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Conformal symmetry of brane world effective actions
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A simple derivation of the low-energy effective action for brane worlds is given, highlighting the role of
conformal invariance. We show how to improve the effective action for a positive- and negative-tension
brane pair using the AdS/CFT correspondence.
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One of the most striking ideas to emerge from string
theory is that the universe we inhabit may be a brane
embedded in, or bounding, a higher-dimensional space-
time. The brane construction naturally removes the extra
dimensions from view, and gives a different perspective on
the nature of the gravitational force. It also leads to im-
portant restrictions on the form of the low-energy four-
dimensional effective action.

In this article, we show in particular how the brane
construction automatically implies conformal invariance
of the four-dimensional effective theory. This explains
the detailed form of the low-energy effective action, pre-
viously found using other methods. The AdS/CFT corre-
spondence may then be used to improve the effective
description, and we show how this works in detail for a
positive- and negative-tension brane pair.

We start by considering a pair of four-dimensional posi-
tive- and negative-tension Z2-branes bounding a five-
dimensional bulk with a negative cosmological constant
[1]. This is the simplest setting incorporating branes with a
nontrivial warp factor in the bulk. As is well-known, the
model possesses a one-parameter family of static solutions
representing flat branes located at arbitrary Y in a static
AdS bulk dY2 � e2Y=L���dx�dx�, where L is the AdS
radius, x�, � � 0; 1; 2; 3, parametrize the four dimensions
tangent to the branes and Y parameterizes the dimension
normal to the branes. The locations of the branes, Y�, are
moduli.

For the general, nonstatic solution to the same model it is
convenient to choose coordinates in which the bulk metric
takes the form

d s2 � dY2 � g���x; Y�dx�dx�: (1)

The brane loci are now Y��x� and the metric induced on
each brane is

g����x� � @�Y
��x�@�Y

��x� � g���x; Y
��x��: (2)

At low energies we expect the configuration to be com-
pletely determined by the metric on one brane and the
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normal distance to the other brane, Y� � Y�. That is, we
are looking for a four-dimensional effective theory con-
sisting of gravity plus one physical scalar degree of free-
dom. What we will now show is that this theory may be
determined on symmetry grounds alone. (See also [2] for
related ideas).

The full five-dimensional theory is diffeomorphism in-
variant. This invariance includes the special set of trans-
formations

Y0 � Y � �5�x�; x0� � x� � ���x; Y�; (3)

with ���x; Y� satisfying

@Y�
��x; Y� � �g���x; Y�@��

5�x�; (4)

which preserve the form (1) of the metric. Equation (4)
may be integrated to give ���x; Y� � ���x; Y��x�� �R
Y
Y��x� dYg

���x; Y�@��
5�x�, where ���x; Y��x�� are the pa-

rameters of a four-dimensional diffeomorphism on the
minus brane. The transformation (3) displaces the Y��x�
coordinates of the branes, Y��x� ! Y��x� � �5 � ��@�Y,
and alters g���x; Y� via the usual Lie derivative. Using (4),
one finds that the combined effect on each brane metric (2)
is the four-dimensional diffeomorphism x0� � x� �
���x; Y��x��. In fact, by departing from the gauge (1)
away from the branes, we can construct a five-dimensional
diffeomorphism for which �� vanishes on the branes. To
see this, we can set ���x; Y� � ��0 �x; Y� � f�Y���0 �x; Y

��,
where ��0 �x; Y� is the solution to (4) which vanishes on the
minus brane and f�Y� is a function chosen to satisfy
f�Y�� � 0, f�Y�� � 1, and f0�Y�� � f0�Y�� � 0 for all
x.

We conclude that the four-dimensional theory, in which
Y��x� are represented as scalar fields, must possess a local
symmetry �5�x� acting nontrivially on those fields. The
dimensionless exponentials  ��x� � eY

��x�=L transform as
conformal scalars:  ��x� ! e�

5=L ��x�, while the in-
duced brane metrics g��� remain invariant. The only local,
polynomial, two-derivative action possessing such a sym-
metry involves gravity with two conformally-coupled sca-
lar fields. After diagonalizing and rescaling the fields, this
may be expressed as
-1  2005 The American Physical Society
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m2
Z

d4x
�������
�g

p
�c� 

�� � � c� 
�� ��; (5)

where � � � � 1
6R, c� � �1, and m is a constant with

dimensions of mass. It should be stressed that the metric
g�� appearing in this expression is that of the effective
theory, which is in general different to the induced metric
on the branes g���. Potential terms are excluded by the fact
that flat branes, with arbitrary constant  �, are solutions of
the five-dimensional theory, i.e., the  � are moduli.

By construction, the theory possesses local conformal
invariance under

 � ! 
�x��1 �; g�� ! 
�x�2g��: (6)

For c� � �c�, without loss of generality we can set c� �
�1. Provided � ��2 � � ��2 > 0, we obtain the usual sign
for the Einstein term, so there are no ghosts in the gravi-
tational sector. We can then set  � � A cosh�=

���
6

p
and

 � � �A sinh�=
���
6

p
. The field A has the wrong sign ki-

netic term, but it can be set equal to a constant by a choice
of conformal gauge. Therefore, in this case there are no
physical propagating ghost fields. In contrast, a similar
analysis reveals that when c� � c� the theory possesses
physical ghosts either in the gravitational wave sector
(wrong sign of R) or in the scalar sector, no matter how
the conformal gauge is fixed. We conclude that the low-
energy effective action must be

m2
Z

d4x
�������
�g

p
�� �� � �  �� ��: (7)

We know from the above argument that the brane met-
rics are conformally-invariant: from this and from general
covariance they must equal g�� times homogeneous func-
tions of order two in  � and  �. But in the model under
consideration, we have static solutions g��� � e2Y

�=L���
for all Y� > Y�. The only choice consistent with this and
with � ��2 � � ��2 > 0 is

g��� �
� ��2

6
g��; (8)

which is a conformally-invariant equation. We have intro-
duced the numerical factor for later convenience.

It is instructive to fix the conformal gauge in several
ways. First, set  � �

���
6

p
, so that g�� � g��� and the

metric appearing in (7) is actually the metric on the plus
(positive-tension) brane. The action (7) then consists of
Einstein gravity (with Planck mass m) plus a conformally-
invariant scalar field  � which has to be smaller than

���
6

p
:

m2
Z

d4x
�����������
�g�

q ��
1�

1

6
� ��2

�
R� � �@ ��2

�
: (9)

Changing variables to � � 1� � ��2=6 produces the al-
ternative form [3]
021901
m2
Z

d4x
�����������
�g�

q �
�R� �

3

2�1� ��
�@��2

�
: (10)

Conversely, if we set  � �
���
6

p
, then g�� is the metric on

the minus (negative-tension) brane and �, which has to be
larger than

���
6

p
, is a conformally-coupled scalar field.

(However, the relative sign between the gravitational and
kinetic terms in the action is now wrong, and so this gauge
possesses ghosts). If we add matter coupling to the metric
on the plus and minus branes, we find that matter on the
minus brane couples in a conformally-invariant manner to
the plus brane metric and the field  �, and conversely for
matter on the plus brane. Note that we are not implying
conformal invariance of the matter itself: it is simply that
matter coupled to the brane metrics will be trivially invari-
ant under the transformation (6) as the brane metrics are
themselves invariant.

A third conformal gauge maps the theory to Einstein
gravity with a minimally-coupled scalar field �, taking the
values �1<�< 0. Starting from (7), we can set  � �

A cosh�=
���
6

p
and  � � �A sinh�=

���
6

p
, as noted earlier, to

obtain the action

�m2
Z

d4x
�������
�g

p
�
A�A�

A2

6
�@��2

�
: (11)

Now choosing the conformal gauge A �
���
6

p
we find

m2
Z

d4x
�������
�g

p
�R�����; (12)

i.e., gravity plus a minimally-coupled massless scalar. In
this gauge Eqs. (8) read:

g��� � cosh2
�
����
6

p

�
g��; g��� � sinh2

�
����
6

p

�
g��; (13)

in agreement with explicit calculations in the moduli space
approach [4].

The present treatment also goes some way towards ex-
plaining the moduli space results. For example, the fact
that the moduli space metric is flat is seen to be a conse-
quence of conformal invariance. Specifically, for solutions
with cosmological symmetry one can pick a conformal
gauge in which the metric is static. The scale factors on
the two branes are determined by  �. From (7), the moduli
space metric is just two-dimensional Minkowski space.

A couple of results for conformal gravity follow from
the above discussion. First, in the  � �

���
6

p
gauge, we

have  � � �
���
6

p
tanh��=

���
6

p
�. Any solution for a

minimally-coupled scalar �, with metric g��, thus yields
a corresponding solution for a conformally-coupled scalar
 �, with j �j<

���
6

p
and metric g��� as in (13), and vice

versa. Second, in the  � �
���
6

p
gauge, we have  � �

�
���
6

p
coth��=

���
6

p
�. Hence we may also obtain a solution

for a conformally-coupled scalar  �, with j �j>
���
6

p
and

metric g��� given in (13). Thus solutions to conformal
-2
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scalar gravity come in pairs: if g�� and  are a solution,
then � 2=6�g�� and ~ � 6= is another solution. In terms
of branes, this merely states that if g��� and  � are known
in the gauge  � �

���
6

p
, then it is possible to reconstruct

g��� and  � in the gauge  � �
���
6

p
.

The argument given above establishing the conformal
symmetry of the effective action is of a very general nature:
the only step at which we specialized to the Randall-
Sundrum model was in the identification of the brane
metrics in terms of the effective theory variables (8).
This required only the knowledge of a one-parameter
family of solutions.

To derive the effective theory for other brane models, it
is only necessary to generalize this last step. For example,
in the case of tensionless branes compactified on an S1=Z2,
the bulk warp is absent and so we know that a family of
static solutions is given by the ground state of Kaluza-
Klein theory (in which all fields are independent of the
extra dimension, and so the additional Z2 orbifolding
present in the tensionless brane case is irrelevant).
Ignoring the gauge fields, the Kaluza-Klein ansatz for the
five-dimensional metric is

d s2 � e2
������
2=3

p
��x�dy2 � e�

������
2=3

p
��x�g���x�dx�dx�; (14)

where � and g�� extremize an action identical to (12). For
branes located at constant y, the induced metrics are

e�
������
2=3

p
�g��, independent of y.

Using the effective action in the form (11), conformal
invariance of the induced brane metrics dictates that

g��� � A2f����g��; (15)

for some unknown functions f�. Upon fixing the confor-
mal gauge to A �

���
6

p
one recovers the action (12), which is

just the standard Kaluza-Klein low-energy effective action.

The functions f� are thus both equal to 1
6 e

�
������
2=3

p
� and we

have

g��� � e�
������
2=3

p
�g�� �

1

6
� � �  ��2g��: (16)

Note that this is consistent with the �! �1 limit of the
Randall-Sundrum theory (13): as the brane separation goes
to zero, the warping of the bulk becomes negligible and the
Randall-Sundrum theory tends to the Kaluza-Klein limit
[5].

We now turn to a discussion of the general cosmological
solutions representing colliding branes. We choose a con-
formal gauge in which the metric is static, and all the
dynamics are contained in  �. For flat, open and closed
spacetimes the spatial Ricci scalar R � 6k, where
k � 0,�1 and �1 respectively. The action (7) yields the
equations of motion

� � � �k � (17)
021901
� _ ��2 � � _ ��2 � �k�� ��2 � � ��2�: (18)

For k � 0 we have the solutions

 � � �At� B;  � � At� B; t < 0 (19)

representing colliding flat branes. It is natural to match  �

to  � across the collision, and vice versa, to obtain  � �
�At� B for t > 0. This solution then describes two branes
which collide and pass through each other, with the plus
brane continuing to a minus brane and vice versa [5,6].

For k � �1, we have the three solutions

 �1� � A sinht; A cosht; Aet;
 �2� � A sinh�t� t0�; A cosh�t� t0�; Aet�t0 ;

(20)

where we set  � equal to the greater, and  � equal to the
lesser, of  �1� and  �2�. For k � �1, we find the bouncing
solutions �1� � A sint, �2� � A sin�t� t0�. In the absence
of matter on the minus brane, the sin and sinh solutions are
singular when the minus brane scale factor a� vanishes.
However, matter on the minus brane scaling faster than
a�4
� , for example, scalar kinetic matter, causes the solution

for  � to bounce smoothly at positive a� because  � has a
positive kinetic term. This bounce is perfectly regular.
However, the ‘‘big crunch-big bang’’ singularity, occurring
when the positive- and negative- tension branes collide, is
unavoidable.

The above example illustrates a general feature of the
brane pair effective action. If the positive- and negative-
tension brane solutions are continued through the collision
without relabeling (this means that the orientation of the
warp must flip) then the four-dimensional effective action
changes sign. The relabeling restores the conventional
sign. The same phenomenon is seen in string theories
obtained by dimensionally reducing 11 dimensional super-
gravity, when the 11th dimension collapses and reappears.
Brane world black hole solutions with intersecting branes
are discussed in [7].

Recently it has been shown that the AdS/CFT corre-
spondence [8] provides a powerful approach to the under-
standing of brane worlds. For a single positive-tension
brane the four-dimensional effective description comprises
simply Einstein gravity plus two copies of the dual CFT [9]
(as the Z2 symmetry implies there are two copies of the
bulk). Notable successes of this program include reproduc-
ing the O�1=r3� corrections to Newton’s law on the brane
[10], and reproducing the modified Friedmann equation
induced on the brane [11,12].

Consider for simplicity a single positive-tension brane
containing only radiation. Taking the trace of the effective
Einstein equations we find

�R � 2�8$G4�< TCFT>; (21)

as the stress tensor of the radiation is traceless. The trace
anomaly of the dual N � 4 SU�N� super-Yang Mills
theory must then be evaluated. With the help of the AdS/
-3
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CFT dictionary, this quantity may be calculated for the
case of cosmological symmetry as shown in [13], giving

�R �
L2

4

�
R��R

�� �
1

3
R2

�
: (22)

Here, the usual R2 counterterm has been added to the
action in order to eliminate the �R term in the trace,
thus furnishing second order equations of motion.

For a cosmological metric with scale factor a this be-
comes

2� �aa� ka2� � L2�k� h2� _h; (23)

where h � _a=a and the dot denotes differentiation with
respect to conformal time. Re-expressing the left-hand side
as h�1@t� _a2 � ka2� we can then integrate to obtain

h2 � k �
1

a2

�
B�

1

4
k2L2

�
�

1

4
�h2 � k�2

L2

a2
; (24)

where B is an integration constant. Now, we can expect to
recover Einstein gravity on the brane in the limit when
L! 0, with other physical quantities fixed. We expand all
terms in powers of L. At leading order we must obtain four-
dimensional Einstein gravity, for which 8$G4 � 8$G5=L.
So we set B� �8$G5,0=3L� � C, where , � ,0=a4 is the
energy density of conventional radiation, and C is a con-
stant independent of L as L! 0. From (24) we then obtain
the first correction to h2 � k, namely

h2 � k �
8$G5,0

3La2
�
C

a2
�

�8$G5,0�
2

36a6
�O�L�; (25)

which, thanks to the CFT contribution, now includes the
well-known dark energy and ,2 corrections [14].

It should come as no surprise that the AdS/CFT corre-
spondence only approximates the Randall-Sundrum setup
up to first nontrivial order in an expansion in L. The AdS/
CFT scenario involves string theory on AdS5 � S5. Since
-0 � ‘2s � L2 at fixed ’t Hooft coupling, and the masses
squared of the Kaluza-Klein modes on the S5 are of order
1=L2, we expect nontrivial corrections at second order in
an expansion in L. Furthermore, one can show from the
AdS/CFT dictionary that in order for the ,2 term to domi-
nate in the modified Friedmann equation, the temperature
of the conventional radiation must be greater than the
Hagedorn temperature of the string. Clearly, the AdS/
CFT correspondence cannot describe this situation.

We now extend the AdS/CFT approach to the case of a
pair of positive- and negative- tension branes using the
ideas developed earlier in this paper. The effective action
for a single positive-tension brane is

1

16$G4

Z
d4x

�����������
�g�

q
R� � 2WCFT�g

�� � Sm�g
��; (26)
021901
where g��� is the induced metric on the brane, Sm is the
brane matter action, and WCFT is the CFT effective action
(including the appropriate R2 counterterms). Substituting
now for g��� using (8), the Einstein-Hilbert term

�����������
�g�

p
R�

becomes �
�������
�g

p
 �� �. A negative-tension brane may

then be incorporated as follows:

1

16$G4

Z
d4x

�������
�g

p
�� �� � �  �� �� � 2WCFT�g��

� 2WCFT�g�� � Sm�g�� � Sm�g��: (27)

The action for the positive- and negative-tension brane pair
must take this form in order to correctly reproduce the
Friedmann equation for each brane. To see this, consider
again the conformal gauge in which the effective theory
metric is static and all the dynamics are contained in  �,
which play the role of the brane scale factors. Variation
with respect to the  � yields the scalar field equations

� ���3� � � 2�8$G4�< T�
CFT>; (28)

where the trace anomaly must be evaluated on the induced
brane metric g��� but � is evaluated on the effective metric
g��. The left-hand side evaluates to �� ���3 �

� � � � k� ��2�. After identifying  �=
���
6

p
with a� accord-

ing to (8), and then dropping the plus or minus label, we
recover Eq. (23). From the necessity of recovering the
Friedmann equation on each brane we may also deduce
that cross-terms in the action between  � and  � are
forbidden.

The signs of the gravity parts of the action are needed to
achieve consistency with (7). Consequently, the relative
sign between the gravity plus CFT part of the action and
that of the matter is reversed for the minus brane, consis-
tent with the modified Friedmann equations [14],

H2
� � �

8$G5,�

3L
�

�8$G5,��
2

36
�
k

a2
�
C

a4
; (29)

where plus and minus label the positive- and negative-
tension branes, and C is again a constant representing the
dark radiation.

To summarize, we have elucidated the origin of confor-
mal symmetry in brane world effective actions, and shown
how this determines the effective action to lowest order.
When combined with the AdS/CFT correspondence, our
approach also recovers the first corrections to the brane
Friedmann equations.

We thank PPARC for support.
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