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Effective potential at finite temperature in a constant magnetic field: Ring diagrams
in a scalar theory
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We study symmetry restoration at finite temperature in the theory of a charged scalar field interacting
with a constant, external magnetic field. We compute the finite-temperature effective potential including
the contribution from ring diagrams. We show that in the weak field case, the presence of the field
produces a stronger first order phase transition and that the temperature for the onset of the transition is
lower, as compared to the case without magnetic field.
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I. INTRODUCTION

Symmetry restoration in field theories at finite tempera-
ture has been a subject of interest for quite some time
already, in particular, when applied to the description of
phase transitions in the early universe. An important ex-
ample is the study of the nature of the electroweak phase
transition (EWPT) in the standard model (SM) for tem-
peratures of order 100 GeV [1]. It is by now well known
that the correct description of this phase transition requires
accounting for nonperturbative phenomena casted in terms
of the so called ring diagrams. Inclusion of this terms has
the important effect of changing the nature of the phase
transition from second to first order.

In recent years it has also become important to study the
influence that magnetic fields could have had on cosmo-
logical phase transitions [2]. Though the nature and origin
of these fields is unknown it is certainly true that the
current limits on their strength during the EWPT cannot
rule them out.

Possible consequences for the propagation of fermions
during a first order EWPT in the presence of magnetic
fields such as the generation of an axial asymmetry [3] or a
spin-up spin-down asymmetry [4] have been recently
studied. On the other hand, it has been shown that magnetic
fields are also able to generate a stronger first order EWPT
as compared to the case when these fields are not present
[5–7]. Nevertheless, these studies are either classical or
resort to perturbation theory to lowest order. In contrast to
these perturbative estimates, lattice calculations [8] seem
to indicate that, for Higgs masses mH � 80 GeV, the
presence of a magnetic field does not suffice to make the
transition to be of first order. In this context, the question
emerges as to what is the effect of a magnetic field in the
description of the phase transition when also including the
contribution of nonperturbative effects such as the ring
diagrams at finite temperature.

To our knowledge, only one attempt in this direction has
been made. This is Ref. [9] where this question is ad-
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dressed in the context of the generation of baryon number
in the SM during the EWPT. Unfortunately, neither the
details nor the limitations of the approximations involved
are stated and thus the need for a closer look at this
phenomenon.

Recall that field theoretical calculations involving exter-
nal magnetic fields can be carried out by means of
Schwinger’s proper-time method [10]. The method incor-
porates to all orders the effects of the external field into the
Green’s functions of the theory. To manage the expressions
thus obtained, it is customary to resort to either the strong
or the weak field limits. For theories involving particles
with mass—as is the case of theories with spontaneous
breaking of the symmetry—and at finite temperature, it is
therefore mandatory to clearly state the hierarchy of the
three energy scales involved when carrying out the
approximations.

In this work, we study the problem of symmetry resto-
ration at finite temperature in the presence of an external
magnetic field. We compute the finite-temperature effec-
tive potential, up to the contribution of ring diagrams, for a
charged scalar field interacting with a uniform external
magnetic field. We point out that the problem is not merely
of academic interest since similar arguments apply to the
case of the SM degrees of freedom. However, the complex-
ity of expressions of an exact method makes it necessary to
work first in a simpler, though relevant case, to have a
better control over the approximations and results and
latter on extend them to scenarios where more degrees of
freedom are involved.

The work is organized as follows: In Sec. II we find the
propagator for the charged scalar field in the presence of an
external magnetic field. From the exact expression we
compute the weak and strong field limits of this propagator.
In Sec. III we work out the finite-temperature effective
potential up to the contribution of the ring diagrams, also
in the weak and strong field limits. In Sec. IV we use the
expressions for the effective potential to discuss symmetry
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AYALA, SÁNCHEZ, PICCINELLI, AND SAHU PHYSICAL REVIEW D 71, 023004 (2005)
restoration. We show that the presence of the external field
makes the phase transition strongly first order in the weak
field limit. We finally conclude in Sec. V. We reserve for
the appendix the explicit calculation of integrals appearing
throughout the work.
s

FIG. 1. Integration contour in the complex s-plane to compute
the integral representing the scalar propagator in the presence of
a magnetic field.
II. SCALAR PROPAGATOR IN A CONSTANT
MAGNETIC FIELD

Using Schwinger’s proper-time method, it is possible to
obtain the exact expression for the vacuum propagator for a
charged scalar boson with charge e, in the presence of an
external magnetic field, DB�x0; x00�, which is given by

DB�x0; x00� � ’�x0; x00�
Z d4k

�2��4
e�ik��x

0�x00�DB�k�; (1)

where

iDB�k� �
Z 1

0

ds
coseBs

eis	k
2
jj
�k2

?
�taneBs=eBs��m2�i�: (2)

Similarly, the expression for the scalar boson self-energy
�B�x0; x00� is given by

�B�x0; x00� � ’�x0; x00�
Z d4k

�2��4
e�ik��x

0�x00��B�k�: (3)

In Eqs. (2) and (3) we use the definitions

�a � b�jj � a0b0 � a3b3; �a � b�? � a1b1 � a2b2;

(4)

for any two four vectors a�, b�. The phase factor ’ in
Eq. (1) is given by

’�x0; x00� � exp
�
ie
Z x0

x00
dx�A��x�

�
: (5)

and does not depend on the integration path. Since from
now on we will be concerned with expressions such the
one-loop self-energy or the effective potential that do not
have a momentum dependence, and are thus diagonal in
coordinate space, the phase factor of Eq. (5) vanishes and it
will be enough to work in the momentum representation.

Notice that taking the limit eB! 0 in Eq. (2) and by
means of the identity

1

q2 � i�
� �i

Z 1

0
dseis�q

2�i��; (6)

one obtains the free Feynman vacuum propagator for the
scalar field given by

iDF�k� �
i

k2 �m2 � i�
: (7)

Let us now proceed to work out Eq. (2) to find a working
representation for the scalar propagator iDB�k�. First we do
the change of variable eBs! s to write Eq. (2) as
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iDB�k� �
1

eB

Z 1

0

ds
coss

ei�s=eB�	k
2
jj
�k2

?
�tans=s��m2�i�: (8)

The integrand in Eq. (8) is analytical in the lower complex
s-plane and the zeros of cos�s� are all located on the real
s-axis. Furthermore, the i� in the exponent ensures that for
jsj ! 1, the integrand dies out sufficiently rapidly.
Therefore we can close the contour of integration on a
path whose first leg is a horizontal line just below the real
s-axis, continued along the quarter-circle at infinity in the
right-lower quadrant and finally along the negative imagi-
nary s-axis. This is depicted in Fig. 1. Using Cauchy’s
theorem, the integral in Eq. (8) can be written as

iDB�k� �
�1

eB

Z 0

�i1

ds
coss

ei�s=eB�	k
2
jj
�k2

?
�tans=s��m2�i�: (9)

Since the integration in Eq. (9) is along the imaginary axis,
we make the change of variable s � �i� with � real and
thus Eq. (9) becomes

iDB�k��
�i
eB

Z 1

0

d�
cos��i��

e��=eB��k
2
jj
�k2

?
	tan��i��=��i���m2�i��:

(10)

Notice that since � � 0, this last integral converges for
Re�k2

jj
� i��< 0, that is k20 � k23 < 0 which means that we

are considering momenta in Eucledian space. Though the
result can later on be analytically continued to Minkowski
space, we will continue considering k� in Euclidean space
and for finite-temperature calculations we will work in the
imaginary-time formalism.

Next, we use that

cos��i�� �
e� � e��

2
; i tan��i�� �

e� � e��

e� � e��
:

(11)
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Introducing the variable u � e�2�, we can write

1

cos��i��
�

2u1=2

1� u
; i tan��i�� � 1�

2u
1� u

: (12)

Using Eq. (12), we can write Eq. (10) as

iDB�k� �
�2i
eB

Z 1

0
d�e��=eB��k

2
jj
�m2�i��e�k

2
?
=eB

� u1=2
e2k

2
?
=eB�u=1�u�

1� u
: (13)

Equation (13) is now suited to introduce the generating
function for the Laguerre polynomials [11] Ll�x�, given by

e�xz=�1�z�

1� z
�

X1
l�0

Ll�x�zl; (14)

from which, interchanging the order of the summation and
the integration, we can write

iDB�k� �
�2i
eB

X1
l�0

��1�lLl

�
2k2?
eB

�
e�k

2
?
=eB

�
Z 1

0
d�ul�1=2e�=eB�k

2
jj
�m2�i��: (15)

The integral over � can now be explicitly evaluated with
the result Z 1

0
d�e��=eB�	k

2
jj
��2l�1�eB�m2�i�

�
�eB

k2
jj
� �2l� 1�eB�m2 � i�

; (16)

from which the expression for the propagator finally be-
comes

iDB�k� � 2i
X1
l�0

��1�lLl�
2k2

?

eB �e
�k2

?
=eB

k2
jj
� �2l� 1�eB�m2 � i�

: (17)
A. Weak field limit

Let us now work out Eq. (17) in the limit where eB is
small compared to the momenta. For this purpose, we
follow Ref. [12] and reorganize the series in Eq. (17) in
powers of �eB� to make evident the lowest contributing
power of �eB� which is the most important one in this limit.

iDB�k� � 2i
e�k

2
?
=eB

�k2
jj
�m2�

�
X1
l�0

��1�lLl�
2k2

?

eB �

1� �2l� 1�eB=�k2
jj
�m2�

;

(18)

where in anticipation to working in the imaginary-time
formulation of thermal field theory, we have omitted the
i� term. Notice that we can formally write
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1

1� �2l� 1�eB=�k2
jj
�m2�

�
X1
j�0

�
eB	2l� 1

k2
jj
�m2

�
j
; (19)

from which the propagator can be written as

iDB�k� �
i

�k2
jj
�m2�

X1
j�0

�
eB

k2
jj
�m2

�
j

�

�
2e�k

2
?
=eB

X1
l�0

��1�lLl

�
2k2?
eB

�
�2l� 1�j

�
: (20)

Notice that Eq. (20) is valid for eB� m2. The sum in the
term between curly brackets in Eq. (20), namely

Sj �
�
2e�k

2
?
=eB

X1
l�0

��1�lLl

�
2k2?
eB

�
�2l� 1�j

�
; (21)

represents a special case of the identity

f�x� �
e�i�k

2
?
=eB� tan�x�

cos�x�

� 2e�k
2
?
=eB

X1
l�0

��1�lLl

�
2k2?
eB

�
e�i�2l�1�x: (22)

Therefore, we see that for a given j, Sj is given by

Sj � ij
djf
dxj

								x�0
: (23)

It is now a simple exercise to write down the propagator as
a series in powers of eB. Keeping only the lowest order
terms, we get

iDB�k� 


!eB!0 i

k2
jj
� k2? �m2

�
1�

�eB�2

�k2
jj
� k2? �m2�2

�
2�eB�2�k2?�

�k2
jj
� k2? �m2�3

�
: (24)
B. Strong field limit

For the purpose of considering the limit where eB is
large, recall that Eq. (17) can be thought of as expressing
the scalar propagator in terms of a superposition of con-
tributions from the Landau levels, each of which corre-
sponds to a discrete energy given by

El �
����������������������������������������������
k23 � �2l� 1�eB�m2

q
: (25)

For eB large compared to the momenta, the gap between
successive energy levels, �E ’ 2eB becomes large. When
working at finite temperature, where the momentum be-
comes an energy scale of order T, thermal fluctuations will
rarely produce occupation of excited energy levels and
thus, for eB� T, it is a good approximation to consider
only the contribution from the lowest Landau level and
write
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FIG. 3. Feynman diagram representing the ring diagrams con-
tribution to the effective potential in the absence of the magnetic
field.
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iDB�k� 


!eB!1
2i

e�k
2
?
=eB

k2
jj
� eB�m2 : (26)

In this approximation, transverse and longitudinal mo-
menta decouple.

In what follows, we will work either with Eq. (24) or
Eq. (26) when discussing the effective potential in the weak
or strong field limits, respectively.

III. EFFECTIVE POTENTIAL

To include quantum corrections to the tree level poten-
tial, we recall that it is convenient to express these as a
series in powers of the coupling constant ". In what fol-
lows, we work in the imaginary-time formulation of ther-
mal field theory. First, we consider that the integration over
four momenta is carried out in Eucledian space with k0 �
ik4. This means thatZ d4k

�2��4
� i

Z d4kE
�2��4

: (27)

Next, we recall that in the formalism, energies take discrete
values, namely k4 � wn � 2n�T with n an integer as
corresponds to a Matsubara frequency for bosons and thusZ d4kE

�2��4
! T

X
n

Z d3k

�2��3
: (28)

In this manner, the one-loop contribution to the effective,
finite-temperature potential, whose Feynman dyagram is
depicted in Fig. 2, is given by [13]

V�1� �
T
2

X
n

Z d3k

�2��3
ln	�B�k��1; (29)

where

�B�k� � �DB�k0 � i!n;k�: (30)

It is well known, for the case of vanishing external
magnetic field, that the next order correction to Eq. (29)
comes from the so called ring diagrams [14] depicted in
Fig. 3. As we will show, this is also the case in the presence
FIG. 2. Feynman diagram representing the one-loop vacuum
bubble contribution to the effective potential in the absence of
the magnetic field.
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of an external magnetic field where the scalar propagator
and self-energy used in the calculation include the effects
of the magnetic field. The contribution to the effective
potential arises from the mode with n � 0 from the ex-
pression given by

V�ring� � �
T
2

X
n

Z d3k

�2��3
X1
N�1

1

N
	�B�B�k�N;

�
T
2

X
n

Z d3k

�2��3
ln	1��B�B�k�;

(31)

where �B has to be computed also self-consistently [14].
Since for the discussion of symmetry restoration we will
consider a theory of a charged scalar with a self-interaction
of the form �(y(�2=4 (see Sec. IV), the explicit expression
for �B is given by

�B � "T
X
n

Z d3k

�2��3
�B�k;m2 ! m2 ��1�; (32)

where

�1 � "T
X
n

Z d3k

�2��3
1

!2
n � k2 �m2 ;

�
"T2

12
�O�m2� (33)

is the one-loop self-energy.
We now proceed to compute the expressions in

Eqs. (29), (31), and (32) in the weak and strong field limits.

A. Weak field limit

Let us first start with the expression for the self-energy.
Using Eqs. (24) and Eq. (30) into Eq. (32), we have to
explicitly evaluate

�B � "T
X
n

Z d3k

�2��3
1

!2
n � k2 �m2 ��1

�

�
1�

�eB�2

�!2
n � k2 �m2 ��1�

2

�
2�eB�2�k2?�

�!2
n � k2 �m2 ��1�

3

�
: (34)

We will work out Eq. (34) considering explicitly that the
-4
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FIG. 4. Feynman diagram representing the effective potential,
including the contribution from the ring diagrams, in the pres-
ence of the magnetic field. The double thin lines represent the
scalar propagator and self-energy including the effects of the
magnetic field.
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hierarchy of energy scales is

eB� m2 � T2: (35)

We work in the limit m� T, since this is the important
case for the contribution from ring diagrams [13]. The first
term in Eq. (34) corresponds to the finite-temperature B �
0 contribution. For the hierarchy of energy scales consid-
ered, the leading contribution at finite temperature is thus
[13]

�B�0 � "T
X
n

Z d3k

�2��3
1

!2
n � k2 �m2 ��1

;

�
"T2

12

�
1� 3

�
"

12�2

�
1=2

�
�O�m2�:

(36)

Notice that the nonperturbative nature of the resummation
method is signaled by the nonanalyticity of the expansion
in the coupling " in Eq. (36). In order to keep track of the
lowest order corrections in " and to emphasize the correc-
tions that have to do with the magnetic field, hereafter we
omit the second term in Eq. (36).

The second term in Eq. (34) involves the computation of
the integral

I1 � T
Z d3k

�2��3
1

�k2 �m2 ��1�
3 � T

X
n�0

Z d3k

�2��3

�
1

�!2
n � k2 �m2 ��1�

3 ; (37)

where we have explicitly separated the contribution from
the n � 0 mode from the rest. The first term in Eq. (37) is
simply

T
Z d3k

�2��3
1

�k2 �m2 ��1�
3 �

T

32��m2 ��1�
3=2
: (38)

For the second term, we use the findings of Ref. [15] which
are suited for an expansion for T2 >m2 ��1 with the
result

T
X
n�0

Z d3k

�2��3
1

�!2
n � k2 �m2 ��1�

3

�
1

�4��3=2�2��3

�
1

T2

�X1
j�0

��1�j

j!
+�2j� 3���j� 3=2�

�

� �������������������
m2 ��1

p
2�T

�
2j
; (39)

where + and � are the Riemann-zeta function and Gamma
function, respectively. For the hierarchy of energy scales
considered, the leading contribution comes from the mode
with n � 0 and thus

I1 �
T

32��m2 ��1�
3=2

�O�1=T2�: (40)

The third term in Eq. (34) involves the computation of the
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integral

I2 � T
X
n

Z d3k

�2��3
k2?

�!2
n � k2 �m2 ��1�

4 ;

� T
X
n

Z d3k

�2��3
�2=3�k2

�!2
n � k2 �m2 ��1�

4 :
(41)

It is easy to see that for the hierarchy of energy scales
considered, the leading contribution also comes from the
mode with n � 0 and thus

I2 �
1

3

�
T

32��m2 ��1�
3=2

�
�O�1=T2�: (42)

Collecting the results in Eqs. (33), (40), and (42) into
Eq. (34), the final expression for the charged scalar self-
energy in the weak field limit is given by

�B 


!eB!0"T2

12

�
1�

�eB�2

8�T�m2 ��1�
3=2

�
: (43)

Notice that the only infinity that appears, and that for the
ease of the discussion we have ignored, corresponds to the
usual mass renormalization at zero-temperature.

We now turn to the computation of the effective poten-
tial, depicted in Fig. 4. To one-loop this is given by
Eq. (29). Notice that to lowest order in the magnetic field,
we can write

	�B�k��1 ’ �!2
n � k2 �m2 ��1�

�

�
1�

�eB�2

�!2
n � k2 �m2 ��1�

2

�
2�eB�2�k2?�

�!2
n � k2 �m2 ��1�

3

�
; (44)

from where we can expand ln	�B�k��1 to lowest order

ln	�B�k��1 ’ ln�!2
n � k2 �m2 ��1� � �eB�2

�

�
1

�!2
n � k2 �m2 ��1�

2

�
2�k2?�

�!2
n � k2 �m2 ��1�

3

�
: (45)

Using Eq. (45), the term at hand becomes
-5
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V�1� �
T
2

X
n

Z d3k

�2��3
ln	�B�k��1

’
T
2

X
n

Z d3k

�2��3

�
ln�!2

n � k2 �m2 ��1�

� �eB�2
�

1

�!2
n � k2 �m2 ��1�

2

�
2�k2?�

�!2
n � k2 �m2 ��1�

3

��
: (46)

The first term in Eq. (46) with �1 � 0 represents the
lowest order contribution to the effective potential at finite
temperature and zero external magnetic field, usually re-
ferred to as the ideal gas contribution [13]. In order to keep
track of the lowest order corrections in ", we set �1 � 0 in
Eq. (46). Thus, for the hierarchy of energy scales consid-
ered here and dropping out the zero-point energy, the ideal
gas contribution is given by [16]

T
2

X
n

Z d3k

�2��3
ln�!2

n � k2 �m2�

’ �
�2T4

90
�
m2T2

24
�
m3T
12�

�
m4

32�2 ln
�
m
4�T

�
�O�m4�:

(47)
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The second, B-dependent term in Eq. (46), could poten-
tially ruin the nice physical picture where for weak mag-
netic fields, the corrections to the ideal gas contribution
should be proportional to a power of the parameter ".
Fortunately it is easy to check, as we show in the appendix,
that this is not the case as the term proportional to �eB�2 in
Eq. (46) vanishes identically. Therefore, to one-loop order,
the effective potential in the weak field case is independent
of eB and is given by Eq. (47).

Last, we compute the contribution from the ring dia-
grams to the effective potential, namely, Eq. (31). Notice
that for B � 0, it is well known that the next order correc-
tion in " stems from the n � 0 term in the sum over
Matsubara frequencies and is given explicitly by [13,14].
V�ring�
B�0 � �

T
12�

	�m2 ��B�0
1 �3=2 �m3: (48)
For eB � 0, since the structure of the integrals is similar to
the case eB � 0, the next order corrections also come from
the n � 0 term in the sum over Matsubara frequencies. To
work out this case, we notice that we can explicitly write to
lowest order in �eB�2
ln	1��B�B�k�’ ln
�
1�

�1

!2
n�k2�m2��1

�
� ln

�
1�

�1�eB�
2=	8�T�m2��1�

3=2

!2
n�k2�m2��1

�

� ln
�
1�

�1�eB�2

!2
n�k2�m2��1

�
1

�!2
n�k2�m2��1�

2�
2k2?

�!2
n�k2�m2��1�

3

��
; (49)
Thus, from Eq. (31), the contribution from the ring dia-
grams to the effective finite-temperature potential in the
presence of an external magnetic field to lowest order in eB
and leading order in " is given by

V�ring� � �
T
12�

	�m2 ��1�
3=2 �m3 �

�eB�2

4�

�
�1

48

�

�

�
T

�m2 ��1�
3=2

�
; (50)

where we have discarded a T and m-independent infinity.
Notice that Eq. (50) reduces to Eq. (48) when eB � 0. Also
worth to note is the fact that at this order of approximation,
the corrections introduced by the ring diagrams involve the
combination m2 ��1, namely, the thermal mass squared
of the boson. This dependence is important since when
studying symmetry restoration, m2 can vanish or even
become negative. In the former case, the assumption that
eB� m2 ��1, implied in the calculations in Sec. II A
extended to include thermal effects, can be satisfied as long
as eB� �1. In the latter, when the mass is corrected by
thermal effects, there will be a window of temperatures for
which the combination m2 ��1 is non-negative. This last
point will be discussed further in Sec. IV.

B. Strong field limit

Although in the case of the EWPT, the relevant situation
corresponds to the weak field limit, for completeness of
this work, we proceed to discuss the strong field limit.

As in the previous section, we start by computing the
expression for the one-loop self-energy, this time consid-
ering the hierarchy of scales as

m2 � T2 � eB: (51)

Using Eqs. (26) and (30) into Eq. (32), we have to explic-
itly evaluate

�B
1 � "

T
2

X
n

Z d3k

�2��3
2e�k

2
?
=eB

!2
n � k23 � eB�m2 : (52)

We first perform the sum over Matsubara frequencies and
the integration over the transverse momentum. Ignoring
the zero-point energy, the result is [13]
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T
X
n

Z d2k?
�2��2

2e�k
2
?
=eB

!2
n �!2

0

�

�
eB
2�

�
n�!0�

!0
; (53)

where

n�x� �
1

ex=T � 1
!0 �

������������������������������
k23 � eB�m2

q
(54)

are the Bose-Einstein thermal distribution and energy in
the lowest Landau level, respectively. Therefore, using
Eq. (53), the self-energy becomes

�B
1 �

�
"eB

4�2

�Z 1

�1
dk3

n�
����������������
k23 � a20

q
�����������������

k23 � a20
q ; (55)

where a20 � eB�m2. To carry out the integration in
Eq. (55), let us expand the distribution function in terms
of a geometric series. Thus, after the exchange of the sum
and the integral, we get

�B
1 � 2

�
"eB

4�2

�X1
l�1

Z 1

0
dk3

e�l�
����������
k23�a

2
0

p
�=T����������������

k23 � a20
q ;

�

�
"eB

2�2

�X1
l�1

K0

�
la0
T

�
;

(56)

where K0 is the modified Bessel function of order 0. For
a0 � T the largest contribution in Eq. (56) comes from the
term with l � 1. Thus, from the asymptotic expansion of
K0�z� we obtain

�B
1 


!eB!1 "eB

�2��3=2

�
T2

eB�m2

�
1=4
e�

������������
eB�m2

p
=T: (57)

Notice that Eq. (57) means that the self-energy in the
strong eB limit is exponentially small, which means that
the contribution from the ring diagrams is negligible.

Next, we proceed to the computation of the effective
potential to one-loop order, Eq. (29). Notice that for large
eB, we can write Eq. (26) as

�B�k� ’
�
2

eB

�
1�

k2
?

eB

�1�
!2
n�k23�m

2

eB �

�

�
2

eB

�
1

�1�
k2
?

eB��1�
!2
n�k23�m

2

eB �

’
2

�!2
n � k2 �m2 � eB�

: (58)

Therefore, the integral at hand can be written as

T
2

X
n

Z d3k

�2��3
ln	�B�k��1 �

T
2

X
n

Z d3k

�2��3

� ln
�
!2
n �!2

2

�
; (59)
023004
where !2 � k2 �m2 � eB. Equation (59) represents the
ideal gas contribution. In this case however, this contribu-
tion depends on eB through !.

To evaluate the right-hand side of Eq. (59), we can take
the derivative with respect to !, perform the sum and
integrate again with respect to ! [13]. The result is

T
2

X
n

Z d3k

�2��3
ln	�B�k��1�

1

2

Z d3k

�2��3

�f!�2T ln�1�e!=T��-g;
(60)

where- is a constant independent of eB and T and can thus
be ignored. The term proportional to ! in Eq. (60) gives
rise to a temperature independent, though eB-dependent
infinity and corresponds to the zero-point energy, which
has been already ignored to deduce Eq. (53) and we also
ignore here. The procedure can be put in more elegant
terms by defining a renormalized effective potential sub-
tracting the value of this a T � 0. Since this discussion is
standard (see, for example, Ref. [13]), we omit it here for
the ease of the discussion and therefore take

T
2

X
n

Z d3k

�2��3
ln	�B�k��1 � T

Z d3k

�2��3
ln�1� e!=T�:

(61)

For large eB, we can approximate the integral in the right-
hand side of Eq. (61) by

�T
Z d3k

�2��3
e�!=T � �

�
T2�eB�m2�

2�2

�
K2

� �������������������
eB�m2

p

T

�
;

(62)

where K2 is the modified Bessel function of order 2. From
the asymptotic expansion of K2, we finally get

V�1� 


!eB!1
�

�
T5�eB�m2�3=2

�2��3

�
1=2
e�

������������
eB�m2

p
=T: (63)

We now proceed to discuss symmetry restoration at finite
temperature. For the analysis, we restrict ourselves to the
weak field limit which, as previously indicated, is the
relevant scenario for the description of the EWPT.
IV. SYMMETRY RESTORATION

To address symmetry restoration, it is convenient to
write down the explicit model for the theory. We will
consider the Lagrangian

L � �D�(�
yD�(��2(y(�

"
4
�(y(�2 �

1

4
F�.F

�.;

(64)
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FIG. 5 (color online). Finite-temperature effective potential for
the case eB � 0 for three different temperatures. We use the
values of the parameters � � 20 GeV and " � 0:0025.
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where

D�(�@�(� ieA�; (F�.�@�A.�@.A.; (65)

and

�2; " > 0: (66)

The Lagrangian in Eq. (64) represents the interaction of a
charged scalar field with an electromagnetic field and is
commonly known as the Abelian-Higgs model. We take
F�. as the external electromagnetic field containing only
the magnetic component. It is well known that for this
model, with a local, spontaneously broken gauge symme-
try, the gauge field A� acquires a finite mass and thus
cannot represent the physical situation of a massless pho-
ton interacting with the charged scalar (. However, since
the physically interesting situation to what the findings of
this work will apply is the SM, with an U�1� � SU�2�
broken gauge symmetry, where the Higgs mechanisms
ensures that the photon remains massless, for the discus-
sion we will ignore the mass generated for A� and will
concentrate on the scalar sector.

The complex fields ( and (y can be equivalently ex-
pressed in terms of the two Hermitian fields 0 and 1 by
means of the definition

(�x� �
1���
2

p 	0�x� � i1�x�;

(y�x� �
1���
2

p 	0�x� � i1�x�:

(67)

The Lagrangian in Eq. (64) is symmetric under the
transformation (! �(, however, the vacuum is not.
Selecting the vacuum about which perturbative calcula-
tions can be performed, we shift the field by its classical
value v writing

0! v� 0: (68)

After the shift, the mass of the fields 0 and 1 become

m2
1�v� �

3
4"v

2 ��2; m2
2�v� �

1
4"v

2 ��2; (69)

respectively. To lowest order (tree level) the potential is

V�tree� � �1
2�

2v2 � 1
16"v

4: (70)

To next order, we should include the zero-temperature part
of the one-loop potential, given by

V�1�
vac �

1

2

Z d3k

�2��3
�

������������������
k2 �m2

1

q
�

������������������
k2 �m2

2

q
�: (71)

The integral in Eq. (71) is divergent and the theory must be
renormalized. This can be achieved by introducing
counter-terms in the Lagrangian of the form

L ct �
A
2
v2 �

B
16
v4 � C; (72)

where C is a constant that can be used to cancel the
023004
v-independent part of the vacuum energy and A and B
are determined by requiring that the infinities cancel. By
this means, the effective potential up to one-loop is [14]

Vvac � �
1

2
�2v2 �

"
16
v4 �

1

32�2

X
i

m4
i ln

�
mi

2

�
; (73)

where mi, i � 1; 2 are given by Eqs. (69).
In the weak field limit, the finite-temperature effective

potential, up from the contribution to the ring diagrams, is
given by adding Eqs. (47) and (50) to Eq. (73), accounting
for the contributions from the two fields0 and 1. Dropping
the v-independent term, the result is

V�v���
1

2
�2v2�

1

16
"v4�

X
i

�
m2
i T

2

24
�

T
12�

�m2
i ��1�

3=2

�
�eB�2

4�

�
�1

48

��
T

�m2
i ��1�

3=2

�
�O�m4

i �

�
; (74)

where mi, i � 1; 2 are given by Eqs. (69) and �1 is given
by Eq. (33). Notice that the terms proportional to Tm3

i and
to ln�mi� have offset each other when adding up all the
contributions. Also, in order for the terms involving the
square root of the boson’s thermal mass to be real, the
temperature must be such that

T > T1 � �

������
12

"

s
; (75)

which defines a lower bound for the temperature. Notice
that the development of an imaginary part in the effective
potential signals the onset of spinodal decomposition and
the pase transition is quickly completed. This happens
when the combination m2 ��1 becomes negative. For
all values of v, this occurs for temperatures lower than
T1 defined in Eq. (75).

Figure 5 shows the finite-temperature effective potential,
discarding v-independent terms, for the case B � 0 for
-8
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three different temperatures, the above defined T1, a tem-
perature TB�0

c > T1 where the two minima coincide and a
temperature T2 > TB�0

c where the second minimum of the
potential disappears. For the calculation, we have used
� � 20 GeV and " � 0:0025.

Figure 6 shows the finite-temperature effective potential,
discarding v-independent terms, for the case B � 0 for the
above defined temperature TB�0

c and two more values of
the temperature: the curve with degenerate minima corre-
sponds to a temperature TBc < TB�0

c and the curve where
the second minimum has disappeared corresponds to a
temperature TB2 > TB�0

c . For the calculation, we have
used the same values of the parameters as for the case
with B � 0, taking e � 0:3 and have parametrized the
magnetic field strength as B � b�100�2�GeV�2, using b �
0:01.

Notice that the effect of the magnetic field is twofold:
first it delays the starting of the phase transition down to a
temperature TBc < TB�0

c and second, it makes the transition
strongly first order. This second feature is best seen in
Fig. 7 where we compare the effective potential obtained
for B � 0 and B � 0, discarding v-independent terms, for
the two temperatures TB�0

c and TBc . For the latter tempera-
ture, the height of the barrier becomes larger signaling a
stronger first order phase transition as compared to the case
with B � 0. The origin of this feature is that the corrections
introduced by the magnetic field are inversely proportional
to a power of the boson’s thermal mass and thus are larger
for the value of v when the mass parameters of Eqs. (69)
vanish.
V. CONCLUSIONS

In this work we have studied the effects that the
presence of a constant external magnetic field has on the
0 50 100
v (GeV)

0
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V
ef

f /T
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T
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B=0
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FIG. 6 (color online). Finite-temperature effective potential for
the case eB � 0 for three different temperatures. We use the
values of the parameters � � 20 GeV, " � 0:0025 and e � 0:3
and parametrize the magnetic field strength as B � b�100�2�
�GeV�2, using b � 0:01.
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effective potential for a charged scalar at finite tempera-
ture, up to the contribution from the ring diagrams.
By studying symmetry restoration in the weak field
limit we have found that the magnetic field is able
to produce a stronger first order phase transition
signaled by an increase in the height of the barrier
between degenerate minima with respect to the case with-
out magnetic field. The temperature for the onset of the
phase transition is also lowered by the presence of the
magnetic field as compared to the case without magnetic
field.

The findings of this work show that there exists room
in the parameter space of this theory where the effects of
the magnetic field could be important. In particular, an
extension of these ideas to the case of the SM degrees of
freedom to describe the EWPT could be significant for the
problem of the generation of baryon number. This is work
under progress and will be reported as a sequel of the
present one.
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APPENDIX

We start first by evaluating the integrals

J1 � T
X
n

Z d3k

�2��3
1

�!2
n � k2 �m2�2

;

J2 �
�
4

3

�
T
X
n

Z d3k

�2��3
k2

�!2
n � k2 �m2�3

;

(76)

appearing in the computation of the effective potential in
the weak field limit, Eq. (46). To this end, notice that we
can write

J1 � T
X
n

Z d3k

�2��3
f�k2�;

J2 � �

�
1

3

�
T
X
n

Z d3k

�2��3
k � rkf�k2�;

(77)
023004
where

f�k2� �
1

�!2
n � k2 �m2�2

: (78)

Integrating by parts the second of Eqs. (77) we get

J2 � �

�
1

3

�
T
X
n

Z d3k

�2��3
rk � 	kf�k2�

�

�
1

3

�
T
X
n

Z d3k

�2��3
f�k2�rk � k: (79)

The first of the terms in Eq. (79) can be converted into a
surface integral and since f�k2� decreases faster than k�2

at infinity, this surface term vanishes. Also, using that rk �
k � 3, we finally get J1 � J2.
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