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Interacting phantom energy
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We investigate the role of a suitable interaction between a matter fluid and a phantom field for the
coincidence problem. There exists a stationary scaling solution which is a stable attractor at late times.
Furthermore, the cosmic doomsday is avoided in one region of the parameter space.
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Scalar fields play an important role in modern cosmol-
ogy. Dark energy can be attributed to the dynamics of a
scalar field, for instance quintessence [1,2], which con-
vincingly realize the present accelerated expansion of the
Universe by using late-time attractor solutions in which the
scalar field mimics the perfect fluid in a wide range of
parameters. But regarded as dark energy, the quintessence
field with the equation of state w>�1 may be not con-
sistent with recent observations [3]. In order to obtain w<
�1, a phantom field with a negative kinetic term may be
the simplest implementing and can be regarded as one of
many interesting possibilities describing dark energy [4].
The physical background for a phantom type of matter with
strongly negative pressure would be found in string theory
[5]. A phantom field may also arise from a bulk viscous
stress due to particle production [6] or in higher-order
theories of gravity [7], Brans-Dicke and nonminimally
coupled scalar field theories [8]. The cosmological models
which allow for phantom matter appear naturally in the
mirage cosmology of the brane world scenario [9] and in
k-essence models [10]. In spite of the fact that the field
theory of phantom fields encounters the problem of stabil-
ity which one could try to bypass by assuming them to be
effective fields [11], it is nevertheless interesting to study
their cosmological implication. Recently, there have been
many relevant studies of phantom energy [12].

The physical properties of phantom energy are rather
weird, as they include violation of the dominant-energy
condition, naive superluminal sound speed, and increasing
energy density with time. The last property ultimately
leads to an unwanted future singularity called big rip.
This singularity is characterized by the divergence of the
scale factor in a finite time in future [13]. To avoid the
cosmic doomsday, specific scalar field models were pro-
posed [14]. It requires a special class of phantom field
potentials with a local maximum. Moreover, the energy
density of the phantom field increases with time, while the
energy density of the matter fluid decreases as the Universe
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expands. Why are the energy density of dark matter and the
phantom energy density of the same order just at the
present epoch? In this paper we investigate the role of a
possible coupling of dark matter and a phantom field for
the coincidence problem. With the help of a suitable cou-
pling [15,16], we find that there exists a stationary scaling
solution and demonstrate numerically that it is a stable
attractor at late times. Furthermore, the cosmic doomsday
is avoided in one region of the parameter space.

We consider the case in which both the phantom energy
with constant w<�1 and the cold dark matter are present.
Denoting the time at which the energy densities of matter
and dark energy are equal by tm, the scale factor (1) is a
solution to the Friedmann equation for times t > tm:

a�t� � a�tm�
�
�w� �1� w�

�
t
tm

��
2=�3�1�w��

(1)

at t > tm. It is easy to see that the scale factor blows up at
t � wtm=�1� w�. This occurs because, even though the
energy densities in ordinary types of matter are redshifting
away, the energy density of phantom energy increases in an
expanding universe. It is possible that both components
decrease with time if there is a transfer of energy from the
phantom field to the matter fluid. Then the cosmic dooms-
day may be avoided.

For a spatially flat Friedmann-Robertson-Walker (FRW)
universe with the matter fluid 	m and the phantom field 
,
the Friedmann equation can be written as

H2 �
�2

3
�	p � 	m�; (2)

where �2 � 8�GN is the gravitational coupling and the
energy density and pressure, 	p and Pp, of the homoge-
neous phantom field 
 are given by

	p � �1
2
_
2 � V�
�; (3)

Pp � �1
2
_
2 � V�
�; (4)

respectively, in which V�
� is the phantom field potential.
We postulate that the two components, 	p and 	m, interact
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FIG. 1. Regions of the (�p, c2) parameter space with �m � 1.
In regions I and II, the scaling solution is a stable attractor. In
region III, there exist no stable scaling solutions with r�s < 3=7.
The Universe accelerates forever in region I, while the Universe
leads to a big rip in the future in region II.
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through the interaction term Q according to

_	 p � 3H�p	p � �Q; (5)

_	m � 3H�m	m � Q; (6)

where

�p � 1� w �
	p � Pp

	p
; (7)

�m �
	m � Pm

	m
(8)

satisfy �p 	 0 and 1 	 �m 	 2 and are constants. The
interaction term Q represents an additional degree of free-
dom which can be constrained by the existence of a solu-
tion with a stationary energy density ratio r � 	m=	p at
late times. Using Eqs. (5) and (6) we obtain the evolution
equation of the ratio r:

_r � r
�
Q
	m

�
Q
	p

� 3H�m � 3H�p

�
: (9)

Obviously, the suitable interaction

Q � 3H��m � �p�
r	p

1� r
(10)

guarantees the existence of the stationary solution. Note
that Q> 0, which implies that there exists a transfer of
energy from the phantom field to the matter.

We assume an interaction characterized by Q �

3Hc2�	p � 	m� where c2 denotes the transfer strength.
This type of interaction has already been discussed in
Ref. [15]. When �p and �m are assumed to be constants,
the two stationary solutions to Eq. (10) are

r
s �
�m � �p

2c2
� 1


����������������������������������������������m � �p

2c2
� 1

�
2
� 1

s
; (11)

which imply 0< r�s 	 1 	 r�s and r�s r�s � 1 when �m �

�p � 4c2. A stability analysis of the stationary solution
indicates that the matter-dominated scaling solution r�s is
unstable, while the phantom-dominated scaling solution r�s
is stable [16]. The energy density ratio r evolves from the
unstable stationary value r�s > 1 to the stable stationary
solution r�s < 1, which is clearly compatible with the
presently favored observational data �m � 0:3 and �	 �
0:7. This may provide us with the dynamics of the density
ratio that is relevant to the solution of the coincidence
problem.

Now consider the case of �m � 1 (i.e., cold dark mat-
ter). We will investigate the cosmological evolution with
the stationary density ratio r. Substituting Eq. (10) into
Eq. (5), it follows that

_	 p � 3
�p � r

1� r
H	p � 0; (12)
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which yields

	p / a�3�; (13)

where � �
�p�r
1�r is a constant since �p is a constant. If the

expansion is matter dominated until the time tm, then we
can write the scale factor as

a�t� � a�tm�
�
1� �� �

t
tm

�
2=3�

: (14)

Using the definitions of r and �p, the Friedmann equa-
tion (2) gives

a / exp

 ������������
1� r

p

�����������������������
�3�1� w�

p �


!
: (15)

In terms of 
, (13) becomes

	p / exp

 
�

������������������
3�1� r�

p
����������������������

��1� w�
p �


!
: (16)

Since �p is a constant, which means that potential and
kinetic energies of the phantom field remain proportional,
it follows that

V�
� � V0 exp

 
�

������������������
3�1� r�

p
����������������������

��1� w�
p �


!
: (17)

It is reassuring to find an exponential potential because this
type of potential arises very naturally in the models of
unification, such as Kaluza-Klein theories, supergravity
theories, and string theories. A similar result has been
obtained in Refs. [1,17]. These authors started with an
exponential potential in which there is a free parameter
and then investigated the parameter range for which there
exists a stable scaling solution. We have first constructed a
solution with expected properties and then derived the
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FIG. 2. r� 	p with �m � 1, �p � �0:2, and c2 � 0:2. FIG. 4. r� 	p with �m � 1, �p � �1:4, and c2 � 0:2.
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corresponding potential. In the coupled phantom scenario,
it is surprising that the signs of the exponent in Eq. (17) are
different in different regions of the parameter space, which
are determined by the signs of the parameter �. We will
find that the increasing potential corresponds to a
climbing-up phantom field while the decreasing potential
corresponds to a rolling-down phantom field.

The recent observations indicate that approximately 0.3
and 0.7 of the total energy density of the Universe attribute
to dark matter and dark energy, respectively. To solve the
coincidence problem of our present Universe, the stable
stationary ratio of the energy densities should satisfy r�s <
3=7, which corresponds to c2 < 0:21�1� �p� (i.e.,
regions I and II in Fig. 1). In region I

1�
1

1� �p
< c2 <

21

100
�1� �p�

for �3=7<�p < 0, since 0< �< 2=3, the energy density
of the phantom field decreases with time and the Universe
FIG. 3. r� 	m with �m � 1, �p � �0:2, and c2 � 0:2.
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accelerates without a big rip in the future. However, in
region II

c2 < 1�
1

1� �p

for �3=7< �p < 0 and

c2 <
21

100
�1� �p�

for �p <�3=7; � < 0 indicates that the Universe accel-
erates until a big rip occurs at t � �1� 1=��tm. We see that
the energy transfer from the phantom field to the cold dark
matter prolongs the lifetime of the Universe.

To study an explicit numerical evolution of the energy
density ratio r and the phantom energy density (or the
matter energy density), it is most convenient to rewrite
the evolution equations (5) and (9) [or Eq. (6)] as a set of
two first-order differential equations with two independent
variables r and 	p (or 	m):
FIG. 5. r� 	m with �m � 1, �p � �1:4, and c2 � 0:2.
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r0 � 3c2r
�
2� r�

1

r
�

�m � �p

c2

�
; (18)

	0
p � �3	p��p � c2r� c2�; (19)

	0
m � �3	m

�
�m � c2 �

c2

r

�
; (20)

where the prime denotes a derivative with respect to the
logarithm of the scalar factor, N � lna. Let us consider
two points, ( � 0:2, 0.2) and ( � 1:4, 0.2) in regions I and II
of the (�p, c2) parameter space in Fig. 1, respectively. We
choose different initial conditions and follow the evolution.
We find that an initial energy density ratio decreases and
there exists an attractor curve, which corresponds to the
stationary scaling solution. It implies that the Universe
evolves from a dark matter dominance to a phantom domi-
nance and the energy density ratio of the two components
becomes a constant ultimately. Furthermore, we find that
the stationary energy density ratio increases as the transfer
strength c2 increases when �p is fixed. In Figs. 2 and 3, the
energy densities of the two components redshift away.
From Eqs. (16) and (17), we note that the phantom field
rolls down the exponent potential. In Figs. 4 and 5, the
energy density of the phantom field increases with time,
while the energy density of the cold dark matter decreases
initially and then increases ultimately with time. From
Eqs. (16) and (17), we note that the phantom field climbs
up the exponent potential.

We have considered above that the present accelerated
expansion of our flat FRW universe is driven by an inter-
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acting mixture of a matter fluid and a phantom field with
w<�1. In the absence of interaction, as shown in
Ref. [18], there exist no scaling solutions because the
phantom energy increases while the matter energy de-
creases with time. With the help of a suitable coupling,
there exists a stable, stationary scaling solution, which
requires a transfer of energy from the phantom field to
the matter fluid. Furthermore, we have demonstrated nu-
merically that an interaction between cold dark matter and
phantom field can drive the transition from a matter domi-
nance to a phase of accelerated expansion with a stationary
ratio of the energy densities of the two components. This
interacting phantom approach indicates a phenomenologi-
cal solution of the coincidence problem. The different
regions in the (�p, c2) parameter space lead to different
fates of the Universe. In region I, the phantom field rolls
down the exponent potential and the Universe accelerates
without the cosmic doomsday. However, in region II, the
phantom energy increases as the phantom field climbs up
the potential, which leads to the divergence of a scale
factor in the future. Coupling of the quintessence field to
dark matter may be worrisome because of quantum cor-
rections to the quintessence potential [19]. It is valuable to
study the stability of the phantom potential under quantum
fluctuations in the case with a coupling to dark matter.
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