will lead to an evolution of the fluctua-
tions on sub-Planckian scales which from the point of view
of free scalar-field theory coupled to general relativity
looks nonadiabatic. In Ref. [10] (see also Ref. [11]), toy
models for such an evolution were constructed making use
of modified dispersion relations which were assumed to
describe the physics on sub-Planckian scales. Since the
time interval spent in the trans-Planckian domain may
depend on the wavelength, such models may lead to
changes in the spectral index of the fluctuations.

Subsequently, other approaches to the trans-Planckian
problem were suggested, e.g., analyses based on space-
space noncommutativity [12], space-time noncommutativ-
ity [13], minimal length uncertainty relation [14], effective
field theory [15], minimal trans-Planckian assumptions
(starting each mode in some vacuum state at the time
when its wavelength equals the Planck length) [16,17],
and boundary renormalization group (RG) flow [18].
These analyses typically give that trans-Planckian correc-
tions to the predictions for cosmological fluctuations are
proportional to �Hinf=mC�

n where Hinf is the Hubble pa-
rameter during inflation, mC a new scale at which non-
standard physical effects show up and n a number which
depends on the initial state assumed at the time of ‘‘crea-
tion.’’ On the other hand, analyses based on modified
dispersion relations give a correction proportional to the
time spent by the physical modes in the region where
adiabaticity is violated, see, e.g., [19] for a recent review.
-1  2005 The American Physical Society
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Tanaka [20] and Starobinsky [21] and Porrati [22] (see
also Ref. [23]) have, however, raised an important concern
regarding the possible amplitude of trans-Planckian cor-
rections (see also Ref. [24] for unrelated concerns): if
trans-Planckian physics leads to an excited state for fluc-
tuation modes on sub-Hubble but super-Planck scale dur-
ing the period of inflation, the back-reaction of these
excitations on the background must be considered. In the
case where the trans-Planckian effects are modeled by a
modified dispersion relation, a simple estimate of the
energy density carried in these ultraviolet modes
h�iUV �
Z kphys�mC

kphys�Hinf

d3kphys!phys�kphys�nkphys ; (1)
where kphys is the physical wave number, nkphys is the
occupation number, and !phys is the frequency of the
mode, leads to the conclusion that h�iUV will exceed the
background density unless nkphys is smaller than �Hinf=mPl�

2

[see also Eq. (7) below], thus constraining the possible
effects of trans-Planckian physics on the spectrum of fluc-
tuations (in the above, we have assumed that the ultraviolet
cutoff is the usual Planck scale mPl which is not mandatory
at all).

In this article, we point out some subtleties with the
above back-reaction argument which may change the con-
clusions dramatically. If we assume, as is conventionally
done in analyzing quantum fields in curved space-time,
that the ultraviolet cutoff scale is time independent in terms
of physical length, then in an exponentially expanding
background geometry, the contribution of ultraviolet (i.e.,
sub-Hubble) modes to the energy density is constant in
time, as, in fact, follows directly from the time-translation
invariance of the physics. Moreover, the corresponding
equation of state, due to the fact that the dispersion relation
is modified, can strongly differ from that of ultrarelativistic
particles and, as we demonstrate below, tends to that of the
vacuum. Hence, our main conclusion is that, instead of
preventing inflation, the ultraviolet modes may in fact
simply renormalize the value of the cosmological constant
driving inflation.

This article is organized as follows. In the next section,
Sec. II, we describe the arguments that have been put
forward to claim that there is a back-reaction problem
and we criticize them. Then, in Sec. III, we present an
explicit calculation of the equation of state of a scalar field
with a modified dispersion relation. We show that the
ultraviolet modes possess an equation of state which is
almost that of a cosmological constant. Finally, in
Sec. IV, we point out problems with our approach, indicate
directions for further investigations and present our general
conclusions.
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II. THE BACK-REACTION PROBLEM

As explained in the introduction, it is possible that the
trans-Planckian effects affect the standard inflationary pre-
dictions. In this paper, for the sake of illustration, we model
physics at very short scales by a nonlinear dispersion
relation !phys�kphys�. For wave numbers such that kphys �
mC where mC is a new scale at which nonstandard physical
effects show up, the dispersion relation is linear for obvious
phenomenological reasons. On the contrary, for modes
such that kphys � mC, the shape of !phys�kphys� is a priori
unknown. It is has been shown that a nonadiabatic evolu-
tion of the mode function in the trans-Planckian region
necessarily implies a modification of the inflationary pre-
dictions, in particular, a modification of the power spec-
trum. To be more precise, in cosmology, the dispersion
relation becomes time-dependent and equal to ! �

a!phys�k=a� (! and k denote comoving frequency and
wave number, respectively). Then, the Wentzel-Kramers-
Brillouin (WKB) approximation is satisfied provided that
jQ=!2j � 1, where the quantity Q is defined by Q �
3�!0�2=�4!2� 
!00=�2!� (a prime stands for the deriva-
tive with respect to conformal time), see also Ref. [25]. If
the previous condition is worked out, then one sees that the
WKB approximation is violated if !phys <Hinf and that
corrections to the standard result can occur in this case.

This conclusion has been criticized in Refs. [20,21] and
many reasons why a modification of the inflationary power
spectrum would be unlikely have been provided in these
articles. In the following, we will examine each of them.

In Ref. [21], it has been claimed that if !phys�kphys� is
such that the WKB approximation is violated for kphys >
mC then there are no preferred initial conditions. This is
certainly correct for the class of dispersion relations con-
sidered in Ref. [26], as discussed in Ref. [27], but not true
in general. An explicit counterexample has been provided
in Ref. [27] and is studied in the present paper. The
corresponding dispersion relation is sketched in Fig. 1.
On this plot, one notices that in the region where kphys >
mC there is an interval of finite range, namely kphys 2
��1;�2, in which the WKB approximation is violated
(i.e., !phys <Hinf). Important for our analysis is also the
fact that for kphys ! �1 the adiabatic approximation is
restored, which follows since we have !phys >Hinf . In this
latter regime, the adiabatic vacuum is obviously the pre-
ferred initial state.

The other arguments involve the calculation of the
stress-energy tensor and are as follows. In the standard
scenario, the initial conditions are fixed for all wave num-
bers at some initial time. If the number of e-foldings of
inflation is greater than about 70, the physical wavelength
of modes which are currently probed in cosmic microwave
experiments is smaller than the Planck length at the begin-
ning of inflation. One usually assumes that the evolution
starts out from the adiabatic (Bunch-Davis) vacuum. If the
-2



FIG. 1. Sketch of the dispersion used for the study of the toy
model. The five scales k0, k1, k2, �1, and �2 are defined in the
text. Hinf is the Hubble parameter during inflation while H0 is the
Hubble parameter today. Clearly, this is not a scaled figure since
H0 should be much smaller than is represented on the plot.
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evolution is nonadiabatic in the region kphys >mC, then the
state in the region Hinf < kphys <mC will differ from the
usual adiabatic vacuum. Therefore, if one concentrates
only on what happens in the region Hinf < kphys <mC,
the trans-Planckian effects boil down to a modification of
the initial conditions. This last argument has been used in
Refs. [20,21] as follows. Roughly speaking, a nonvacuum
state means a nonvanishing energy density and there is now
the danger that this dominates over the energy density of
the inflationary background which is m2

PlH
2
inf . According to

Refs. [20,21], this is actually what happens unless the level
of excitation of the initial state compared to the adiabatic
vacuum is very small, leading to unmeasurably small trans-
Planckian effects on the spectrum of fluctuations. Since
observational evidence seems to indicate that inflation is
the correct theory of the very early universe, Refs. [20,21]
conclude that trans-Planckian effects of significant impor-
tance are in fact not possible.

In order to understand the above argument in more de-
tail, let us be more accurate about what has actually been
done in Refs. [20,21]. It is well known that cosmological
perturbations (density fluctuations and gravitational
waves) can, in some contexts, be viewed as a free scalar
field ’��;x� on a time-dependent background space-time.
In the case of gravitational waves, the correspondence is
exact, for scalar metric fluctuations (density perturbations),
the correspondence is only exact if the equation of state of
the background is time independent. In the general case,
the squeezing factor for the density fluctuations is given
not by the FLRW scale factor a�t�, but by a function z�t�
which depends both on the background geometry and the
background matter - for details see, e.g., [6]. Then, the
corresponding energy density and pressure are given by the
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mean values of the stress-energy tensor hT��i. In an excited
state characterized by the mode distribution function n �
n�k�, one has

h�i �
1

4�2a4
Z �1

0
dkk2

�
1

2
� n�k�

�

�

�
a2
��������
�
�k

a

�
0
��������2

�k2j�kj
2

�
; (2)

hpi �
1

4�2a4
Z �1

0
dkk2

�
1

2
� n�k�

�

�

�
a2
��������
�
�k

a

�
0
��������2



k2

3
j�kj

2

�
; (3)

where �k is the rescaled Fourier amplitude, i.e., �k �

a���’k��� and normalized such that �k ’ 1=
�����
2k

p
. In the

above, � denotes conformal time, and a prime the deriva-
tive with respect to �.

In the above expressions, the terms proportional to the
factor 1=2 are divergent in the ultraviolet regime, i.e., k !
�1, and represent the quantum vacuum contribution. This
means that, in order to give sense to the above expressions,
the stress-energy tensor should be first properly renormal-
ized, for instance by adiabatic regularization [28]. In this
paper, we will simply subtract the contribution of the
quantum vacuum energy since this is what has been done
in Refs. [20,21]. Another justification is that we are in fact
mainly interested in the terms proportional to n�k� which
describe the contributions originating from the excited
quanta.

In Refs. [20,21], considerations have been restricted to
physical modes such that Hinf < kphys <mC. In this region,
the dispersion relation is linear and, since the WKB ap-
proximation is satisfied, the mode function can be written
as

�k �
�k�����
2k

p e
ik� �
�k�����
2k

p e�ik�; (4)

where j�kj
2 
 j�kj

2 � 1. Inserting this mode function into
the vacuum expressions of the energy density and pressure,
one finds

h�iUV �
1

2�2a4
Z amC

aHinf

dk
k
k4j�kj

2; (5)

hpiUV �
1

2�2a4
1

3

Z amC

aHinf

dk
k
k4j�kj

2; (6)

We see that the coefficient j�kj
2 represents the number of

particles, n�k� � j�kj
2. This describes the modification of

the standard initial conditions due to the trans-Planckian
effects (let us remind that the usual adiabatic initial con-
ditions correspond to �k � 1 and �k � 0). Then, a back-
of-the-envelope calculation shows that h�iUV ’ m4

Cj�kj
2

where we have used the fact that, in de Sitter space-time,
the coefficient �k is scale-independent (time-translation
-3
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invariance). If we require that the energy density of the test
scalar field be smaller than the background density, then it
follows that

j�kj
2 <

m2
PlH

2
inf

m4
C

: (7)

A similar expression has been obtained in Ref. [21], with
mC � mPl and, crucially, Hinf replaced with H0, the present
value of the Hubble parameter. It is clear that the constraint
on �k is completely different (and much more difficult to
satisfy) if one uses H0 ’ 10
61mPl in the above equation
rather than Hinf ’ 10
5mPl (we also notice that mC needs
not be the Planck mass). The reason for this difference is
again (see above the discussion of the preferred initial
conditions) that, in Ref. [21], it was assumed that violation
of the WKB approximation in the trans-Planckian region
necessarily implies that !�k� ! 0 as k ! �1, as for the
dispersion relation envisaged in Ref. [26]. In this case, the
adiabatic condition is violated today for a range of trans-
Planckian modes, and one should indeed replace Hinf by
H0 as done in Ref. [21]. This results in a very strong
constraint on �k. This was in fact the essence of the
criticism made in Ref. [27] against the dispersion relation
considered in Ref. [26]. However, again, the argument does
not apply for dispersion relations of the type shown in
Fig. 1 and, therefore, is not true in general. The reason
can be very easily understood from Fig. 1. Since, after
inflation, the Hubble parameter decreases and since, at
some point, its value becomes smaller than the minimum
of the dispersion relation, the adiabatic condition is re-
stored at late times for all modes, and particle production
stops. Therefore, in this case, the calculation should be
done with Hinf and not with H0 as done in Ref. [21]. In
Refs. [19,27], it has been shown that there is a window for
which the modification of the power spectrum is not com-
pletely negligible and for which there is no back-reaction
problem, see for instance the discussion after Eq. (68) in
Ref. [27].

The other arguments presented against possible trans-
Planckian modifications of the inflationary power spectrum
involve the calculation of the equation of state (which is
characterized by the parameter !st � p=�). The main
argument is that the ‘‘dangerous’’ created particles behave
as a radiation field (or as ultrarelativistic particles) and,
therefore, that their energy density scales as a
4 and not as
the vacuum, see Ref. [20]. We now explain why this line of
reasoning is problematic.

First of all, using the stress-energy tensor of a test scalar
field is questionable since one wants in fact to calculate the
equation of state of the cosmological perturbations, not that
of a test scalar field. It has been shown in Refs. [29,30] that
the equation of state of the effective stress-energy tensor of
the cosmological perturbations differs on super-Hubble
scales (which is a region in which the adiabatic condition
is not valid and thus has similarities to the trans-Planckian
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interval where the adiabatic condition is violated) from the
equation of state of a test field. It is !st � 
1 instead of
!st � 
1=3. The difference is clearly of utmost impor-
tance in the present context. In fact, what should be done is
to calculate the stress-energy tensor of cosmological per-
turbations (which is second order in the perturbed metric)
in the case where the dispersion relation is modified. To our
knowledge, this calculation has never been performed, and
is very complicated. Therefore, this is beyond the scope of
the present article.

Keeping the previous point in mind, let us come back to
the calculation of the stress-energy tensor of a test scalar
field. As already mentioned in the introduction [and dem-
onstrated explicitly in Eq. (28)], h�iUV is in fact constant
and does not scale as a
4 despite the fact that p=� � 1=3.
The nonconservation of the energy-momentum tensor can
be understood as follows. Using the expression of the
energy density, it is easy to establish that

1

a4
d

dt
�a4h�iUV� �

Hinf

2�2 �m
4
Cj�k�amC

j2 
H4
infj�k�aHinf

j2:

(8)

The two terms in the right-hand side of the above expres-
sion, responsible for the nonconservation, originate from
the time-dependent limits of integration in Eq. (5). The first
one comes from the upper limit while the second one
originates from the lower limit. The corresponding physi-
cal interpretation is clear: due to the expansion of the
background, there is a flow of modes coming from the
trans-Planckian region and entering the region Hinf <
kphys <mC and there is also a flow of modes leaving the
region Hinf < kphys <mC while they are becoming super-
Hubble modes. Equation (8) is similar to Eq. (4) of
Ref. [21]. The only difference is the absence in Ref. [21]
of the second term on the right-hand side (describing the
outgoing flow of modes). This term is necessarily present
because the integral in Eq. (5) cannot be computed with a
vanishing lower integral since, for kphys <Hinf , the mode
function is no longer given by Eq. (4) but rather by �k ’
a���. However, the second term in (8) is clearly very small
in comparison with the first one and, therefore, can be
safely neglected.

Finally, maybe the most important reason why calculat-
ing the back-reaction can be more subtle than previously
thought is the following. The conclusion that p=� � 1=3 is
in fact obtained from an inconsistent procedure since it
does not take into account the fact that the dispersion
relation is modified [let us recall that the previous consid-
erations are based on Eqs. (5) and (6) that have been
obtained under the assumption that !phys � kphys]. In the
following, we shall study the equation of state of the
ultraviolet terms (5) and (6) in a toy model for trans-
Planckian physics in which we can describe the excitation
of the mode functions in the far ultraviolet range from
well-defined vacuum initial conditions in a mathematically
-4
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consistent way. We shall show that the fact that the disper-
sion relation is modified can change the equation of state, a
conclusion also reached in Ref. [31] in a slightly different
context.

To summarize, the calculation of the back-reaction must
be performed with the trans-Planckian corrections taken
into account (i.e., in the present context with a modified
dispersion relation). It is clearly inconsistent to calculate
the modified power spectrum with the trans-Planckian
corrections on one hand and, on the other hand, to evaluate
the corresponding back-reaction without these corrections.
This can change, in a crucial way, the calculation of the
energy density and/or the equation of state.
III. THE TOY MODEL

A. Description of the dispersion relation

We model the trans-Planckian effect by means of the
following nonstandard dispersion relation [27]

!2
phys�kphys� � k2phys 
 2b11k

4
phys � 2b12k

6
phys: (9)

This dispersion relation is chosen such that the modes
evolve adiabatically for extremely high wave numbers,
but, given an appropriate choice of the constants b11 and
b12, there is an intermediate region of wave numbers in
which the mode evolution is not adiabatic. We will start the
modes in their adiabatic vacuum in the extreme ultraviolet
and calculate how they are excited during the phase in
which the evolution violates the adiabaticity condition.

If we introduce the new dimensionless coefficients �
and � such that � � 2b11m

2
C and � � 2b12m

4
C, where mC

is a new free energy scale to be specified later on, then the
dispersion relation can be rewritten as

�!phys

mC

�
2
�

�kphys
mC

�
2

 �

�kphys
mC

�
4
� �

�kphys
mC

�
6
: (10)

It is represented in Fig. 1. This relation is in fact charac-
terized by one parameter, the ‘‘shape parameter’’ � defined
by � � 3�=�2. The derivative of the dispersion relation

vanishes at k1;2=mC �
����������������
�=�3��

p ��������������������������
1�

�������������
1
�

pp
which

shows that �< 1 and the requirement that the dispersion
relation stays positive implies that �> 3=4. To summa-
rize, one has

3
4 <�< 1: (11)

Obviously, the scales k1 and k2 only depend on the shape of
the dispersion relation, i.e., only on the parameters � and
�. It is more convenient to express everything in terms of �
and �. This gives
023504
k21
m2

C

�
1

��

�
1


�������������
1
�

p �
; (12)

k22
m2

C

�
1

��

�
1�

�������������
1
�

p �
: (13)

In this paper, for simplicity we restrict ourselves to the
case where the background space-time is de Sitter, char-
acterized by the constant Hubble parameter Hinf . Then, k0,
�1 and �2 are the two scales for which !phys � Hinf , see
Fig. 1. They depend on the parameters � and � but, clearly,
also on Hinf=mC. In fact, their explicit expressions can
easily be derived. For this purpose, let us define the coef-
ficients Q and R by

Q �
1

�2�2 ��
 1�; (14)

R �
1

�3�3

�
1


3

2
��

3

2
��2

�
Hinf

mC

�
2
�
: (15)

Let us notice that Hinf crosses the dispersion relation 3
times only if Q3 � R2 < 0. This implies that Hinf should be
chosen such that

Hmin <Hinf <Hmax; (16)

with Hmin and Hmax given by the following expressions
(which, obviously, only depend on the shape of the disper-
sion relation)

Hmin

mC
�

1����
�

p
�

���������������������������������������������
�


2

3



2

3
�1
��3=2

s
; (17)

Hmax

mC
�

1����
�

p
�

���������������������������������������������
�


2

3
�

2

3
�1
��3=2

s
: (18)

Then the three solutions can be found explicitly since they
are in fact solutions of a third order polynomial equation
(more precisely, !2

phys � H2
inf is a sixth order polynomial

equation that can be reduced to a third order equation in the
variable k2phys). The three solutions can be written as

k20
m2

C

�
1

��

�
1� 2

�������������
1
�

p
cos

�
�� 2�

3

��
; (19)

�2
1

m2
C

�
1

��

�
1� 2

�������������
1
�

p
cos

�
�� 4�

3

��
; (20)

�2
2

m2
C

�
1

��

�
1� 2

�������������
1
�

p
cos

�
�
3

��
; (21)

where � � cos
1�R=
�����������

Q3

p
�. On can check that, if 3=4<

�< 1, then k0 <�1 <�2 as required.
Let us now consider a scalar field the dispersion relation

of which is given by Eq. (10). Then, as demonstrated in
-5



ROBERT H. BRANDENBERGER AND JÉRÔME MARTIN PHYSICAL REVIEW D 71, 023504 (2005)
Ref. [27], the vacuum expectation value of the energy
density and pressure are given by

h�i �
1

4�2a4
Z �1

0
dkk2

�
a2
��������
�
�k

a

�
0
��������2

�!2�k�j�kj
2

�
;

(22)

hpi �
1

4�2a4
Z �1

0
dkk2

�
a2
��������
�
�k

a

�
0
��������2

�

�
2

3
k2

d!2

dk2

!2

�
j�kj

2

�
: (23)

This stress-energy tensor is conserved, i.e.,h�i0 �
3H h�� pi � 0, with H � a0=a as shown explicitly in
Ref. [32]. The modification of the energy density has
exactly the expected form while the modification of the
pressure is more complicated, involving the derivative of
the dispersion relation. One can easily checked that, for the
linear dispersion relation, the above formulas reduce to the
standard ones.

B. Near ultraviolet region

Let us now try to evaluate these expressions explicitly. If
we are in a region where the WKB approximation holds,
then the mode function can be written as

�k��� ’
�k������������������

2!�k; ��
p exp

"

i

Z �
!�k; ��d�

#

�
�k������������������

2!�k; ��
p exp

"
i
Z �

!�k; ��d�

#
; (24)

with j��k�j2 
 j��k�j2 � 1 from the Wronskian normal-
ization condition. Inserting this expression into the formula
giving the energy density, one obtains

h�i �
1

4�2a4
Z

dkk2
�
1

2!
�!2 � j�j2 �

j�kj
2

!
�!2 � j�j2

�
�k��

k

2!
�!2 � �2e
2i

R
� !�k;��d�

�
��
k�k

2!
�!2 � ����2e2i

R
� !�k;��d�

�
; (25)

where we have used j�kj
2 � 1� j�kj

2. In the above ex-
pression, the quantity � is defined as follows

��k; �� �
�
!0�k; ��
2!�k; ��

� i!�k; �� �
a0

a

�
: (26)

In a situation where WKB is a good approximation, we
have �=! ’ i and the previous expression reduces to

h�i �
1

2�2a4
Z
K
dkk2

�
1

2
� j�kj

2

�
!�k�; (27)

where the domain of integration K corresponds to the
region where the WKB approximation is valid. Note that
in order to remove the two oscillatory terms, no procedure
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of time averaging is needed in contrast with what was done
in Ref. [20].

We now demonstrate that the energy density of Eq. (27)
is constant in time. Replacing the time-dependent comov-
ing frequency !�k� by its expression in terms of the
physical frequency, namely ! � a!phys�k=a�, one gets

h�i �
j�kj

2

2�2

Z �1

k0

dkphysk2phys!phys�kphys�; (28)

where we have used that �k is scale-independent in the
case of a de Sitter background. We have also specified the
domain of integration K. It is of course crucial that this
domain be defined in terms of physical wave numbers. As
announced before, h�i is time independent. Of course, this
does not imply that the corresponding equation of state is
necessarily 
1 because, since we consider only a limited
range of wave numbers, the energy density is not con-
served. Only the total energy density, integrated over
wave numbers from 0 to �1, is conserved.

Let us now evaluate the pressure. Repeating the same
steps as before, a long but straightforward calculation gives

hpi �
1

4�2a4
Z

dkk2
�
1

2!

�
2

3
k2

d!2

dk2

!2 � j�j2

�

�
j�kj

2

!

�
2

3
k2

d!2

dk2

!2 � j�j2

�

�
�k�

�
k

2!

�
2

3
k2

d!2

dk2

!2 � �2

�
e
2i

R
� !�k;��d�

�
��
k�k

2!

�
2

3
k2

d!2

dk2

!2 � ����2

�
e2i
R

� !�k;��d�
�
;

(29)

This time, in order to remove the oscillatory terms, we can
take the time average of the previous expression, as done
for the energy density in Ref. [20]. In the following we
denote the corresponding double average by the symbol
hh� � �ii. This yields

hhpii �
1

3

1

2�2a4
Z
K
dkk2

�
1

2
� j�kj

2

�
!�k�

d ln!2

d lnk2
: (30)

The expression for the pressure can be evaluated explicitly.
We use the fact that the coefficient �k is scale-independent,
thanks to the time-translation invariance. Then

hhpii �
1

3

m4
Cj�kj

2

2�2

�
P

�
�1

mC

�

 P

�
k0
mC

��
; (31)

where the function P �z� is defined by the following ex-
pression
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FIG. 2. Top panel: Equation of state versus Hinf=mC for � �
0:01 and � � 0:7003 (dotted line) computed according to
Eq. (34). The dashed line is an approximation of the equation
of state, valid for small values of Hinf=mC, and derived in
Eq. (41). Bottom panel: same as the top panel but with � �
0:0001 and � � 0:700 003.
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P �z� �
3

16�2�2

!�z�
z

�
�9
 8�� � 2��z2 �

8

3
�2�2z4

�

�
27

32�2�2

����
3

�

s �
1


4

3
�
�
ln

" ����
3

�

s �
2

3
��z2 
 1

�

� 2
!�z�
z

#
; (32)

with !�z� �
��������������������������������������������
z2 
 �z4 � �2�z6=3

p
.

From the above expression, the energy density can be
evaluated very simply if one notices that

Z
K
dkk2!�k�

d ln!2

d lnk2
� k3!�k�jK 
 3

Z
K
dkk2!�k�:

(33)

Then the equation of state !st � p=� can be expressed as

!st �

��
Hinf

mC

�
��1=mC�

3 
 �k0=mC�
3

P ��1=mC� 
 P �k0=mC�

 1

�

1
: (34)

A typical example is represented in Fig. 2. The striking
feature of this plot is that, for Hinf=mC � 1, the equation
of state goes to 
1. Let us emphasize that this regime
corresponds to a physical requirement that should be met if
one wants to be in a realistic situation. In order to under-
stand better how this happens, we perform the following
perturbative treatment.

If the Hubble parameter is small in comparison with the
new scale mC, then the minimum of the dispersion relation
is close to zero which in turn means that � ’ 3=4.
Admittedly, this is a fine-tuning of the shape of the disper-
sion relation. The above considerations suggest that that
Taylor expansion in �
 3=4 can be performed. Then, one
finds [see Eqs. (14) and (15)]

R�����������

Q3

p � 
1�
27

4
�
�
Hinf

mC

�
2
�O

�
�


3

4

�
: (35)

The next step is to expand the cos
1 function which
appears in the paragraph following (21) with the above
argument. At this point, since we expect Hinf � mc, one
can treat ��Hinf=mC�

2 as a small parameter and Taylor
expand our expressions, e.g., Eq. (35), in this parameter.
However, this approximation will break down when Hinf

becomes large, especially far from Hmin. This is true even if
� � 3=4 since then ��Hmax=mC�

2 � 8=27 ’ 0:3 which
represents an error of ’ 30%. In the vicinity of Hmin the
approximation is of course much better. Then, working at
zeroth order in �
 3=4, it is easy to show that the angle �
introduced in the paragraph after (21) is
023504
� � �


�������������������������
27

2
�
�
Hinf

mC

�
2

s
�O

��
�
�
Hinf

mC

�
2
�
3=2
�

�O

�
�


3

4

�
: (36)

If one inserts the above expression into the formulas giving
k0 and �1, one obtains�

k0
mC

�
2
�

4

3�

�
3

4
�
�
Hinf

mC

�
2
�O

�
�2

�
Hinf

mC

�
4
��

�O

�
�


3

4

�
; (37)
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�
�1

mC

�
2
�

2

�

(
1


��������������������
�
2

�
Hinf

mC

�
2

s



�
4

�
Hinf

mC

�
2

�O

�
�3=2

�
Hinf

mC

�
3
�)

�O

�
�


3

4

�
: (38)

The first expression is expected since it says that at leading
order k0 ’ Hinf . This is because the usual transition be-
tween sub and super-Hubble modes occurs in the region
where the dispersion relation is almost linear. In the same
manner, one has

P

�
k0
mC

�
�

1

�2

�
1�

1

2
�
�
Hinf

mC

�
2
�O

�
�2

�
Hinf

mC

�
4
��

�O

�
�


3

4

�
; (39)

P

�
�1

mC

�
�

1

�2

�
Hinf

�1

�(
4
 5

��������������������
�
2

�
Hinf

mC

�
2

s



1

4
�
�
Hinf

mC

�
2

�O

�
�3=2

�
Hinf

mC

�
3
�)

�O

�
�


3

4

�
:

(40)

Finally, putting everything together, at leading order in
�
 3=4 and in ��Hinf=mC�

2, we obtain a simple equation
in the regime of interest, namely

!st ’ 
1� 2

����������������������
2�
�
Hinf

mC

�
2

s
: (41)

It is represented by a dashed line in Fig. 2. We are now in a
position where the behavior of the equation of state can be
understood better. In the limit � ! 3=4 and Hinf ! Hmin,
the equation of state goes to 
1. Let us notice that, since
we have H2

min � 8��
 3=4�=�3�� � � � � , the limit H !
Hmin corresponds, in this case, to Hinf ! 0. We conclude
that, in the physical regime of interest, namely H=mC � 1
the equation of state is extremely close to that of the
vacuum. Far from Hmin the approximation used above
breaks down as is apparent from Fig. 2. When Hinf !
Hmax, it is clear that k0 ! �1 and the expression giving
the equation of state becomes ambiguous. From the plots,
we see that !st goes in fact to zero. Therefore, even if the
Hubble constant is not small in comparison with mC, the
equation of state !st remains negative.

C. Far ultraviolet region

Let us now consider the far ultraviolet region. We fix the
initial conditions in the region where the WKB approxi-
mation holds by selecting positive frequency modes, which
corresponds to the choice of the Bunch-Davies adiabatic
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vacuum state for the field,

�k��� �
1������������������

2!�k; ��
p exp

"

i

Z �
!�k; ��d�

#
: (42)

At some time �2�k�, the comoving mode enters the far
ultraviolet region, i.e., when the physical wavelength equal
�2, and �k and its first derivative must be matched to the
above solution, which gives

�k��� �
1��������������������������

2!�k; �2�k�
p e


i
R

�2�k�

�i
!�k;��d� a���

a��2�

�

(
1
 ��k; �1�

Z �

�2�k�

�
a��2�

a���

�
2
d�

)
; (43)

where the quantity � has been defined previously, see
Eq. (26). Then, one can safely neglect the second term
which is the decaying mode and express everything in
terms of physical quantities, using that the scale factor
can be written as a��� � 
1=�Hinf��. This gives

j�k���j
2 ’

1

!�k; �2�k�
�2

2

k2phys���
: (44)

But, one has !�k; �2�k� � a��2�!phys�k=a��2� �

a��2�!phys��2� � a��2�Hinf . Since a��2�k� � k=�2,
one finally arrives at

j�k���j2 �
1

2k
�3

2

Hinfk
2
phys���

: (45)

Then, it is straightforward to calculate the energy density
and the pressure. This gives

h�i �
1

16�2

�3
2m

2
C

Hinf

���
�2

mC

�
2



�
�1

mC

�
2
�



�
2

��
�2

mC

�
4




�
�1

mC

�
4
�
�

�
3

��
�2

mC

�
6



�
�1

mC

�
6
��
; (46)

hpi � 

1

48�2

�3
2m

2
C

Hinf

���
�2

mC

�
2



�
�1

mC

�
2
�
�

�
2

��
�2

mC

�
4




�
�1

mC

�
4
�

 �

��
�2

mC

�
6



�
�1

mC

�
6
��
: (47)

In the standard case where � � � � 0, one recovers that
p=� � 
1=3 as required for superhorizon modes (see,
e.g., [30]). Then, straightforward algebraic manipulations
show that

h�i � 
hpi �
2

3

�3
2m

2
C

Hinf

���
�2

mC

�
2



�
�1

mC

�
2
�

 �

��
�2

mC

�
4




�
�1

mC

�
4
�
� �

��
�2

mC

�
6



�
�1

mC

�
6
��

(48)
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� 
hpi �
2

3

�3
2m

2
C

Hinf
�!2

phys��2� 
!2
phys��1� � 
hpi:

(49)

Therefore, in the far ultraviolet region, the equation of state
is nothing but the vacuum equation of state, i.e., 
1.

Can we understand this result better? For this purpose let
us consider Eqs. (22) again. The terms ��k=a�

0 vanish
because �k / a in the region under consideration. Then,
the link between the pressure and the energy density can be
rewritten as

hpi � 
h�i �
2

3

1

4�2a4
Z
K
dkk4

d!2

dk2
j�kj

2: (50)

Now, if j�kj
2 scales as j�kj

2 / 1=k3 as indicated by
Eq. (45) which is the consequence of having matched the
mode function in the far ultraviolet region to the initial
Bunch-Davis vacuum, then the above expression can be
rewritten as

hpi � h�i /
2

3

Z
K
dk

d!2

dk
: (51)

Clearly, if the interval K is such that the frequency is the
same at its boundaries then we obtain the equation of state
of the vacuum. This conclusion does not depend on the
detailed shape of the dispersion relation in this region. It is
also obvious that the calculations done previously for a
specific dispersion relation are fully compatible with the
above considerations, in particular, the difference between
hpi and 
h�i in Eq. (48) is given by a term equal to 2=3
times the difference between the square of the effective
frequency at the boundaries of the far ultraviolet region.

To conclude this section, one can estimate the equation
of state of the created particles coming from the whole
ultraviolet region. In the near ultraviolet region, one has

hpinear
UV �

�

1�O

�
Hinf

mC

��
h�inear
UV; (52)

while in the far ultraviolet region

hpifar
UV � 
h�ifar
UV: (53)

In the ‘‘ultrafar’’ region (kphys >�2), i.e., in the region
where the initial condition are fixed, we have by definition
the adiabatic vacuum and, therefore, no created particles.
Hence, we do not need to take into account this region. As a
consequence, the equation of state of the whole ultraviolet
region can be written as

!st
UV �
hpinear
UV � hpifar
UV

h�inear
UV � h�ifar
UV
’ 
1�O

�
Hinf

mC

�
;

(54)

where we have used Eqs. (52) and (53). Since the total
energy density

h�iUV � h�inear
UV � h�ifar
UV (55)
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is constant in time, we see that the energy density of the
created particles almost behaves as a positive cosmological
constant. The slight nonconservation is due to the fact that
we have not taken into account the infrared region which
also contributes (let us recall that the total energy-
momentum tensor is conserved exactly). The same calcu-
lation performed with a linear dispersion relation would
have led to the result !st
UV � 1=3. We have thus dem-
onstrated explicitly that taking into account the trans-
Planckian corrections is important when one evaluates
the back-reaction.

We end this section with the following remark. It is
important to keep in mind that the previous calculation is
not the calculation of the equation of state of cosmological
perturbations. Therefore, one cannot claim that the equa-
tion of state of the cosmological perturbations with a
modified dispersion relation is the one of a cosmological
constant. What has been calculated is just the equation of
state of a test field. Nevertheless, we have shown with the
help of the previous toy model that any attempt to evaluate
the equation of state of the cosmological perturbations in a
regime where the dispersion relation is modified must take
into account these trans-Planckian corrections.

IV. DISCUSSION AND CONCLUSIONS

Now that we have determined the energy density and
pressure of the ultraviolet modes, we will study their back-
reaction on the background space-time and matter. We
work in the context of the toy model studied in the previous
section. We assume that at early times all modes with wave
number larger than �2 start out in their adiabatic vacuum.
Thus, after subtraction of the quantum vacuum terms, these
modes do not contribute to the energy-momentum tensor,
and thus there will be no remaining ultraviolet divergences.

We now follow a mode with fixed comoving wavelength
which starts out deep in the ultraviolet region (kphys >�2)
in its adiabatic vacuum. The mode will then spend a finite
time interval in the intermediate frequency range �1 <
kphys <�2 during which the adiabaticity condition for
mode evolution is violated, the state gets squeezed, and,
from the point of view of the vacuum state for kphys <�1, a
nonvanishing occupation number nk is generated. This
occupation number remains constant when k0 < kphys <
�1, since in this frequency range the adiabaticity condition
is restored.

Given this setup, we consider the energy density �UV of
ultraviolet modes (modes with wavelength smaller than the
Hubble radius) which is the sum of (27) and (46), see
Eq. (55). By time-translation invariance of the background,
both terms are independent of time in a de Sitter back-
ground in which Hinf is constant. Thus,

d�UV

dt
� 0: (56)

This seems to indicate that the ultraviolet energy density
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evolves like a cosmological constant, and its back-reaction,
rather than preventing inflation, will simply lead to a
renormalization of the cosmological constant.

Naive intuition, namely, treating the equation of state as
radiative, i.e., pUV � �UV=3, would have led to a problem
with this conclusion, namely, an extreme nonconservation
of the energy-momentum tensor of the ultraviolet modes, a
nonconservation on the energy density scale of �4

1 (in this
context the difference between �1 and �2 is not relevant).
However, our analysis of the previous section has shown
that in fact the energy-momentum tensor of the ultraviolet
modes is that of a cosmological constant, up to correction
terms which are suppressed by a factor of Hinf=mC com-
pared to the dominant terms.

Let us take a look at the equations of back-reaction.
Following the method discussed in Refs. [33,34] in the
context of the problem of the back-reaction of infrared
cosmological fluctuations. The back-reaction effect of in-
terest here is the fact that linear cosmological fluctuations
effect the background metric and matter if one works out
the Einstein equations to quadratic order in the amplitude
of the primordial perturbations. To be specific, in the
following we shall consider a homogeneous, isotropic
and spatially flat background, and will take matter to be
a scalar field ’ with a quadratic potential given by the
scalar-field mass m. For the fluctuations we parameterize
the equation of state as

pUV � �
1� ���UV; (57)

where (by the above discussion) � is a positive constant
expected to be of the order Hinf=mC.

Our starting point consists of taking the FLRW equations

H2 �
!
3
�;

d�
dt

� 
3H��� p�; (58)

where ! � 8�=m2
Pl. The presence of the fluctuations pro-

duces a back-reaction effect on the background which is
quadratic in the amplitude of the fluctuations [29,30] and
leads to a correction of both metric and matter, i.e., to
corrections #H of the Hubble expansion rate and #’ of the
scalar field

H � Hinf � #H; ’ � ’inf � #’; (59)

where the subscripts ‘‘inf’’ stand for the quantities eval-
uated in the unperturbed background. The back-reaction of
the linear fluctuations on the background is described by
contributions �br � �UV and pbr � pUV (and we use the
ultraviolet energy densities and pressures as the back-
reaction quantities) to the energy density and pressure. If
we insert the back-reaction ansatz (59) into the Eqs. (58)
(written in the slow-roll approximation) and linearize in
#H and #’, we obtain the following equations
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2Hinf#H �
!
3
��UV �m2’inf#’�;

m2

�
d’inf

dt

�
#’�m2’inf

�
d#’
dt

�
� 
3Hinf��UV � pUV�



d�UV

dt
: (60)

We have assumed that the background model has a qua-
dratic potential, i.e., V�’� � m2’2=2. The back-reaction
of infrared modes (modes with wavelength larger than the
Hubble radius) was analyzed in [29,30] (see also Ref. [35])
and was shown to correspond to a negative cosmological
constant whose absolute value increases in time (see
Ref. [36] for resulting speculations on how this effect
might be used to address the cosmological constant prob-
lem). Here, we will study the back-reaction effects of the
ultraviolet modes for which d�br=dt � d�UV=dt � 0 and
for which the equation of state is given by (57). In this case,
the linearized Klein-Gordon equation can be simplified to
yield

d#’
dt

�
1

’inf

�
d’inf

dt

�
#’ � 


3�Hinf

m2’inf

�UV: (61)

The solution of Eqs. (61) and (60) is

#’ � 
3

����
!
6

r �
�UV

m

�
�t; (62)

#H �
!
6

�UV

Hinf
�1
 3�Hinft�: (63)

As expected #’ and #H vanish if �UV � 0. As stressed in
[37] and later analyzed in detail in [38], it is important to
express the result in terms of physical observables instead
of in terms of the nonmeasurable background time coor-
dinate t. The obvious clock in our simple system is the
scalar field ’ � ’inf � #’ itself. After a simple calcula-
tion it follows that the back-reaction effect #H measured in
terms of ’ is given by

Hinf � #H �

����
!
6

r  
m’�

����
!
6

r
�UV

Hinf

!
: (64)

Thus, the effect of the ultraviolet back-reaction terms in a
de Sitter background corresponds to a positive renormal-
ization of the cosmological constant. This result does not
depend on the value of �.

So far, we have shown that a large ultraviolet back-
reaction does not prevent inflation, in contrast to naive
expectations. Instead, it leads to a renormalization of the
cosmological constant. On the other hand, as is evident
from Eq. (62), the back-reaction terms can lead to a faster
rolling of the scalar field ’inf . However, for the small
values of � of the order of Hinf=mC indicated by our
analysis, the increase in the rolling speed does not prevent
a phase of inflation of sufficient length (i.e., having j#’j<
j’infj for a time interval t ’ H
1

inf ) as long as
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nk &
Hinf

mPl
; (65)

which is a less stringent constraint than the one derived by
Tanaka, and still allows observable effects on cosmic mi-
crowave fluctuations from trans-Planckian physics.

We have presented an attempt to study the effects of
back-reaction on the trans-Planckian problem of inflation-
ary cosmology. The question initially posed in
Refs. [20,21] is whether the back-reaction of a state which
consists of excited modes during the inflationary phase on
scales smaller than the Hubble radius will prevent inflation.
We have seen that the analysis is more subtle than it
initially appears from the above works. We have shown
that the back-reaction of an excited state preserving time-
translation invariance does not prevent inflation, but simply
leads to a renormalization of the Hubble constant.
However, back-reaction will lead to a slightly faster rolling
of the scalar field. As long as the occupation numbers nk
are smaller than Hinf=mPl, the rolling will be consistent
with the standard inflationary paradigm. Such occupation
numbers can lead to observable effects on the cosmic
microwave background.

To render the analysis well defined, we have considered
a dispersion relation for which the violation of adiabaticity
is concentrated in a finite range of physical wave numbers
�1 < kphys <�2. We have assumed that all modes start off
in their adiabatic vacuum state when kphys >�2. They are
squeezed while �1 < kphys <�2, and then emerge as ex-
cited states when kphys <�1. Let us also notice that by
making the wavelength interval �1 < kphys <�2 small,
the energy density in the far ultraviolet modes can always
be made small compared to the cutoff energy density �4

1
(or �4

2). Thus, in our approach the Planck energy density
problem recently discussed in Ref. [39] in an approach to
quantum field theory on a growing lattice, in which the
number of fundamental field modes is increasing in time,
does not arise (the analysis of Ref. [39] finds that the
continual creation of modes at the cutoff scale yields an
energy density which is of Planck scale). In our analysis,
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the Hilbert space of modes is time independent, but as time
proceeds an increasing subset of this space gets populated.
This mechanism for continual excitation of new modes
(see [40] for original work along these lines and [41] for
resulting speculations concerning the cosmological con-
stant) appears to be more smooth than the lattice approach
of Ref. [39].

There are several important deficiencies in our analysis.
First, we have used an ad hoc regularization and renormal-
ization prescription which consists of imposing effectively
an abrupt cutoff in momentum space, and of subtracting the
ground state energy of each field Fourier mode. This
procedure is not covariant. It would be of interest to study
our problem using a mathematically more rigorous regu-
larization prescription, such as adiabatic regularization
(see, e.g., Ref. [42] and references therein).

Another serious concern is that we have considered
matter fluctuations without taking into account the induced
metric fluctuations. It is well known that the inclusion of
metric fluctuations leads to dramatically different results
for super-Hubble-scale perturbations [29,30]. Thus, one
might expect that the gravitational fluctuations could play
an important role in the far ultraviolet region where
!phys <Hinf . However, at the present time we are not
able to study this issue because the nonstandard dispersion
relation has been set up for the matter sector only. It is a
challenge for future research to include the presence of
nonstandard dispersion relations consistently in both the
gravitational and matter sector.
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