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We report on three numerical experiments on the implementation of Time-Delay Interferometry (TDI)
for LISA, performed with Synthetic LISA, a C++/Python package that we developed to simulate the LISA
science process at the level of scientific and technical requirements. Specifically, we study the laser-noise
residuals left by first-generation TDI when the LISA armlengths have a realistic time dependence; we
characterize the armlength-measurement accuracies that are needed to have effective laser-noise cancel-
lation in both first- and second-generation TDI; and we estimate the quantization and telemetry bitdepth
needed for the phase measurements. Synthetic LISA generates synthetic time series of the LISA
fundamental noises, as filtered through all the TDI observables; it also provides a streamlined module
to compute the TDI responses to gravitational waves according to a full model of TDI, including the
motion of the LISA array and the temporal and directional dependence of the armlengths. We discuss the
theoretical model that underlies the simulation, its implementation, and its use in future investigations on
system-characterization and data-analysis prototyping for LISA.
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L. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) is a
joint NASA-ESA deep-space mission aimed at detecting
and studying gravitational radiation in the 107°-10"! Hz
frequency band [1]. It is expected to be launched in the year
2012, and to start collecting scientific data approximately a
year later, after reaching its final orbital configuration [2].
LISA consists of three widely separated spacecraft flying
in a triangular, almost equilateral configuration, and ex-
changing coherent laser beams; gravitational waves (GWs)
will be measured by picometer interferometry as modula-
tions in the distance between the spacecraft.

LISA, which will operate in a lower frequency band than
ground-based GW interferometers, holds the promise of
providing access to entirely new classes of GW sources,
but it also introduces complications unknown to ground-
based detectors, such as the complex signal and noise
transfer functions, the problem of canceling the otherwise
overwhelming laser phase noise in an unequal-arm inter-
ferometer, the necessity of dealing simultaneously with
many continuous signals (including a confusion-noise
background of galactic white-dwarf binaries), and the pos-
sibility of using multiple interferometric observables as a
virtual network of GW interferometers. These complica-
tions hinder the analytical characterization of LISA’s de-
tection capabilities as a function of its configuration, as
well as the development of data-analysis techniques aimed
at specific GW sources. Computer simulations will there-
fore play a crucial role in exploring LISA’s performance, in
obtaining insight about its optimal operation, and in pro-
totyping and testing data-analysis protocols.

In this paper we report on three numerical investigations
performed with Synthetic LISA, a software package that we
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developed at the Jet Propulsion Laboratory to simulate the
LISA science process at the interface of scientific and
technical mission requirements. All investigations focus
on outstanding implementation issues for Time-Delay
Interferometry (TDI), the LISA-specific technique cur-
rently envisaged to suppress the otherwise overwhelming
laser phase noise by combining (with delays) the basic
LISA phase measurements aboard the three spacecraft
into composite laser-noise-free observables (see Sec. IID
for a discussion and full references). More in detail:

(1) In Sec. IVA, we give the first quantitative estimate,
based on a straight simulation, of the improvement
in laser-noise stabilization that would eliminate the
need for second-generation TDI for a realistic flex-
ing LISA array [3-5] using standard Michelson
observables. We find that an rms improvement fac-
tor between 3 and 10 is sufficient. We give also
numerical evidence of effective laser-noise subtrac-
tion with second-generation observables.

(2) In Sec. IVB, we evaluate the armlength-ranging
accuracy [6] that would be required for effective
laser-noise cancellation in first- and second-
generation TDI Michelson observables. We find
that ranging accuracies between 30 and 100 m
(rms) are adequate when simple linear extrapolation
is used to compute the armlengths between
measurements.

(3) In Sec. IV C, we estimate the granularity that can be
allowed in the quantization of phase measurements
while preserving effective laser-noise cancellation.
Assuming white laser frequency noise bandlimited
at 1 Hz, we find that a total of 32—34 (or 36—38) bits
per sample are needed for the Michelson observ-
ables of first-generation (second-generation) TDI.

We present these results as representative of the numerical
experiments that become possible with state-of-the-art
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simulators such as Synthetic LISA, and we suggest possible
directions of investigation in the final section of this paper.

Synthetic LISA represents the evolution of previous
simulation tools developed in the LISA Project [7].
Among other improvements, Synthetic LISA is based on a
complete model of TDI: The LISA armlengths change
realistically with the motion of the array; the laser beams
propagate causally; and a full set of TDI combinations can
be generated. Synthetic LISA joins other existing software
that simulates the LISA response to noise and GWs, such
as the well-established LISA Simulator by Cornish and
Rubbo [8]. Why write a new simulator, then? Being able
to rely on a plurality of simulation tools allows for mutual
validation and verification, which is crucial if implemen-
tation choices must be predicated on the results of numeri-
cal experiments. In addition, the two simulators have a
slightly different focus. The LISA Simulator was conceived
to interface source simulations to data-analysis, while
Synthetic LISA was targeted to explore the interaction
between LISA science and technology, and it must there-
fore operate at a lower level of abstraction: In particular,
Synthetic LISA performs an explicit time-domain simula-
tion of interferometry, including the cancellation of laser
phase noise. On the other hand, it operates at a higher level
of abstraction than integrated-modeling simulations [9]: It
does not need to model spacecraft subsystems, but rather it
assumes nominal specifications of their performance.

This paper is laid out as follows. In Sec. II we describe
the theoretical model of the LISA science process used in
our simulations; in Sec. III we briefly discuss the imple-
mentation and usage of Synthetic LISA; in Sec. IV we
report on our main numerical experiments; and in Sec. V
we give our conclusions. Appendices A and B describe,
respectively, the geometric conventions and the treatment
of noise used in Synthetic LISA. In the following, we set
G = ¢ = 1 unless otherwise indicated.

II. MODELING OF A SYNTHETIC LISA

Figure 1 is a block diagram of the LISA science process,
as modeled in Synthetic LISA. At the top of the hierarchy
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FIG. 1. A block diagram of the LISA science process.
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sit the TDI observables, which represent the main scientific
product of the mission, and which will be run through data-
analysis algorithms to search for GW signals. The TDI
observables are time-delayed combinations of the basic
interferometric measurements (y and z) that compare the
frequencies (or phases) of the two lasers on each spacecraft
between themselves, and with the lasers incoming from the
other two spacecraft. The Doppler measurements bear the
imprint of the instrumental noises and of the GW signals,
but the latter can be read off efficiently only from the TDI
observables, which are free of the otherwise overwhelming
laser phase noise and optical-bench noise. The time-
dependent geometry of laser propagation across the LISA
array influences the effect of the LISA noises and (espe-
cially) of GW signals on the Doppler measurements; a
precise knowledge of geometry is needed also to build
the TDI observables in such a way that laser phase noise
and optical-bench noise are canceled effectively. In this
section we go through all the elements of Fig. 1, and
discuss in detail how they are modeled in Synthetic LISA.
In Sec. IT A we describe the geometry of the LISA array,
and the setup of the interferometric payload on each space-
craft; in Secs. II B and I C we describe the response of the
basic interferometric observables to GWs and to the LISA
fundamental noises; last, in Sec. IID we give a rapid
overview of TDI as used in LISA.

A. LISA geometry and interferometry

The motion of the LISA array is complex: At the quali-
tative level, the three LISA spacecraft maintain a quasie-
quilateral triangular configuration (where the arms stay
equal to about 1%) trailing the Earth along its orbit in the
plane of the ecliptic; at the same time, the constellation
maintains an inclination of 7/2 — 7/6 = 7/3 with re-
spect to the plane of the ecliptic (as measured from the
normal of the instantaneous plane of the LISA constella-
tion to the normal to the plane of the ecliptic), and it
performs a cartwheeling motion, rotating around the nor-
mal to the instantaneous LISA plane with a rotation period
of a year. This picture is realized in practice by placing the
three spacecraft on eccentric, inclined solar orbits [2].

This pattern of motion improves the sensitivity of LISA
to GW signals, making it more homogeneous over the sky
(because the dependence of the antenna patterns to source
position is averaged during the year), and improving the
estimation of source position and polarization (because the
GW responses become modulated by the variation of the
antenna patterns). This added sensitivity comes at the price
of complicating the GW response: The modulations in-
duced by the changing orientation of the LISA plane
spread the power of originally monochromatic GW signals,
generating several sidebands at frequency multiples of
1/yr [10]; furthermore, the relative motion of the detector
with respect to the GW source introduces a time-dependent
Doppler shift, which is the dominant effect for signals
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above 1073 Hz [the characteristic bandwidth of the
Doppler shifting is ~(Q2R/c)f, where f is the GW fre-
quency and € = 277/yr is the LISA orbital angular
velocity].

When LISA is in operation, each spacecraft will ex-
change laser beams with the other two, measuring the
phase of the arriving laser beams with respect to the local
lasers; the laser beams are bounced off freely falling proof
masses that are shielded by the spacecraft from most
external disturbances,1 so that they can serve as references
for the measurement of GWs. To implement this measure-
ment scheme, each spacecraft will carry two lasers, two
proof masses, and two optical-readout schemes. Figure 2
presents a schematic diagram (adapted from Ref. [11]) of
the proof-mass and optical-bench assemblies within one of
the LISA spacecraft, labeled ““1”’; the other two spacecraft
have identical setups. In short:

(1) the left-hand bench receives the laser-beam from
spacecraft 2, bounces it off its proof mass, and
compares it with the local laser (without bouncing
the latter) at the upper photodetector;

(2) via an optical fiber, the left-hand bench receives the
right-hand-bench laser and compares it with the
local laser (without bouncing the latter) at the lower
photodetector;

(3) the left bench sends out the local laser (without
bouncing it) to spacecraft 2, and (after bouncing it
off the other side of its proof mass) to the right-hand
bench.

The operation of the right-hand bench (and indeed, of the
benches on the other two spacecraft) is similar. [A recent
candidate redesign of the optical benches [12] would im-
plement the comparison of the two lasers on the two
benches of the same spacecraft by measuring their phases
separately, doing away with the optical fiber, and then
subtracting the measurements. For the purpose of obtaining
the laser-noise-free TDI signals (see Sec. 11 D) this modi-
fication amounts only to a redefinition of the intraspace-
craft phase measurements [13], so in this paper, and indeed
in Synthetic LISA, we refer to the older architecture.]

In this setup, the physical observable of interest is the
comparison of phase between the local laser and the in-
coming laser, which carries information about the varia-
tions induced by GWs in the interspacecraft optical path.
The phase fluctuations of the lasers, however, are much
larger than the GW-induced phase shifts, and must be
subtracted before GWs can be resolved. In the past few
years, a number of authors collaborated to develop a
scheme (Time-Delay Interferometry, or TDI) to subtract
laser noise by carefully combining time-shifted series of
the interspacecraft and intraspacecraft phase measure-
ments; if the lasers are not phase-locked to a master (see

"For instance, the spacecraft cannot completely shield the
proof masses from cosmic rays.
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FIG. 2. Schematic diagram of the proof-mass and optical-
bench assemblies within each LISA spacecraft (adapted from
Ref. [11]).

the end of Sec. IID), the intraspacecraft phase measure-
ments carry no information about GWs, but they do carry a
combination of the phase noises from the lasers within
each spacecraft.

Because TDI has its origin in the techniques used to
measure GWs by the Doppler tracking of distant spacecraft
[14,15], it prefers to describe the comparisons between
laser beams in terms of fractional-frequency differences
rather than relative phase shifts (the two descriptions are
exactly equivalent [16], as they are related by time inte-
gration). Thus, TDI represents the LISA readouts as basic
Doppler observables: y,,(f) is the fractional-frequency
difference at time ¢ between the beam received at space-
craft r(eceiver) from spacecraft s(ender) and the local

iy (Ly)

FIG. 3. Schematic LISA configuration. The spacecraft are
labeled 1, 2, and 3; each spacecraft contains two optical benches,
denoted by 1, 1%, 2, 2%, 3%, as indicated. The unit vectors 7; and
light-path lengths L, connecting spacecraft s and r are indexed
by [1={1,23} for (s,7r) ={(3,2),(1,3),(2,1)}, and [=
{—1, =2, =3} for (s, r) = {(2,3), (3, 1), (1, 2)}.
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laser; and z;,(¢) is the analogous intraspacecraft measure-
ment on the same optical bench (thus, although it carries
the index s, it is in fact the fractional-frequency difference
between the two lasers of spacecraft r). In this paper, the
index /(ink) denotes the (oriented) LISA arm along which
the laser was transmitted, according to the cyclical index-
ing [ ={1,2,3} for (s,r) ={(3,2),(1,3),(2, 1)}, and [ =
{—1,-2,-3} for (s,r)={(273),(31),(1,2)} [thus,
sgn(l) = €, 1. This spacecraft and link indexing is shown
also in Fig. 3. Note that our notation for the basic Doppler
observables merges the two notations used in the scientific
literature on first-generation TDI (y;,. and z;,) and, more
recently, on second-generation TDI (y,, and z,,). Table 1
shows a comparison (as it were, a Rosetta stone) of the
notations used in various papers on TDI. In the next two
sections we discuss the response of these basic Doppler
observables to GWs and to the noise sources present within
each spacecraft.

B. LISA response to gravitational waves

In this section we give an expression for the GW re-
sponse of the basic Doppler observables y;;(r). Working in
an inertial reference frame filled by a plane GW with
propagation vector k and transverse-traceless gravitational
tensor h(x; 1) = h(0, r — k-3 = h(z), we denote the posi-
tions of the three spacecraft by p;(z). Following Estabrook
and Wahlquist [15], we write the response of the interspa-
cecraft LISA Doppler observable y,;,(t) to the plane wave
as

y%;:(t) = [1 + kA : ﬁl(t)] X {\Pl[tsend - kA : l_ss(tsend)]
=Wl = k- p(0)] (1)

where feng and Py(fenq) are determined by the light-
propagation equation fepng = t — |p,(£) — Py(fsena)|, Where
7,(¢) is the oriented photon-propagation unit vector 7,;(f) o«
Pr(t) = Py(tsena), and where
PR G R

21 = [k- ()P}
Equation (1) gives the interspacecraft Doppler observable
for laser-beam reception at time ¢ on spacecraft r from
spacecraft s, through link /. The two k- D products corre-
spond to the retardation of the plane wave front to the
position of the two spacecraft, while the k-n products
come in as geometrical projection factors [15].
Equation (1) is not singular for k = *+7,, because in that
case the transverse-traceless tensor h is orthogonal to k and
i}, so the W, go to zero.

The light-propagation equation defines the effective
armlength L,(7) experienced by light propagating from s
to r, for reception at time t:

Ll(t) = |ﬁr(t) - ﬁs[t - Ll(t):“ (3)
Note that in general L;(¢) # L_,(7).

2

PHYSICAL REVIEW D 71, 022001 (2005)

The response to GWs of the intraspacecraft Doppler
observable z,,(¢) is null, because the distance traveled by
the intraspacecraft beam is negligible for the GW ampli-
tudes and wavelengths relevant to LISA.?

C. LISA response to fundamental noises

In this section we give the response of the basic Doppler
observables to the fundamental-noise sources present
within each spacecraft. Looking back to Fig. 2, we label
the left-hand and right-hand optical benches (and their
lasers) as 1 and 1%, respectively, (more generally, unstarred
benches transmit into oriented arms with negative indices).
Following Estabrook and colleagues [19], we denote the
fractional-frequency fluctuations of the laser on optical
bench 1 as C,(r); these enter additively in the y,3; mea-
surement, together with the frequency noise from the laser
on bench 2* of spacecraft 2, retarded to the time of emis-
sion:

yIse(r) = Calt — Ly(0)] — C, (1) + - - - 4)

next, the y,3; measurement is subject to noise due to
fluctuations on the optical path of the beam incoming
from spacecraft 2 (a combination of shot noise, pointing
noise, and other optical-path noises), which we denote as
y551; also, the velocity noise ¥ of the proof mass on optical
bench 1 (i.e., its deviation from perfect free fall) induces an
additional Doppler shift on the incoming beam (the local
beam does not bring in any velocity noise, since it is not
bounced on the local proof mass):

yagre(r) = Gt — L3 (0] — Cy(1) + y35,(0)
—20,(t) - Az(t) + - - - )

last, the random velocities V;‘ and V| of the emitting and
receiving optical benches (which are several orders of
magnitude greater than ¥;) induce additional Doppler
shifts with the same temporal structure of laser frequency
noise:

yigie(r) = C3lt — Ly (D] — Cy () + y35,(¢)
—29,(1) - i5(r) + V3t — La(0)] - a5 (0)
— V(1) - A5 (o). (6)

Along similar lines we derive the noise response of the
intraspacecraft measurement z3_,; on spacecraft 1, which
contains the frequency noises from lasers 1 and 1* at time ¢,
the random velocities of the optical bench 1 and of its proof
mass, and the frequency shift 7; upon transmission
through the optical fiber (ultimately due to a component
of the relative bench motions, \71 - VT):

*This is true if the lasers are not phase-locked to a master (see
the end of Sec. IID).
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TABLE L

A comparison of the phase-measurement and LISA geometry conventions used in the literature on TDI. In the cited references, A, E, and T refer to J. W. Armstrong,

F. B. Estabrook, and M. Tinto. Notations are described with respect to the usage of this paper, with s = sending spacecraft, [ = armlink, » = receiving spacecraft; “cw’ and
“ccw”’ refer to the progression of spacecraft or link indexes, as seen when looking at the LISA constellation from above (from ecliptic latitude 90° N); when indexes are shown in
absolute values, only positive values are used. Tinto and Armstrong 1999 [28], not included in this table, has y; = two-way ccw (a — b — a), y, = two-way cw (a — ¢ — a).
See www.vallis.org/tdi for updates to this table.

Intraspacecraft
measurement

Interspacecraft (on same bench of y
Reference Geometry measurement with same indexes Link vectors Armlengths
This paper 1—2—>3cw v, (frequency) Zsir ny(I>0ccw, [<0cw) L;(I>0cecw, [<0cw)
AET 1999 [17] Y- (frequency) n/a nyy (along ccw) Ly (no distinction between
TAE 2000 [18], ETA 2000 [19], AET 2 cow and cw)

2001 [20], Hogan and Bender 2001
[18], Prince et al. 2002 [21], TDI
whitepaper 2002 [22], AET 2003 [23]

TEA 2002 [16], Tinto et al. 2003 [6]
Dhurandhar et al. 2002 [24]

sy (phase)

751, (phase)

Ui = y3-21, Uy = yi-23,
— Y231
Vo= —y312, V3 = =123

Us=y-13 V1 =

Cornish and Rubbo 2003 [8], Rubbo,
Cornish, and Poujade 2004 [8]

Hellings 2001 [25]
Cornish and Hellings 2003 [3]

1—=2—=3ccw D, (phase)

Ysr (phase)

vy (frequency)

Krolak et al. 2004 [26]

Shaddock et al. 2003 [4], TEA 2004°
[5]
Shaddock 2004 [27]

1—2—=3cw

n/a

ny; (along ccw)

Ly (no distinction between
ccw and cw)

sr = Ngr

n/a

L, (oriented)

nyy (along ccw)

L (equal arms)

s, (phase)

Tsr (Phase)

n/a

Ly=L-yLy=1L
(unprimed cw, primed ccw)

L, (oriented)

“The semicolon ordered-delay notation was introduced in Shaddock et al. 2003 [4] and TEA 2004 [5].
"TEA 2004 [5] uses nyy to denote link vectors; it is ambiguous from the context whether these are ccw or cw.
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2855 (1) = C (1) — C(1) + 2A3(r) - ¥,
+ 24 _4(t)- Vi + 7y @)

here we are ignoring time-delay effects along the fibers.

Throughout the rest of this paper (and indeed, always in
Synthetic LISA) we take the optical-fiber noises and the
optical-bench motions to be negligible. In fact, optical-
fiber noise is removed in TDI by always using the zg,
observables in pairs such as (zp3; — 23-21)/2, (23120 —
Z1-32)/2, and so on. One sees also that the optical-bench
motions along the lines of sight (e.g., 7i_5 - \71, iy * \77 and
iz \73) can be absorbed in the corresponding laser fre-
quency noise variables (e.g., C;, C7, and C;), because they
appear in y™¢ and z"9'¢ with the same indices and the
same evaluation times. Thus, if the TDI observables can
successfully subtract laser frequency noise, they will also
subtract the optical-bench motions, which are generally
several orders of magnitude smaller.

In writing Eqs. (1), (6), and (7), we have neglected also

the offsets (up to several hundred MHz) between the center
|

i) =

and

if >0,
if 1 <0.

Ci(1) — C(1) + 2pmi(2)

(1) — CH1) + 2pm, 1) ©)

Zm9i%e(s) = {

We set standard levels for the 18 fundamental noises
according to the noise budget discussed in the LISA pre-
phase A report [1]. Note however that Synthetic LISA
allows all these prescriptions to be overridden.

Laser frequency noise.—We take each laser noise to be
white, and to have a one-sided (square-root) spectral den-
sity of 30 Hz/ /Hz, which converts to a power spectrum of
fractional-frequency fluctuations by squaring and dividing
by the square of the optical frequency = ¢/(1064 nm) =
2.82 X 10 Hz; thus, S¥ =1.1 X 1072 Hz"!. We as-
sume that the six laser noises are statistically independent
(the lasers need not be locked).

Proof-mass noise.—We take each proof mass to have
white acceleration noise along the line of sight, with
a one-sided (square-root) spectral density of
3 X 10715 ms™2Hz~!/2, which converts to a power spec-
trum of fractional-frequency fluctuations [19,22] by using
the derivative theorem for Fourier transforms, and
dividing by ¢?; thus, S5" = (3 X 10715 ms~2Hz"1/2)?/
@72 f2c?) =25 X 107*8[f/Hz] 2 Hz"!. We assume
that the six proof-mass noises are statistically independent.

Optical-path noise.—We combine shot noise and beam-
pointing noise on each optical bench into aggregate
optical-path noises; we take these to be white displacement

Cilt — Li()] = C,(t) + y.(t) — 2pm, (1)
C,lt — Li(0)] — Ci(r) + yX (1) — 2pmii(1)

PHYSICAL REVIEW D 71, 022001 (2005)

frequencies of the six LISA lasers, as well as the slow
Doppler drifts resulting from the relative motion of the
spacecraft (up to tens of MHz). In practice, the frequency
offsets and Doppler drifts will be corrected by down-
converting the photodetector output and tracking fringe
rates using onboard ultrastable oscillators (USOs)
[6,16,25]. Although USOs introduce an important addi-
tional source of phase noise, their treatment is cumber-
some, and we leave their modeling to a future version of
Synthetic LISA.

Under these assumptions, the simulation of the LISA
noise response requires time series for 18 fundamental-
noise variables: the six proof-mass velocity noises along
the line of sight (which we denote as pm; = fi5 - U,
pmy =y Uy, pmz =i, U3, and pmj=i_,- 0],
pm; =ifi_3- U5, pm;=i_;-v3), the six optical-path
noises y;r., and the six laser noises C; and C;. (Note that
our definition of the pm; differs in sign from the definition
used in Ref. [7].)

; noise noise
The general expressions for y§,"* and z;'*® then become

o if >0, )
if 1<0,

slr

\
noises, with a one-sided (square-root) spectral density of

20 X 1072 mHz""/2, which converts to a power
spectrum of fractional-frequency fluctuations by using
the derivative theorem for the Fourier transform, and di-
viding by ¢?; thus, S, = (20 X 1072 mHz !/2)? X
(472f?)/c?> = 1.8 X 10737[f/Hz]> Hz"!. If the length of
the LISA arms is different from the nominal value of
16.6782 s, we scale the optical-path rms noise by
L;/(16.6782 s) to account for the 1/L? power loss along
the arms.” We assume that our aggregate optical-path noise
enters the y;, and z,;, observables in the same way as shot
noise, and we further assume that the six optical-path
noises are statistically independent.

D. LISA TDI observables

Time-Delay Interferometry [3—6,16-24,27,28] is a tech-
nique to combine the basic Doppler variables y;, and zj,,
into composite observables that are sensitive to GWs, but
that are free of the otherwise overwhelming laser fre-
quency noise (they are also free of optical-bench and fiber
noise, as discussed above). To understand how TDI works,
it is useful to tie the algebraic representation of the TDI
observables to a visual picture of the path traveled by light

>The variance of shot noise is inversely proportional to the
number of photons received, which is proportional to the power
received. Since power scales as 1/ L%, rms shot noise must scale
as L;. We assume that the remaining part of the aggregate
optical-path noise scales in the same fashion.
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2 3 2 3
t—L; \ / t—L_, t—Ls \ / t+L,
3 2 3 2
1= [

) )

Y231(0)=y3-21(2) Y231(D+y123(t+Ly)

@ 3
t+1_;3 t+L,
[N
)

—y1-32(0)+y123(t+Ly)

Yo31(0)+y1-32(t+L_3)

FIG. 4. The four combinations of two basic Doppler observ-
ables with emission or reception at spacecraft 1 and at time .

between the LISA spacecraft. Looking at Fig. 4, let us
consider the four combinations y,3,(f) — y3_2,(),
y31(0) + yi3(t + Ly),  —y1-3(t + L_3) + yin3(t + Lo),
and yy3(t) + y;-3(t + L_3); the two laser beams in-
volved in each of these combinations are either arriving
to spacecraft 1 or leaving it at the time #; the retardations by
the armlengths L, and L _5 are needed because the Doppler
observables are always labeled by the time of beam re-
ception. Using Eq. (8), we see that for the first three
combinations the contribution to laser frequency noise
that is produced at time t is due to lasers 1 and 1%, and it
is equal to —C;(t) + Cj(¢). In the fourth combination,
V231 () + y1-32(¢ + L_3), no laser noise is produced at
time ¢, because the same laser is used as emitter and
reference. For the first three combinations, the laser-noise
contribution can be canceled by subtracting from the y,
expressions given above the intraspacecraft measurement
(1/2)[z231() = z3_2;(1)], whose laser-noise component is
again —Cy(t) + Cj(¢) [in fact, as noted above, each of
231(¢) and —z3_,,(¢) contains the combination —C,(¢) +
C7 (1), but the difference of the two z has the added advan-
tage of canceling optical-fiber noise].

Naturally, the laser noise that is produced at the times
t— L3, t—L_5,t+ Ly,and ¢t + L_5 (in various combina-
tions for the four y,;, expressions) is still not canceled. We
see, however, that a combination of y,;, observables that
corresponds graphically fo a closed circuit would cancel
laser noise completely; to build such a combination, we
need to delay the times of evaluation for the y;, so that the
tip or tail of each arrow meets another tip or tail (and only
one!) at just the right time. A simple example, valid in the
case when the L, are time independent and all equal to L,
traces a light path analogous to the path used in a
Michelson interferometer (see the left panel of Fig. 5),
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FIG. 5. Tracing the light paths in the Michelson and unequal-
arm Michelson TDI combinations.

[i23(t + Ly) + y3-01(t + Ly + L_5)] — [y1—3(t + L_3)
+ yo31(t + Ls + L3)] — Y203, (1) — 2322, (1)]
+ zo31(t + Ly + L3) — 239, (t + Ly + L_,)],

(10)

where the two interfering light beams leave spacecraft 1 at
time ¢, and return at time ¢+ 2L. The two double-zg,
subtraction terms are needed for the initial time of emis-
sion of the two beams, and for the final time of arrival,
while laser noise is self-canceling at the zero-angle corners
where the beams retrace their path, as mentioned above.
Reordering Eq. (10) so that ¢ is the final time of arrival of
the beams at spacecraft 1, we get

[y3-21(8) + y123,-2(0)] = [y231(8) + y1-323(1)]

- %[2231,—330) — z32122(0] + %[22310) —z3-21()]

(1)

where the comma notation y, 4 4,.. denotes retardation by
the armlengths Ly, Lg,, and so on. Laser-noise cancella-
tion works in this case because the length of the two paths
1—3—1land 1 — 2 — 1isthe same (2L), so we can line
up both the starting and the ending points of the two paths.
If the arms (and hence the paths) were unequal, we would
be left with residual laser noise originating from the start-
ing points of the two paths, as given by

—[3C1—33(1) = 3C122()] + [3C} , (1) — 3CT _53()],
(12)

The case of unequal (but constant) arms is tackled success-
fully by using new paths (1 =3 —1—2—1and | —
2 —1—3 — 1) each of which traces out both original
paths (1 = 2 — 1 and 1 — 3 — 1), but in opposite orders
(see right panel of Fig. 5). In this case, if we set the two
paths to end at time ¢, the times of departure are both ¢ —
(L, + L_,) — (L_3 + L3), and the z, correction terms
can cancel the noise emitted at that time, as well as time
t. The corresponding TDI combination (known as unequal-
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arm-Michelson X,
Armstrong [28]) is

and first derived by Tinto and

X =[yi-3232-2 T Y3122 + Y1232 + ¥3-21]
— 23 —2-33  Y3-21,-33 T Yi-323 T+ Y231]
1 _ _1 _
5(23—21,2—2—33 2231,—332—2) 5(23—21 2231)

+ 2(z3-210-2 = Z2312-2) + 3232133 — Z231,-33)
(13)

where we omitted the dependence on ¢ common to all the
terms.

Many TDI combinations are possible: All cancel laser
noise, but each shows a different coupling to GWs and to
the remaining system noises (known collectively as sec-
ondary noises). As the understanding of TDI improved, the
standard TDI observables evolved through various gener-
ations, capable of canceling laser noise for increasingly
complex LISA geometries.

First-generation TDI (also known as TDI 1.0).—The
first-generation TDI observables [17,19,20,28] cancel laser
noise exactly in LISA configurations with unequal (but
constant) arms, and L, = L_;. Interferometric combina-
tions of various types are possible.

The Sagnac-type observables («, B, y) are sums of six
basic Doppler observables, and they involve the difference
between the Doppler shifts accumulated by light propagat-
ing around the LISA array in the two senses. Thus, the
Sagnac-type observables use all the LISA laser links in
both directions. A fully symmetric Sagnac observable ()
is considerably less sensitive than most others to GWs with
frequencies at the lower end of the LISA band; it was
suggested [18] that the comparison between the power
observed in ¢ and in the other TDI variables could be
used to discern a stochastic GW background from instru-
mental noise. The observables built from six Doppler
variables are also known as six-pulse combinations, be-
cause their response to an impulsive plane GW consists of
six separate pulses.

Eight-pulse combinations involve sums and differences
of the Doppler shifts measured along four of the six LISA
laser links. The unequal-arm Michelson observables (X, Y,
Z) use both links of two arms; as discussed above, they can
be interpreted as measuring the phase difference accumu-
lated by light traveling (twice, in opposite orders) along the
two arms of a Michelson interferometer centered in one of
the spacecraft. Perhaps for this reason, and in analogy with
ground-based GW interferometers, a single unequal-arm
Michelson observable (generally X) is often used in LISA
data analysis to compute expected detection rates and
parameter-estimation accuracies.

More eight-pulse combinations can be formed: The
beacon observables (P, Q, R) use only the two links
departing from one of the spacecraft, and both links along
the opposite arm; the monitor observables (E, F, G) use
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only the two links arriving at one of the spacecraft, and
both links along the opposite arm; last, the relay observ-
ables (U, V, W) use one departing link and the adjacent
arriving link at one of the spacecraft, together with both
links along the opposite arm. The eight-pulse combinations
can be considered as LISA contingency modes, because
they are available even if one or two of the laser links fail.
Note, however, that all six lasers must still be available to
build the intraspacecraft observables z,;, required for the
eight-pulse combinations, except in the case of the
unequal-arm Michelson observables: One of these can al-
ways be built even if one or both lasers directed along one
of the arms happen to fail.

Dhurandhar and colleagues [24] proved that the space of
all the first-generation TDI observables can be constructed
by combining four generators, which they identify in «, 3,
v, and (. Prince and colleagues [21] showed how to
diagonalize the cross noise spectrum of the generators to
obtain three observables (A, E, and T) with uncorrelated
noises. The three optimal observables A, E, and T are
written as sums and differences of «, B8, and y; when
used in combination, they achieve the optimal S/N for
GW sources at any frequency in the LISA band.

Modified TDI (also known as TDI 1.5).—Shaddock [27]
recently pointed out that the rotation of the LISA array
introduces a difference in the armlengths experienced by
beams traveling in the corotating and counterrotating di-
rections (i.e., Ly # L_;). Furthermore, this difference be-
comes much larger if we take into account also the orbital
motion of the array around the Sun [5]. Some of the first-
generation observables (the X-type, P-type, E-type, and
U-type combinations), cancel laser noise also for L, #
L_,, if time delays for the appropriate oriented arms are
used [as we have already arranged, for instance, in
Eq. (14)]; these observables can be interpreted as tracing
light paths that enclose vanishing areas. Conversely, the
first-generation observables that trace light paths that en-
close a finite area (such as «, B, 7y, and {) are equivalent to
Sagnac interferometers [29], and must necessarily be sen-
sitive to the rotation of the array, which shows up as an
additional phase difference between the lasers, originating
from the starting points of the light paths. The Sagnac
observables can be modified by means of a finite-
difference procedure analogous to the change undergone
between the equal-arm and unequal-arm Michelson com-
binations (see Fig. 5), so that the modified Sagnac observ-
ables have null enclosed area, and cancel laser noise [3,4].
The resulting combinations (&, @,, and a3, which gen-
eralize a, B, and 7; and ¢, {,, and {3 [5], which non-
uniquely generalize {) include twice as many y,;, variables
as the first-generation combinations (i.e., they are 12-pulse
observables).

Second-generation TDI (also known as TDI 2.0).—The
motion of the LISA array introduces not only a directional
dependence of the armlengths, but also a time dependence,
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as first recognized by Cornish and Hellings [3]. In this case,
the order of the TDI retardations becomes important: For
instance, if the armlengths are constant, then

lrp=t—Ly—Ly=t-—Ly—L,y=t_»n (14

but if they are not (as signaled by a semicolon index
notation), then

tay =[t—L_5(t) — Lyt — L_,)]
#F[t—Ly(t) — L_,(t — Ly)] = t._p. (15)

More generally, the semicolon notation represents the re-
tardation chain rule

ta.a, =t— Ly (1) — Ly [t—Ly(1)]

— Ly {t—Ly@)— Ly [t—Ly O —---
(16)

where the rightmost retardation index is applied first, using
the armlength L, (7); the next-to-rightmost retardation in-
dex is applied second, using the partially retarded arm-
length L, [t — L, (t)], and so on. Taylor expanding the
armlengths, and retaining only the zeroth-order and first-
order terms, we get

ta.a =1—Ly —[Ly  — Ly Lyl
- [Ldn*Z o Ldu*Z(Ldn + Ldn*l)] - (17)

where for ease of notation we have dropped the (¢) depen-
dence common to all the armlengths. As discussed in
Refs. [3-5], the eight-pulse TDI observables can be gen-
eralized, once again by a procedure akin to finite differen-
tiation, to 16-pulse observables that cancel laser noise up to
first order in the Taylor-expanded armlengths; for the LISA
orbital parameters, this is enough to cancel laser noise to a
level below the secondary noises. According to the nota-
tion of Ref. [5], X;, X;, and X5 generalize X, Y, and Z; P,
P,, and P; generalize P, Q, and R; E,, E,, and E; general-
ize E, F, and G; and U,, U,, and U; generalize U, V, and
W. The X, observables can be interpreted as expressing the
difference in laser phase between beams propagating along
two paths whose Taylor-expanded total lengths differ only
by terms proportional to L, or to higher derivatives;* the
residual laser noise is then a sum of expressions similar to

Ciea(r) = Cpp(r) = Ci(1) X [1.4 — 18]
~ C(t) X O[L and higher derivatives].
(18)

“The finite differencing procedure adopts the compound paths
A =1+ 1IIand B = II + I, where the paths I and II must contain
the same links, in different orders; then #;;; — ;=1 X1I —

X T= (L)L) — L) L1) = 0.
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As for the Sagnac-type observables, the 12-pulse modified
observables «a, ay, a3, {, {,, and {5 can already cancel
laser noise to a level below the LISA secondary noises: The
residual laser noise is of order L and higher, but the specific
combination of L, involved turns out to be small for the
LISA orbit.

Although historically the TDI observables were derived
by combining time-shifted combinations of the basic (one-
way) Doppler measurements y;,(¢), they can also be writ-
ten as combinations of one-way and two-way Doppler
measurements, generated by locking five of the six lasers
to the remaining one, as described by Tinto and colleagues
[6]; the resulting expressions contain fewer terms, are still
noise canceling, and have the same response to GWs.

III. IMPLEMENTATION AND USAGE OF
SYNTHETIC LISA

Synthetic LISA is an object-oriented C++ library built to
mirror the idealized structure of Fig. 1: Each block in the
figure corresponds to one or more C++ classes [30], which
implement its functionality. The Synthetic LISA workflow
follows this object-oriented structure, facilitating targeted
investigations that compare multiple configurations of one
object (for instance, one of the fundamental noises, or the
GW source), while all others are kept fixed. Here is an
example of a typical Synthetic LISA session.

(1) Create an instance of a LISA geometry (LISA) class

with the desired orbital parameters.

The LISA classes provide the geometrical quantities
pi(2), A;(r), and L,;(¢) needed to assemble the LISA
GW and noise responses described in Secs. II B and
IT C. They account for the aberration effects caused
by the finite speed of light and by the spacecraft
motion intervening between the events of pulse
emission and reception [Eq. (3)].

There are different levels of complexity at which the
motion of the LISA array, discussed in Sec. IT A, can
be modeled in a simulation of the LISA science
process; correspondingly, increasingly sophisticated
TDI observables are needed to cancel laser noise
once the added complexity is taken into account. In
Synthetic LISA, these levels correspond to different
derived classes® of the base class LISA. The simplest
such class, OriginalLISA, models a stationary, non-
orbiting constellation, used implicitly in the devel-
opment of first-generation TDI. The most realistic,
EccentricInclined, models the eccentric orbits of the
spacecraft up to second order in the eccentricity (see
Appendix A); the resulting time dependence of the
armlengths [3] creates the necessity of second-
generation TDI for effective laser-noise
suppression.

5In C++, a derived class inherits the data content and behavior

of its base class, and can add enhancements or customizations.
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(2) Create instances of a LISA noise class (NOISE) for
the 18 fundamental-noise time series defined in
Sec. Il C, tuning noise parameters if so desired.
Synthetic LISA can generate pseudorandom noise
sequences that approximate closely the standard
laser, proof-mass, and optical-path noises specified
in Sec. II C; alternatively, the package can import
the noises as sampled time series, which might have
been generated with other tools, or even measured
experimentally. The treatment of the LISA noise
processes is crucial to the interpretation of
Synthetic LISA simulations, and is discussed in de-
tail in Appendix B. In short, the representation of
noise is adequate if the noise-generation Nyquist
frequency f;, is set comfortably higher than the
highest frequency at which one wishes to analyze
the TDI noise responses, but of course lower than
the Nyquist frequency used to sample the TDI ob-
servables, to avoid aliasing.

(3) Create an instance of a GW source class (WAVE) of
the desired type and parameters.

The WAVE classes provide the GW polarization
components 4, () and Ay (¢), which are assembled
into the transverse-traceless metric perturbation h(z)
according to the polarization convention described
in Appendix A. Synthetic LISA contains simple
WAVE classes (such as SimpleBinary for monochro-
matic binaries), which can be modified easily to
yield more complicated signals; the package can
also import % (7) and hy(¢) as sampled time series.

(4) Create an instance of a LISA TDI class (TDI), feed-

ing it the LISA geometry, LISA noises, and GW
source objects previously created.
The base class TDI defines a complete set of first-
generation, modified, and second-generation TDI
observables, according to the expressions of
Refs. [17,19] for first-generation TDI, and of
Refs. [4,5] for modified and second-generation
TDI.® The derived classes TDIsignal and TDInoise
implement, respectively, the LISA response to GWs
[y§), from Eq. (1)], and to the fundamental noises
[y29ise and z'9i¢ from Egs. (8) and (9)]. Users can
easily define additional TDI observables, using
Table I to rewrite the expressions in the literature
in terms of the yg, and zy, Synthetic LISA
observables.

(5) Last, use the TDI objects to generate a time series of
the TDI observables and write it to disk or memory.
No C++ programming and compilation is needed to
use Synthetic LISA, since the functionality of the
package can be accessed very easily from the script-
ing language Python [31], either interactively, or

®The primed link indices of Refs. [4,5] correspond to positive
indices in this paper.
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with short scripts. In fact, the Synthetic LISA session
described above would translate to a handful of lines
in Python. Refer to the Synthetic LISA manual [32]
for detailed information about the usage and imple-
mentation of the package. The manual documents
also the successful validation of Synthetic LISA’s
output against analytical expressions of the TDI
observables for both noise and signals.

IV. NUMERICAL EXPERIMENTS WITH
SYNTHETIC LISA

We now present the main scientific results of this paper:
An investigation of laser phase noise suppression for flex-
ing LISA array orbits with first- and second-generation
TDI [Sec. IVA]; an analysis of the armlength-
determination accuracies required for effective laser-noise
suppression [Sec. IV B]; and an estimation of quantization
and telemetry bitdepth needed for the phase measurements
vy and zg;,. While significant as they stand, these studies
are meant also to exemplify the kind of system-
characterization inquiries that becomes possible with ad-
vanced LISA simulators.

Except where otherwise specified, all the power spectra
displayed in this section are computed as periodograms,
reducing spectral leakage and fluctuations by dividing one-
year-long time series into partially overlapping segments
(in number of either 1024 or 2048, depending on the
specific test), triangle-windowing each segment, and aver-
aging the resulting power spectra (see, e.g., Ref. [33]).
Thus, all the spectra of this section represent average
effects: Slightly different requirements on laser-noise
power, armlength-determination, and phase-measurement
quantization might be needed to achieve the same suppres-
sion performance homogeneously across the year.

A. On the necessity of second-generation TDI

As recognized by Cornish and Hellings [3], the eccentric
and inclined orbital motion of the LISA spacecraft intro-
duces a time variation in the armlengths of order 1078 s/s
[see Eq. (A3) of Appendix A]; as a consequence, the first-
generation and modified TDI observables fail to cancel
laser frequency noise completely. Using the graphical in-
terpretation of TDI given in Sec. II D, we would see that the
interferometric circuits synthesized by the observables fail
to close exactly. The laser-noise residuals arise from the
starting points of the paths, and they are of the form

8C; = J[C1(0) = €1y (0] = 4 Cs(1) = Ciy (0]
= [ C(1) + Ci(n)](ty — 1)

= 1[Ci(t) + Ci(n)]5t, (19)

where I and J denote time-ordered path retardation chains.
Using the Fourier derivative theorem and assuming white,
uncorrelated laser noises, we get
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|5éi(f)|2/|éi|2 = 27Tzf25t2, (20)

for frequencies up to the laser-noise bandlimit. For the
modified TDI X observable, 67 =~ 107° s, so laser noise is
canceled by less than 160 dB for f = 2 mHgz; for the
second-generation TDI X, observable, 6t =~ 107103, so
laser noise is canceled comfortably by more than 160 dB
throughout the LISA band of good sensitivity. In this
section we discuss the results of Synthetic LISA simulations
carried out to investigate and substantiate these analytic
arguments.

Figure 6 shows the spectrum of secondary noise plus
residual laser noise (top curve) versus the spectrum of
secondary noise alone for the modified TDI X observable
(bottom curve), computed using realistic eccentric and
inclined LISA spacecraft orbits; the excess noise is evident
between 1 and 10 mHz, and within the noise nulls at the
frequency multiples of 1/(2L). The intermediate curve
shows the effect of reducing the laser noise to 0.3 times
its nominal rms spectral density 1.1 X 1072 Hz™'. A
separate simulation was performed by reducing laser noise
to 0.1 times its nominal value: The resulting spectrum is
essentially indistinguishable from the secondary-noise-
only curve.

The reader might be puzzled by the flatness of the first-
generation TDI noise curves at low frequencies, as com-
pared to the f~2 dependence of proof-mass noise and of the
often-seen LISA sensitivity curves. The flatness is caused

S(f) laser-noise sub., mod. TDI X, eccentric LISA orbits
[Hz T T T
1038

1079

nominal laser noise

10_40 F
r 0.3x rms laser noise

1074
10—42 L ) \ no laser noise § A
" PSR | " " P | " i PR
107~ 107 107 107!
Jf [Hz]
FIG. 6. Imperfect cancellation of noise with modified TDI X

for flexing LISA array (EccentricInclined, &y = ny = 0). The
top curve plots the perfect-cancellation noise target, obtained by
setting the laser noise to zero; the intermediate and bottom
curves show the noise spectra resulting from imperfect laser-
noise cancellation for nominal and 0.3 X rms laser noise. A curve
with 0.1X rms laser noise would be essentially indistinguishable
from the perfect-cancellation target, and is not plotted here. The
spectra are computed from one year’s worth of X data sampled at
1 Hz (with 1-s noise-generation time step), averaging over 2048
data subsegments.
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by the time-delay structure of first-generation TDI observ-
ables, which contain, as it were, a finite-difference time
derivative, with a low-frequency power transfer function
proportional to f2. On the other hand, the sensitivity curves
plot a ratio of (rms) noise response to GW-signal response,
with the latter decreasing as f2 at low-frequency for first-
generation TDI observables such as X [19].

Figure 7 shows the reduction caused by residual laser
noise in the (amplitude) S/N for monochromatic sources,
computed as the square-root ratio of the imperfect-
cancellation and secondary-noise-only spectra. The loss
of sensitivity appears significant (up to ~30%) between
1 and 10 mHz, and even more so around the 1/(2L)
harmonics. However, an improvement in laser-noise stabil-
ity by a factor of about 3 would be sufficient to erase the
S/N-reduction bump at lower frequencies, and to shrink
considerably the S/N-reduction peaks at higher frequen-
cies. An improvement by a factor of 10 would essentially
eliminate the need for second-generation TDI, as estimated
analytically in Ref. [3].

By contrast, Fig. 8 shows that essentially perfect laser-
noise cancellation is achieved with the second-generation
TDI observable X;, with residual laser noise (bottom
curve) several orders of magnitude below the secondary
noises. For the Sagnac observable | (which, strictly speak-
ing, belongs to the set of modified TDI observables), laser
noise is still canceled by more than 1 order of magnitude,
except at the first £, null near 6 X 10~2 Hz.

S/N loss (ratio) for mod. TDI X, eccentric LISA orbits

T T T T T T T T

nominal
20+ no laser

nominal
10 0.3x rms laser

2 | A
‘l el " " A .

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
f[Hz]

nominal
0.1x rms laser

FIG. 7. Reduction in amplitude S/N due to imperfect laser-
noise cancellation for modified TDI X, with realistic LISA
spacecraft orbits (EccentricInclined, &, = ny = 0) and with
nominal laser noise, 0.3X rms laser noise, and 0.1X rms laser
noise. Because of the linear frequency axis used in this graph, the
bump between 1 and 10 mHz (which tops at about 1.3) appears
unimpressive, but it spans a scientifically important frequency
range. This figure was plotted from the same data as Fig. 6.
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FIG. 8. Cancellation of laser noise with second-generation TDI
X, and modified TDI (; for flexing LISA array
(EccentricInclined, &, = my = 0). For X;, the noise spectrum
obtained by including nominal laser noise matches exactly the
perfect-cancellation noise target obtained by setting the laser
noise to zero (top curve); the bottom curve, several orders of
magnitude below, shows the spectrum of residual laser noise. For
{1, residual laser noise sits only one order of magnitude below
the perfect-cancellation noise target. The spectra are computed
from one year’s worth of X and {; data sampled at 1 Hz (with 1-
S noise-generation time step), averaging over 2048 data subseg-
ments.

B. On the required accuracy of
armlength determination

We now turn to simulating the laser-noise residuals
resulting from the implementation of TDI using an imper-
fect knowledge of the armlengths, and therefore of the TDI
delays. In this case, residuals are created at all the delayed
times that appear in the TDI observables, and not just at the
starting point of the interferometric circuits. Graphically,
the reason is that the tail of each y;, arrow (determined by
a physical light-travel delay) does not precisely match the
head of the preceding arrow (determined by a nominal TDI
delay affected by armlength-measurement error). At each
such point, the residual has the form

8C, = C,(t)6L,(1). 21

The total residual noise is a somewhat complicated func-
tion of the TDI observable under consideration.

Tinto and colleagues [6] find that an armlength accuracy
of ~30 m ( ~ 100 ns) would be needed for effective laser-
noise subtraction with first-generation TDI. They also
estimate how often the armlength measurements would
have to be updated, by computing the time scale for the
time-dependent armlengths to change by an amount equal
to the required accuracy; for realistic LISA orbits, this time
scale varies substantially through the year, but it can be as
low as 10 s.

In the course of the LISA mission, armlengths might be
determined by means of orbital-dynamics models that are
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periodically updated by ranging measurements, either be-
tween the spacecraft, or to Earth. It was recently suggested
[34] that the TDI observables do not need to be assembled
in real-time aboard the spacecraft, but that they can be
obtained in postprocessing from time series of the y;, and
Z,;, measurements sampled at limited rates (~ 1 Hz) and
telemetered to Earth. If that is the case, the accuracy of
ranging is probably a secondary issue, since even poor
measurements can be fitted a posteriori to very accurate
models of the LISA orbits. In fact, it was recently proposed
[35] that the ranging information can be obtained directly
from the y;, and z,;, measurements, by minimizing the
integrated noise power in the TDI observables as a function
of the orbital parameters of the LISA spacecraft. Because
of these reasons, the problem of determining the accuracy
required for ranging measurements is not well defined in
the context of postprocessed TDI. In this section we con-
centrate instead on the accuracy required for the real-time
onboard computation of the TDI observables.

The simplest real-time treatment of the TDI delays
consists simply of keeping the armlengths fixed to their
last measured values, which are updated at time intervals
T. The resulting requirements on the ranging measure-
ments are rather constraining: For modified TDI X, our
simulations show that marginally acceptable laser-noise
cancellation is obtained with measurements repeated every
8 s with 2-m (rms) accuracies (assuming independent
errors). Indeed, the piecewise-constant armlength model
does a very poor job of following the dominant linear time
dependence of the armlengths.

A better treatment, which requires very little sophisti-
cation in the onboard logic, consists of extrapolating line-
arly from the latest two armlength measurements, which
again are repeated at intervals 7. The left panel of Fig. 9
shows that, for modified TDI X, 100-m (rms) accurate
measurements, repeated only every 4096 s, yield residual
laser-noise suppression to better than a factor of 6 below
the case of perfect armlength knowledge (where some
residual laser noise is present because of the LISA array
flexing; see Fig. 6). Every successive n-fold improvement
in the accuracies yields an n?-fold improvement in laser-
noise suppression.

Remarkably, taking ranging measurements more often
has the effect of worsening laser-noise suppression at low
frequencies. To understand why, consider Eq. (21), which
implies that in the Fourier domain the laser-noise residual
is given by the convolution of the laser-noise derivative
with the armlength error. The rapid repetition of measure-
ments introduces high-frequency power in the armlength-
error time series with a typical bandwidth of 1/(2T), which
then causes the leakage of power from high frequencies
(where C, is much larger) to the low-frequency end of the
LISA spectrum. This behavior can be observed in the left
panel of Fig. 9 by comparing the laser-noise residual
curves corresponding to measurements repeated every
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TDI noise for imperfect armlength knowledge

S(f )1 modified TDI X 2nd-generation TDI X, S(f )1
[H27] L | T LR | T L | T T LR | T L | T T T [Hzi]
1078 L 1038

secondary + laser,
10—40 perfect armlengths | secondary noise 10—40
(perfect armlengths)\
10—42 S L ]0—42
1074k residual laser noise: o d107#
ALims=30m, T=64s AL 0m. Te i
= — . rms = m, T = s
1074 Alms =30 m, T=409s - Alms=30m, T=4096s 7107
ALms=100m, T=64s | s Al = 100 m, T=64s
1048 Lo ALims = 100 m, 7= 4096 s | ALums = 100 m, T = 4096 s _1048
i " PR " a3 a2l PR aa gl " PR | " a3 a2l
3x10° 107 107 1072 107" 3x10™ 107 10 1072 107!
S Hz] S Hz]
FIG. 9. Imperfect cancellation of laser noise with modified TDI X (left panel) and second-generation TDI X, (right panel) due to

imperfect knowledge of the armlengths in a flexing LISA array (EccentricInclined, £y = g = 0). The topmost curves show the result
of using perfect armlengths: Thus, the X curve shows secondary noise only, while the X curve shows secondary noise plus the residual
laser noise due to using modified TDI observables with a flexing LISA array. All other curves show the level of residual laser noise for
linearly extrapolated armlengths (see main text) with different single-measurement errors AL, and intervals T. Error-laden
armlength measurements are simulated by adding a Gaussian-distributed, zero-mean independent deviates to the correct values of
the six L;. The low-frequency flattening of the laser-noise residuals is caused by power leakage from high frequencies when the
bandwidth of the armlength-error time series is comparable with the LISA measurement bandwidth. The spectra are computed from
one year’s worth of X and X, data sampled at 2 Hz (with 0.5-s noise-generation time step), averaging over 1024 data subsegments.

4096 s and every 64 s. By contrast, the maximum accept-
able spacing of the measurements is set by the time scale
for relevant quadratic changes in the armlengths: For a
typical armlength acceleration a ~ (277/yr) X 1078 s/s =
2X 1075 57!, the time required to accrete an error
~100 m is ~4/2 X 100 m/a = 18000 s.

The right panel of Fig. 9 shows that the armlength
accuracy requirement for the second-generation TDI ob-
servable X; is not substantially different, with 100-s (rms)
accuracy achieving laser-noise suppression by a (power)
factor of about 5, and successive n-fold accuracy improve-
ments yielding n?-fold suppression improvements.
However, considerably better accuracy is needed if laser
noise is to be canceled also within the X; nulls at 1/(2L)
and multiple frequencies. The leakage effect discussed
above is more important in the case of second-generation
TDI, where at low frequencies secondary noise declines as
a positive power of f, and can intersect the leakage plateau
if measurements are not taken sparsely enough.

C. On the quantization of phase measurements

Our last numerical experiment in this paper is concerned
with estimating the number of effective bits that must be
obtained and recorded for the phase measurements y,;, and
Zsr» and then either transmitted between the spacecraft to
perform TDI in real time, or transmitted to Earth to per-
form it in postprocessing. Similar, less extensive experi-

ments have been performed by Armstrong [36]. The
underlying physical problem is that laser noise must be
represented faithfully enough to allow its cancellation by
several orders of magnitude. Thus, we expect the spectral
characteristics of laser noise, such as its bandwidth at the
output of the phasemeter, and its magnitude relative to the
secondary noises, to play into the answer to our question.
Presumably, considerable telemetry bandwidth can be
saved by whitening phase noise prior to transmission, in
such a way that the quantity of (Fourier-space) information
relative to secondary noise is approximately constant at all
frequencies. For the purpose of our estimates, we adopt the
crude whitening scheme implicit in dealing directly with
fractional-frequency fluctuations, for which in this paper
we assume laser noise to be white.

We quantize phase measurements by dividing each y,
and z, (before assembling the TDI observables) by a
fiducial fractional-frequency-fluctuation level given by
the nominal rms value of laser noise (i.e., 1.05 X 10713,
assuming noise bandlimited at 1 Hz), truncating the result-
ing values to nq,,y bits to the right of the binary point, and
then multiplying again by the fiducial level. The actual
counting of bits must include one additional sign bit, and a
few bits to the left of the binary point (we take three, which
is adequate to make the saturation of Gaussian-distributed
noise statistically insignificant). Figure 10 shows the re-
sults of our simulations for second-generation TDI X;: An
Nquant Detween 32 and 34 (and hence a total number of bits
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S(f )l 2nd-gen. TDI X, quantized phase measurements
[Hz 'y T T T

1078
secondary noise only\
1 0—40 L
\residual laser, 24-bit quant.
1071 i

\residual laser, 28-bit quant.

10—44%
residual laser, 32-bit quant./
10—46%
refsidual laser, 34-blit quant./ 1
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FIG. 10. Imperfect cancellation of laser noise with second-

generation TDI X; due to quantization of the phase measure-
ments using g bits (see main text). The strongly sloping
curve plots only the secondary noises, while all other curves
show the level of residual laser noise with different quantization
depths (the numbers shown do not include the additional 1 +
3 bits needed for the sign and to avoid saturation). The spectra
are computed from one year’s worth of X and X data sampled at
2 Hz (with 0.5-s noise-generation time step), averaging over
1024 data subsegments.

between 36 and 38) is needed to lower the level of residual
laser noise resulting from quantization to a level comfort-
ably below the secondary noises in the LISA measurement
band. The requirement is less strict (714, between 28 and
30) for modified TDI X.

More definitive simulations of the effects of measure-
ment quantization should include less idealized models of
phase noise at the output of the phasemeter. Note also that
the simulations presented here do not address the interplay
between quantization and the implementation of
fractional-filtering interpolation, used in postprocessed
TDI [34] to approximate the values of y,;, and zj,, at the
TDI delays between recorded samples.

V. CONCLUSIONS

We have described three numerical experiments on the
implementation of TDI in LISA, which were performed
with Synthetic LISA, a simulation of the LISA science
process that can generate synthetic time series of funda-
mental noises and GW signals, as they appear in the laser-
noise-canceling TDI observables. Our conclusions were
presented in brief in Sec. I, and described in detail in
Sec. IV. We have also discussed the theoretical model
that underlies Synthetic LISA and provided details of its
implementation, as needed to understand the results of our
numerical experiments.

The structure and programming style used for Synthetic
LISA allows for vast extensions and improvements. Among
others, we plan to include explicitly the additional time
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series required for calibration of the onboard ultrastable
oscillators [16], and to model explicitly the measurement
errors at the photodetectors. We are in the process of
making Synthetic LISA available [37] as a public-domain
software package, to foster the involvement of the wider
GW community in research on the interface between sci-
entific goals and technical requirements for LISA, on the
tradeoffs and improvements that can be made in the im-
plementation and operation of the mission, and on the
development of novel analysis techniques for the LISA
data. In the spirit of open-source design, we expect the
LISA and GW communities to provide their own useful
additions to Synthetic LISA, such as more realistic models
of the noises and of the spacecraft subsystems, and addi-
tional GW source modules. For this purpose, we have
designed Synthetic LISA as a modular and easily extensible
C++ package, with a user-friendly Python frontend for
easy scripting and prototyping.

The investigations that can be carried out with state-of-
the-art simulators such as Synthetic LISA include:

Performance characterization and architecture trade-off
studies.—Synthetic time series supplement analytical re-
sults in the allocation of subsystem noise budgets and in the
determination of the final sensitivity for specific GW
sources, providing a high-level analysis tool for system
engineering, and helping the formulation of technical re-
quirements from the desired LISA science goals.

An example was the recent study [38] of detection
prospects for the GW signals from compact stellar objects
inspiraling into the supermassive black holes at the centers
of galaxies, with the purpose of determining whether the
LISA noise floor would need to be lowered to guarantee a
minimum number of such detections. For this study, time
series for h, and hy were produced using the
Glampedakis-Hughes-Kennefick quasiadiabatic orbit inte-
grator [39], and then fed to Synthetic LISA, which com-
puted the corresponding time series of TDI observables;
these were used to derive the expected S/N for the capture
sources.

Noise analysis and vetos.—Synthetic time series can be
used to study real-LISA features of the instrumental noises,
such as nonstationarity, noise increments due to faulty
subsystems, or (perhaps most important) the level of can-
cellation of laser phase noise by TDI under different LISA
geometries, armlength-measurement tolerances, and other
TDI characteristics. The numerical experiments presented
in this paper represent a first step in the numerical valida-
tion of TDI as implemented for LISA; more detailed
studies will undoubtedly become necessary as additional
details about the actual implementation of TDI become
available.

A recent example was the use of Synthetic LISA [35] to
validate a new approach to the determination of the LISA
armlengths, whereby the noise power in the TDI observ-
ables is minimized as a function of the armlengths.

022001-14



SYNTHETIC LISA: SIMULATING TIME DELAY ...

Development of data-analysis algorithms.—The syn-
thetic time series produced by this simulation have con-
sistent signal structure and noise correlations across all the
TDI combinations. Thus they can be used to test algorithms
for use on the real-LISA data, such as the separation of
stochastic GW backgrounds from LISA instrumental
noises [18], the matched-filtering detection of quasiperi-
odic signals [26], and so on. Synthetic LISA provides a
streamlined module to filter GWs through the LISA TDI
response, allowing easy interfacing to existing GW data or
GW-modeling applications. GW data analysts using
Synthetic LISA to generate simulated LISA data will also
be able to exploit the library of GW signals being as-
sembled at the Mock LISA data archive [40].
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APPENDIX A: GEOMETRIC CONVENTIONS IN
SYNTHETIC LISA

In this appendix we give a brief overview of the
Synthetic LISA conventions for the LISA orbits and for
the geometry of GW sources, with the purpose of facilitat-
ing the comparison between the synthetic signals generated
by Synthetic LISA, and those created with other methods
(and, in particular, with the LISA Simulator [8]). As dis-
cussed in Sec. IT A, the motion of the LISA array baricenter
is approximately contained in the plane of the ecliptic; for
this and other reasons [5], Synthetic LISA employs a Solar-
system—baricentric ecliptic coordinate system (SSB
frame), setting the x axis toward the vernal point.

The most accurate description of the LISA motion avail-
able in Synthetic LISA (the LISA class EccentricInclined)
models the eccentric orbits of the spacecraft up to second
order in the eccentricity e. For these orbits, the dominant
(and evolving) differences between the armlengths are
caused by the flexing motion of the array [3] due to orbital
eccentricities. Following Ref. [8], the SSB coordinates p;
of spacecraft i are given by

Py cosa + e[sina cosarsinB; — (1 + sin®a) cosB;] + O(e?)

Y | = (1 AU)

sina + e[sina cosa cosB; — (1 + cos’a)sinB;] + 0(e?) |,

(A1)

P —3ecos(a — B) + O(e?)

a = Qt+ 7o, Bi=mno+ & — oy (A2)

where o; = 37/2 — 2(i — 1)7/3 and e = 0.009 648 38,
yielding an effective L =~ 16.6782 s. These spacecraft or-
bits are mapped to those used in the LISA Simulator [8] by
setting g = k, &y = 37m/2 — k + A, where k and A are
the parameters defined below Egs. (56) and (57) of Ref. [8],
and by choosing sw < 0 in the EccentricInclined construc-
tor, which has the effect of exchanging spacecraft 2 and 3.
The armlengths experienced by light propagating along
the arms can be found by solving Eq. (3). For efficiency,
Synthetic LISA employs the lowest-order approximation

L,m=L+* 3%(6L) sin(3Q2r — 3&)
+ [(sgnarm)(QRL) - g(eL)} Sin(Q1 — 810y
(A3)
where 8; = {&, & + 4/3, &y + 27/3}. The amplitude

of the flexing correction is about 7.5 X 1072 s, or 0.5%
of the nominal LISA armlength; the rate of change of the

\
armlengths is about 1.5 X 1073 s/s, which requires

second-generation TDI to yield sufficient cancellation of
laser phase noise.

All the Synthetic LISA GW source objects (WAVE) share
the same geometrical setup, which follows the conventions
of Ref. [26]. At the position X in the SSB frame, the spatial
part of the transverse-traceless metric perturbation associ-
ated with a plane GW can be written as

h(t))=h,(t—k-De, +he(t—k-Dey; (Ad)
here the functions 4, (¢) and () express the two polar-
ization components of the wave at time ¢, measured at the
origin of the SSB frame. For a GW source at ecliptic
latitude B and ecliptic longitude A, the unit propagation
vector k is
k = —(cosB cosA, cosBsinA, sinf3). (A5)
The two polarization tensors €, and ey that appear in
Eq. (A4) are defined without loss of generality as
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1 0 O
e,=E-|0 -1 0]-ET,
0 0 O
010 (A6)
ex=E-|1 0 0[-ET
. 0 0 O
where the orthogonal matrix E,
sinA cosyy — cosAsin@singy  — sinAsing — cosAsinBcosyy — cosAcosf3
E = ( — cosAcosy — sinAsinBsinggs  cosAsing — sinAsinBcosyy  — sinAcosf ) (A7)
cos B sinys cosB cosys —sinf8
\
expresses an Euler rotation sequence, whereby the S and A sampled sequence with the interpolating kernel
terms can be understood as enforcing the transversality of in[7(t — 1,)/Ad]
the GW, while the polarization angle i/ encodAes a rotation sinc[7(t — t,)/At] = e T (B1)

around the direction of wave propagation, —k, setting the
convention used to define the two polarizations. The polar-
izations corresponding to = 0 are shown in Fig. 11 for
various source positions in the sky. The positional parame-
ters B, A, and ¢ are mapped to the parameters 6, ¢, and
used in the LISA Simulator [8] by setting 8 = 7/2 — 0,
A= ¢,and ¢y = — .

The standard monochromatic-binary WAVE object,
SimpleBinary, implements the GW signal

[m(r) } _ [ (1 + cos2e) X cos2arft + )

hy() | (2cose) X sinQ7wft + ¢g)

where A is the common amplitude, ¢ is the inclination
angle, f is the GW frequency observed in the SSB frame,
and ¢, is the phase at t = 0. The standard value of A is
(2mym,/dR) with m,, m, the two masses, d the luminosity
distance, and R the orbital separation (the common ampli-
tude A, used in Ref. [26] differs by a factor of 2, hy = 2A,
absorbed in i and hg). We have found excellent agree-
ment (see, e.g., Fig. 12) between the time series of TDI
observables derived from SimpleBinary and the output of
the LISA Simulator, v.2.0 [8] using Newtonian.c.

} (A3)

APPENDIX B: SYNTHETIC NOISE IN
SYNTHETIC LISA

In Synthetic LISA, pseudorandom white noise is created
by generating a sequence of uncorrelated Gaussian devi-
ates,” which are then interpreted as the sampled values at
times ¢, = nAt (forn = 0, 1, ...) of a continuous random
process. The process is assumed to be bandlimited below
f» = 1/(2A1): By the sampling theorem (see, e.g.,
Ref. [33]), the value of the noise can then be reconstructed
exactly at any intervening time ¢ by convolving the

"Independent, uniformly distributed deviates are obtained
from Luescher’s lagged Fibonacci generator [41], as imple-
mented in the GNU Scientific Library [42]; the Box-Muller
transform [43] is then used to convert the uniform deviates to
Gaussian deviates.

[7(t —1,)/Af] ~

Since the sinc kernel has infinite time extent, it must be
replaced in practice by an approximated interpolation
scheme that involves a finite number of samples. A vast
class of such schemes, including the linear and polynomial
interpolators implemented in Synthetic LISA, can be for-
mulated as the convolution of the sampled sequence with
an interpolating kernel that is (in some sense) an approxi-
mation to the sinc.

The tradeoff in the approximation is between the number
of samples used to interpolate and the sharpness of the
spectral response. The correct sampling of a bandlimited
process preserves all the spectral information below the
Nyquist frequency, but it populates Fourier space with
infinitely many replicas of the original spectrum, centered
at frequencies k/Ar (for k = *1, £2,...). The effect of
sinc interpolation is to multiply this composite spectrum by
the Fourier transform of the sinc, which is a perfect square
window of height 1 and width 1/A¢, centered at f = 0.
Thus, sinc interpolation achieves perfect signal reconstruc-
tion by selecting only the original spectrum and deleting all
unwanted replicas. Practical schemes with kernels of finite

. 2t
h hX qu)‘ =2m/3,f=m/6
;5;,‘&' N k 2
2y ,>\)\:7T/2vﬂ:”/6

20
O

A= 3 =0%K y
2”@7[- A=w/2,6=0
A=Tr/6,8=0""-
sk N =n/2,8=—7/6

A= 77r}6,\ﬂ = _n/6

FIG. 11. Conventional definition of the GW polarizations +
(dashed line) and X (solid line) for various ecliptic latitudes 3
and longitudes A. The figure was excerpted from Ref. [26].
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S(f) Monochromatic binary at f = 1.944 mHz, 1st-gen. X
T T T T T

[Hz '1f
10740 k
10741 k
1074}
10°4 k
1074}

X, Synthetic LISA — \

X, LISA Simulator v. 2.0

Il Il Il
1.9440 1.9445  1.9450

Jf [mHz]

Il Il
1.9430 1.9435

FIG. 12. Comparison between the outputs of the LISA
Simulator, v.2.0 [8] using Newtonian.c and of Synthetic LISA
for the response of first-generation TDI X to a monochromatic-
binary with f=1944mHz, B=A=¢ =0, ¢ =x/2, and
amplitude appropriate for a (0.5 + 0.033)M, binary at 0.1 kpc.
We show the nonaveraged spectra of the unwindowed signals in
a neighborhood of the central frequency. To compare the
fractional-frequency-fluctuation output of Synthetic LISA to the
nominal-strain output of the LISA Simulator, we have multiplied
the strain spectrum by the square of the nominal armlength
(10" m) to get a displacement spectrum; converted to a velocity
spectrum using the derivative theorem for Fourier transforms;
and converted to a fractional-frequency-fluctuation spectrum by
dividing by ¢?.

extent cannot have such a sharp frequency response, so
they distort (i.e., amplify or suppress, depending on fre-
quency) the original spectral content in the passband below
f», and they allow some of the power of the unwanted
spectral replicas to creep back into the interpolated process
(either directly, if the process is sampled with a sufficiently
high Nyquist frequency, or by aliasing to frequencies in the
passband).

These effects can be observed in Fig. 13, which shows a
spectrum of pseudorandom white noise, generated with a
time step of 1 s, and resampled to a time step of 0.1 s, using
no interpolation (i.e., defaulting to the nearest 1-s sample),
using linear interpolation, and using Lagrange-polynomial
interpolation of order 32. In all cases, power begins to drop
before the nominal bandlimit frequency of 0.5 Hz, but the
drop is sharper and closer to 0.5 Hz for higher-order
interpolation methods. Spurious power above the bandlimit
frequency appears as ripples between the f;, harmonics:
The height of the ripples decreases with the interpolation
order, while the valleys among the ripples become wider. In
Fig. 13, the valleys appear to be cut off by a common
downgrading envelope; this is an artifact of spectral esti-
mation, due to the residual leakage from the platform
below the passband; spectral leakage also smears out to a
finite height the nulls at the f;, harmonics.
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S(f)[au]  Spectral noise distortion due to interpolation
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FIG. 13. Noise distortion for 0.5 Hz-bandlimited white noise,

with different interpolation schemes. Higher-order interpolation
corresponds to a sharper transition at the bandlimit frequency
and to lower ripples and deeper valleys between them (in this
graph, the valleys are cut off by spectral leakage from the main
platform at power = 1).

In Synthetic LISA, interpolated pseudorandom white
noise is used to stand in for the standard laser phase noise
of Sec. IIC. The standard proof-mass and optical-path
noises, which have colored spectra, are approximated by
applying simple digital time-domain filters to the uncorre-
lated deviates, before interpolation. Namely, the finite-
difference filter y[nAt] = x[nAf] — x[(n — 1)Az] (with x
the original noise sequence) has power transfer function
[1 — exp2mifAt)|> = 4sin’(7rfAt), and is used to ap-
proximate the standard f~2 proof-mass noise. The
damped-integrator ~ filter  y[nAt] = ay[(n — 1)Ar] +
x[nAt] (with a = 0.9999, to control the DC component
of y) has power transfer function =~ (1/4)sin"?(7fA¢f), and
is used to approximate the standard f? optical-path noise.

The resulting pseudorandom noises have power spectra
that adhere very faithfully to the nominal curves, except at
frequencies comparable to f;,, where the effect of interpo-
lation is that noise power is not cut off sharply, but rather
drops off smoothly (if rapidly), with nulls at the f;, har-
monics. For the optical-path and proof-mass noises, the
effect of interpolation is compounded by the effect of the
finite-difference and finite-integration time-domain filters,
whose transfer function near f, is proportional to
sin™?[7f/(2f,)] rather than f=2. We conclude that the
pseudorandom noises can be accurate representations of
the standard LISA noises of Sec. II C, and therefore can be
used to study the noise response of the TDI observables, as
long as we take into account the effects of interpolation and
filtering at frequencies comparable to f;,. Because TDI is
essentially a linear operation, the results at lower frequen-
cies will not be affected. Using linear interpolation (the
Synthetic LISA default), it is probably safe to draw con-
clusions from the TDI results at frequencies < f},/5; using
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higher-order interpolation, it becomes possible to push
inferences to higher frequencies.

This discussion of filtering and interpolation applies also
to noise objects provided by the user as sampled time
series, as long as the sampled noise can be considered

(1]

(8]
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bandlimited below its nominal Nyquist frequency. See
Ref. [34] for a related discussion of the use of interpolation
in reconstructing the TDI observables on Earth from the
v, and zg;, data, sampled onboard at a limited rate that can
be transmitted affordably to Earth.
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