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Pion and kaon condensation in a 3-flavor Nambu–Jona-Lasinio model
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We analyze the phase diagram of a 3-flavor Nambu–Jona-Lasinio model at finite temperature T and
chemical potentials �u;�d;�s. We study the competition of pion and kaon condensation and we propose
a physical situation in which kaon condensation could be led only by light quark finite densities.
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I. INTRODUCTION

In the last few years the study of QCD at finite tempera-
ture and densities has been a subject of great interest. In
particular, the regime of high temperatures and moderate
densities is relevant for the physics of heavy ion collisions:
the presence of a tricritical point, suggested in [1] is
significant to determine the transition from a quark-gluon
plasma (QGP) phase to a hadronic phase [2].

Moreover, the presence of an isospin chemical potential,
namely, of an asymmetry in the densities of light quarks,
could complicate this picture: for values of �I � ��u �
�d�=2 attainable in the experiments, it is expected that the
critical lines associated to the light flavors, and therefore
the ending points, are mutually shifted (however the pres-
ence of instanton effects could modify this picture, as
discussed in Ref. [3]). The presence of two critical lines
would make the transition smoother and would produce
observable effects on physical quantities across the tran-
sition [4,5].

On the other hand, the regime of low temperature and
high densities is relevant for compact stars. The existence
of stars whose core is so dense that quarks can be treated as
fundamental degrees of freedom has been considered for
instance in [6]: there, the temperature is small enough to
safely consider the limit T ! 0. In this context, the physi-
cal scenario is very rich and interesting. For quark chemi-
cal potentials higher than 400� 500 MeV, the presence of
superconductive phases has been established [7]: there, the
mass of the strange quark plays the role of distinguishing
the pattern of symmetry breaking between a 2-flavor super-
conductive (2SC) and a 3-flavor color flavor locking (CFL)
phase, in both cases the gap being of the order of a few
tens of MeV. For this reason, an exhaustive study of these
phenomena must take into account the strange quark
sector. It is also worth to mention that taking into account
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weak equilibrium and color and electric neutrality
many other interesting superconductive phases could exist
[8–11].

The study of finite density on lattice has well-known
problems and except for the attempt of Fodor and Katz in
Ref. [12] the only studied case is the one corresponding to
low densities [13]. For this reason, the only tool available
at this moment for the study of the phase diagram in the
range from medium to high densities is a class of effective
models: the stability of the results obtained with different
approaches must be checked to give predictivity to the
analyses.

In any case, at zero temperature for values of �I �
m
=2 a pion condensed phase should appear, as has been
first suggested by [14] in the framework of a chiral model:
this phase is confirmed by lattice analyses [15], directly
investigable since for �I � 0 and �B � 0 the fermion
determinant is positive, within chiral models [16] and
within microscopical models [3,4,17–19]. Our previous
study in the NJL model [19] and that in Ref. [3], together
with the one in random matrix [17], showed the effect of
both isospin and baryon chemical potentials on the struc-
ture of the QCD phase diagram.

By extending this analysis to the third flavor, a kaon
condensed phase is expected in the region of high strange
quark chemical potential �s � mK, as shown by Ref. [20].
In the latter analysis being realized in the context of chiral
models at zero temperature, it would be interesting to study
the competition between pion and kaon condensation in the
framework of a microscopical model, for a general con-
figuration in the space of thermodynamical parameters
�T;�u;�d;�s�.

Moreover, it has been suggested a kaon condensed
phase in the context of high density nuclear matter [21]
and, more recently, in particular, in the CFL regime
[22]: since we do not yet know whether the densities
attainable in the core of a neutron star can be high
enough to favor a superconductive phase, we study here
the possibility of kaon condensation when neglecting di-
quark condensates, and where the densities are mainly
associated to light quarks. Also, for the first time we
-1  2005 The American Physical Society
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perform the study of kaon condensation by using a micro-
scopical model.1

To summarize, in this paper we study pion and kaon
condensation at finite temperature and quark densities, by
using a 3-flavor nonlocal Nambu–Jona-Lasinio (NJL)
model, and we propose a physical scenario in which
kaon condensation could be driven only by a light quark
finite density. The possibility of a kaon condensation at
�s � 0 could be important in the context of neutron stars,
where, by neglecting electroweak effects, the densities are
associated only to light quarks. To this end, we generalize
our analyses previously performed in the 2-flavor sector
[18,19]. In this paper we turn off the electroweak effects
and we do not consider the possibility of di-quark con-
densation; therefore, our results will be reliable only in the
regime of intermediate densities (with chemical potentials
lower than 400� 500 MeV). Moreover, we neglect the
presence of instanton effects that could modify the struc-
ture of phase diagrams.

II. THE MODEL

Our purpose is to explore the general structure of the
phase diagram for chiral symmetry and pion and/or kaon
condensation in 3-flavor QCD at nonzero quark densities
and its evolution in temperature, by using an effective
model with quark degrees of freedom. To this end, we
employ the Nambu–Jona-Lasinio model with a form factor
included so as to imply a decreasing of the fermion self-
energy at high momenta [24]. In this way we generalize, to
3 flavors, previous works concerning the simpler 2-flavor
case [18,19] which were inspired by Ref. [4] where the
authors had only considered the case of small differences
between the u and d quark chemical potentials. A complete
study of the 2-flavor phase diagram in the space of tem-
perature T, baryon and isospin chemical potentials �B;�I
was first done in the context of a random matrix model
[17]. To our knowledge, so far the only study of meson
condensation in the general case of 3-flavor QCD is based
on a chiral Lagrangian [20]. Nevertheless the use of a
model such as the NJL model or ladder QCD [25] is
necessary if we want to include the effects of a net baryon
charge and also study chiral symmetry restoration through
the behavior of scalar condensates, besides the pseudosca-
lar ones. This is not possible within a chiral Lagrangian
approach. As we already stressed in Ref. [19], ladder QCD
and the version of the NJL model we use in the present
work are very similar. Actually the main difference is that
in ladder QCD the quark self-energy depends on the four-
momentum whereas in the extended NJL model it depends
only on the three-momentum. This feature greatly simpli-
1In Ref. [23] a study of meson properties at finite quark
densities within the NJL model is performed. However, they
do not deal with meson condensation.
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fies the numerical calculations and this is the reason why
we employ the NJL model instead of ladder QCD.

Let us thus start with the Lagrangian of the NJL model
with three flavors u; d; s, with current masses mu � md 	
m and ms and chemical potentials �u;�d;�s, respectively

L � L0 
Lm 
L� 
Lint

� ��i@̂�� ��M�
�yA�
G
X8
a�0

�� ���a��2


 � ��i�5�a��2; (1)
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1
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1
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M is the quark current mass matrix which is taken
diagonal and A is the matrix of the quark chemical poten-

tials. As usual �0 �
��
2
3

q
I and �a, a � 1; :::; 8 are the Gell-

Mann matrices. For M � 0 and A � 0 or A / I, the
Lagrangian is U�3�L � U�3�R invariant. The chiral symme-
try is broken by M � 0 which also breaks SU�3�V down to
SU�2�V as m � ms. However, this symmetry is also lost,
since we generally consider �u � �d. The remaining
symmetry is thus the product of three independent phase
transformations Uu�1� �Ud�1� �Us�1�. In this applica-
tion, we do not consider the ’t Hooft determinant, that
explicitly breaks U�1�A. Also, we do not take into account
the possibility of a di-fermion condensation, which is
relevant at low temperatures and high densities, and will
be analyzed in a forthcoming publication: for this reason,
we limit the validity of our study up to quark chemical
potentials of order of 400 ’ 500 MeV.

We note that we can express L� either by using the
variables �u;�d;�s or by introducing an averaged light
quark chemical potential

�q � ��u 
�d�=2 (2)

and the three combinations

�B � ��u 
�d 
�s�=3; �I � ��u ��d�=2;

�Y � ��q ��s�=2
(3)

which couple to charge densities proportional to the baryon
number, to the third component of isospin and to hyper-
charge, respectively,

L � � �B�
y�
�I�

y�3�

2���
3

p �Y�
y�8�: (4)
-2



PION AND KAON CONDENSATION IN A 3-FLAVOR . . . PHYSICAL REVIEW D 71, 016011 (2005)
To study whether a pion and/or kaon condensate is
formed, we need to calculate the effective potential. This
is obtained by using the standard technique to introduce
bosonic (collective) variables through the Hubbard-
Stratonovich transformation and by integrating out the
fermion fields in the generating functional. The one-loop
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effective potential we get is:

V �
�2

8G
��2

u 
 �2
d 
 �2

s 
 2�2
ud 
 2�2

us 
 2�2
ds� 
 Vlog;

(5)
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�5F2� ~p���ud hd ��5F2� ~p���ds
�5F

2� ~p���us �5F
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0
BB@

1
CCA;

hf � �i!n 
�f��0 � ~p � ~�� �mf 
 F2� ~p���f;
(6)
where the form factor F�p2� � �2

�2
p2 (� is a mass scale)
has been introduced to mimic asymptotic freedom as in
Refs. [24]. In Eq. (6) tr means sum over Dirac, flavor and
color indices, and !n are the Matsubara frequencies. The
dimensionless fields �f and �ff0 are connected to the
condensates by the following relations

�f � �4G
h ��f�fi

�
;

�ff0 � �2G
h ��f�5�f0 � ��f0�5�fi

�

(7)

and are variationally determined at the absolute minimum
of the effective potential. Following the analyses per-
formed within the chiral Lagrangian approach [14,20],
we expect a superfluid phase with condensed pions when
the isospin chemical potential exceeds a critical value �C

I
(�C

I � m
=2 at T � 0); analogously a kaon condensation
phase is expected when�Y , which measures the unbalance
between the light quarks average chemical potential �q
and �s, is high enough. For �u � �d and T � 0 this limit
is �C

Y � mK=2.
To fix the free parameters of the model, which are �, the

average light quark and the strange quark masses m, ms
and the couplingG � g=�2, we calculate the charged pion
and kaon masses (by fixing their decay constants to the
experimental values) and the light quark scalar condensate
in the vacuum.

By choosing the free parameters as follows

� � 1000 MeV; g � G�2 � 6; m � 1:7 MeV;

ms � 42 MeV (8)

we get for the light quark condensate, the constituent light
quark mass, the pion mass, and the kaon mass, respectively,
the results h ��f�fi � ��252 MeV�3, Mq � 385 MeV,
m
 � 142 MeV, mK � 500 MeV. Furthermore, we find
the expected agreement between m
=2 and �C

I (within
1%), and also between �C

Y and mK=2 (within 4%).
The very low value we find from our fit for the quark

masses is entirely due to the choice of form factors (in-
stantaneous approximation), see [26], but their ratio
ms=m ’ 25 is in agreement with the value given by the
ratio of the pseudoscalar masses.

III. PHASE DIAGRAM FOR CHIRAL SYMMETRY
AND MESON CONDENSATION

As usual, we determine the phases of the model by
looking at the absolute minimum of the effective potential,
given in Eqs. (5), (6). Since there are four thermodynam-
ical parameters, namely T;�u;�d;�s (or T;�B;�I; �Y),
we start from T � 0 and then follow the evolution in
temperature of two-dimensional slices in the space of
chemical potentials. We recall that the global symmetry
in the model is given by the product of three U(1) groups.
The possible formation of a nonzero value of one of the
pseudoscalar fields �ff0 implies the spontaneous breaking
of a U(1) symmetry with the appearance of a Goldstone
boson. The transition to this superfluid phase leaves two
U(1) groups unbroken and between them there is always
the U�1�BV . For instance, the formation of a �ud condensate
implies the breaking of the U�1�IV symmetry, whereas
U�1�YV � U�1�BV are left unbroken. At the threshold one of
the charged pions, depending on the sign of �I, is the
Goldstone boson, whereas the other mesons of the octet
remain massive (see also [20]).

Thus we characterize different regions of pion or kaon
condensation with the pseudoscalar field which acquires a
nonvanishing vacuum expectation value (v.e.v.), whereas
the other v.e.v.’s are vanishing. Then, to facilitate the
physical interpretation and to directly compare it with the
results of Ref. [20], in the pictures we label these regions
directly with the symbol of the particle that condenses,
rather than with that of the corresponding field �ff0 . The
scalar fields �f do not break any symmetry as chiral
symmetry is explicitly broken by the current quark masses.
However these fields undergo crossover or discontinuous
transitions for given values of the thermodynamical pa-
rameters. Thus we distinguish between regions where a
nonzero v.e.v. of a scalar field is primarily due to dynami-
cal effects, and we indicate them with the relative symbol
�f, from regions where their values are of order �mf=�,
where we put no symbol. We also avoid putting the symbol
-3
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�f in a region where the pseudoscalar field associated with
that flavor starts to form, and �f is not yet of order
�mf=�. Furthermore, both for pseudoscalar meson con-
densation and for the transitions associated with scalar
fields, the boundaries of the regions separated by discon-
tinuous transitions are represented by solid lines whereas
dashed lines indicate continuous transitions. To start with,
we set �u � ��d, which is the case studied by Toublan
and Kogut in Ref. [20]. However, to compare our results
with theirs, we have to remark that we adopt different
combinations of the microscopic chemical potentials
�u;�d;�s. In this case, where �q � 0 (see Eq. (2)), we
plot the phase diagram in the plane of �Y and �I, which
are proportional, respectively, to �s and to �u ��d and
which correspond to half of the chemical potentials em-
ployed in Ref. [20]. In Fig. 1 we plot the quadrant with
�Y > 0, �I > 0 of the phase diagram at zero temperature.
Let us start by looking at what happens by moving along
the vertical line at �I � 0
, where 0
 stands for an
infinitesimally small positive value, in order to remove
the degeneracy between K
 and K0. In this case one starts
from a ‘‘normal’’ phase (see also Ref. [20]) characterized
by chiral symmetry breaking by large scalar condensates
and then, for�Y ’ mK=2 ’ 250 MeV, the scalar �u and �s
condensates smoothly rotate into a �us condensate,
whereas the �d field remains unchanged across the tran-
sition. We have indicated in the picture this new region
with the symbol hK
i (rather than with �us) as with these
signs of the chemical potentials it is the positively charged
FIG. 1. Phase diagram for chiral symmetry restoration and
meson condensation in the plane (�I;�Y) at �q � 0 and T �

0. Different regions are specified by the nonvanishing of a given
condensate, whereas the others are vanishing (�ud; �us) or order
�mf=� (�u; �d; �s). Dashed lines are for the continuous van-
ishing of pseudoscalar fields, whereas solid lines are for discon-
tinuous behaviors. The solid lines a and b refer to specific paths
at fixed values of �Y � 230 MeV (line a) and �I � 200 MeV
(line b).
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kaon to condense. By further increasing �Y the dynamical
effect associated with the strange quark condensation is
weakened by a high strangeness density and the favored
phase becomes that with �s �ms=� and large �u; �d. The
kaon condensate vanishes in this case through a first order
transition. The same situation hereby described also holds
when we move along vertical lines with �I & m
=2, with
a linear decrease of the critical �Y for kaon condensation
and a weak linear increase for the second transition at
higher �Y . On the other hand, when we move along the
horizontal line at �Y � 0 and we increase �I, we pass
from the normal phase to a pion condensation phase (in this
case the 

) described by a finite �ud, whereas �s remains
large. This situation was already known by the previous
studies of the 2-flavor NJL model [19]. This transition is
also second order. This situation persists at larger�I too. In
the intermediate regions there is a competition between
pion and kaon condensation. For instance, by fixing �I *

m
=2, starting from low �Y in the 

-condensed phase
with a large �s and increasing �Y ,2 we find that the system
goes to the phase where the K
 condenses when �Y *

mK=2. Consequently �s becomes �ms=� whereas �d
becomes large (if �I < 325 MeV) and the full transition
is discontinuous. When�Y is about 300 MeV (with a linear
weak increase for growing �I), the kaon condensate van-
ishes and a pion condensed phase shows up, with all the
scalar condensates �f �mf=�. The transition is first or-
der. Finally, for high �I and �Y in the range of values
corresponding to kaon condensation, there is a phase
analogous to the previous one, with a kaon condensate
instead of a pion condensate and �f �mf=�. This region
is connected to the others through discontinuous transitions
too.

In Fig. 2 we plot the behavior of the scalar and pseudo-
scalar condensates vs �I at �q � 0, �Y � 230 MeV, and
T � 0 corresponding in Fig. 1 to the path marked by the
solid line a. It is worth remarking the rotation of the �u and
�s fields into a �us field at the continuous transition for
kaon condensation (at �I ’ 50 MeV) and the further ’’ex-
change’’ of the two pseudoscalar fields �us and �ud at the
pion condensation transition (at �I ’ 125 MeV).

In Fig. 3 we plot the behavior of the scalar and pseudo-
scalar condensates vs �Y at �q � 0, �I � 200 MeV, and
T � 0 (following the path of the solid line b in Fig. 1).

In Fig. 4 the phase diagram of Fig. 1 is extended to
negative values of �I and �Y too. This picture is thus
simply obtained by reflection of Fig. 1 around its axes at
�Y � 0 and�I � 0. The only difference is that in the other
three quadrants different pseudoscalar mesons of the octet
condense (see also Ref. [20]).

The evolution of the scalar fields for growing tempera-
tures is well known. In particular, as expected the growth of
2In this case, working at �q � 0, it simply means to increase
j�sj.
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FIG. 4. Phase diagram for chiral symmetry restoration and
meson condensation in the plane (�I;�Y) at �q � 0 and T �

0. Different regions are specified by the nonvanishing of a given
condensate, whereas the others are vanishing (�ud; �us; �ds) or
order �mf=� (�u; �d; �s). Dashed lines are for the continuous
vanishing of pseudoscalar fields, whereas solid lines are for
discontinuous behaviors.

FIG. 2. Scalar and pseudoscalar condensates vs �I, for T � 0,
�q � 0, and �Y � 230 MeV. The path followed in the phase
diagram of Fig. 1 is that of the solid line a.
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temperature fights against pion and kaon condensation. We
find that the kaon condensed phase disappears at �I � 0
for T > 85 MeV. In Fig. 5 we show the evolution of the
phase diagram of Fig. 1 at T � 100 MeV. The region for
kaon condensation has shrunk and the transitions associ-
ated with chiral symmetry approximate restoration have
become continuous. Above T ’ 110 MeV the regions of
kaon condensation disappear. In Fig. 6 we plot the further
evolution of the phase diagram of Fig. 1 at T � 140 MeV.
FIG. 3. Scalar and pseudoscalar condensates vs �Y , for T � 0,
�q � 0, and �I � 200 MeV. The path followed in the phase
diagram of Fig. 1 is that of the solid line b
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In the range of values of �I;�Y that we have considered,
only the regions of pion condensation and the usual regions
with chiral symmetry breaking separated by continuous
transitions from analogous phases with �s �ms=� for
FIG. 5. Phase diagram for chiral symmetry restoration and
meson condensation in the plane (�I;�Y) at �q � 0 and T �

100 MeV, which is above the temperature of the tricritical point.
Different regions are specified by the nonvanishing of a given
condensate, whereas the others are vanishing (�ud; �us) or order
�mf=� (�u; �d; �s). Dashed lines are for the continuous van-
ishing of pseudoscalar fields or for crossover transitions for
scalar fields, whereas solid lines are for discontinuous behaviors.
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FIG. 6. Phase diagram for chiral symmetry restoration and
pion condensation in the plane (�I;�Y) at �q � 0 and T �

140 MeV, which is above the highest temperature �110 MeV to
have kaon condensation. Different regions are specified by the
nonvanishing of a given condensate, whereas the others are
vanishing (�ud) or order �mf=� (�u; �d; �s). Dashed lines are
for the continuous vanishing of pseudoscalar fields or for cross-
over transitions for scalar fields.

FIG. 7. Phase diagram for chiral symmetry restoration and
kaon condensation in the plane (�q;�s) at �I � 0� and T �

0. Different regions are specified by the nonvanishing of a given
condensate, whereas the others are vanishing (�us; �ds) or order
�mf=� (�u; �d; �s). Dashed lines are for the continuous van-
ishing of pseudoscalar fields, whereas solid lines are for discon-
tinuous behaviors.
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large �Y remain. Finally, pion condensation disappears
above the crossover critical temperature T � 192 MeV.

IV. KAON CONDENSATION IN THE REGION OF
HIGH �q

So far we have considered �u � ��d (and thus �q �

0). Besides this case, the relevant features of the full phase
diagram can be grasped by considering two other possibil-
ities, which are �u � �d (and thus �I � 0), and �s � 0,
which has been already considered in Ref. [19]. In this
section, we suggest a hypothesis for a kaon condensation
driven mainly by light quark finite densities, with�s low or
even zero. We recall that in the case of �s � 0 there is an
equal number of strange quarks and antiquarks, and in that
case kaon condensation would concern a light particle
(antiparticle), associated to the external field, and a strange
antiquark (quark) belonging to the sea. In Ref. [19], we had
not inserted the pseudoscalar fields with strangeness con-
tent: the possibility of kaon condensation at �s � 0 would
modify the phase diagram in the (�u;�d) plane of
Ref. [19] with the insertion of regions with condensed
kaons. However, except for this, no further modification
would be necessary, whereas the possibility of kaon con-
densation at zero or low values of �s can be also studied
for �I � 0, which is therefore the last situation we exam-
ine. From its definition in Eq. (3), we see that �Y measures
the difference between the strange quark chemical poten-
tial and �q (which at �I � 0 is the chemical potential
associated with one of the light flavors) similarly to �I
which measures the unbalance between the u and d quark
016011
chemical potentials. Therefore as pion condensation can
occur, at T � 0 and for instance at �d � 0, when �u *

m
, similarly we could expect a kaon condensed phase at
T � 0 and �s � 0 when �q * mK. However, within our
approximations, this does not happen, the reason being that
mK is higher than the critical value of�q for the melting of
the dynamical part of h ��f�fi, f � u; d. In other words,
when the condensates of the light quarks start to decrease
to values �m=�, the effective kaon mass starts to increase
and kaon condensation always remains unfavored (the
same does not happen at �q � 0 because the melting of
the dynamical part of h �ssi occurs at higher values of�s and
actually we find kaon condensation as shown in the last
section). Nevertheless, since we do not have taken into
account the effects of di-quark condensates which could
break chiral symmetry, it would be interesting to further
analyze what happens with their inclusion. We will analyze
this case in further work.

For the time being, let us show, in Fig. 7, the T � 0
phase diagram in the ��q;�s� plane at �I � 0�, where 0�

stands for an infinitesimally small negative value, which is
necessary to decide which are the kaons that condense (in
any case, within a neutron star a finite negative isospin
chemical potential is present). The structure of this phase
diagrams recalls that of [19] for pion condensation in the
��u;�d� plane, with a normal phase in the middle, char-
acterized by high values of the scalar condensates
�u; �d; �s. This phase is separated from the regions of
chiral symmetry approximate restoration (relative to one
or more flavors depending on the values of chemical po-
-6



FIG. 8. Phase diagram for chiral symmetry restoration and
kaon condensation in the plane (�q;�s) at �I � 0� and T �

0, and for mK � 300 MeV. Different regions are specified by the
nonvanishing of a given condensate, whereas the others are
vanishing (�us; �ds) or order �mf=� (�u; �d; �s). Dashed lines
are for the continuous vanishing of pseudoscalar fields, whereas
solid lines are for discontinuous behaviors.
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tentials) which are characterized by the respective scalar
field �f �mf=�. Furthermore these regions are separated
through discontinuous transitions, both from the normal
phase and from the regions of kaon condensation. There
are four different regions of this kind, distinguishable by
the condensing kaon and by the values of the associated
scalar condensates. Finally, the normal phase turns into a
region of kaon condensation through the smooth rotation of
�s and one of the light flavors (according to the sign of �Y
one between �u or �d remains large) into a kaon conden-
sate, when �Y * mK=2, with a second order phase tran-
sition. We can see that the presence of a high value of j�qj

lowers the corresponding j�sj necessary to have kaon
condensation: moreover, a value of �I � 0 would favor a
016011
kaon condensation with lower values of j�qj and/or j�sj.
Since we do not know exactly the critical value �C

q for
chiral symmetry restoration, and since we are interested
here in the case where �C

q > mK, instead of varying �C
q

(for instance performing a different fit) we take the kaon
mass as a free parameter, by varying the strange quark
mass, and we present, in Fig. 8, the same result as in Fig. 7,
for mK � 300 MeV, which is the upper limit for having a
kaon condensation at �s � 0.
V. CONCLUSIONS

In this paper we have presented a calculation of the QCD
phase diagram obtained by using a 3-flavor NJL model. We
have considered the plane (�I;�Y) to study the competi-
tion of kaon and pion condensation at zero and finite
temperature and to establish a comparison with a previous
analysis performed in a chiral model [20]. The results of
the microscopical model accurately reproduce those
achieved in the effective model only for low densities,
since in the high strangeness density regime approximate
chiral symmetry restoration (relative to the strange sector)
occurs, disfavoring kaon with respect to pion condensation.
Moreover we have suggested the possibility of kaon con-
densation driven only by light quark densities: this situ-
ation could be of interest in the core of compact stars,
where the densities are approximatively associated only to
light flavors. Up to now, we have neglected the possibility
of di-quark condensation: however, we are currently work-
ing on an extension of this analysis that takes into account
the superconductive phases too, so as to reproduce the
physical picture proposed in the context of effective mod-
els for the K0-CFL phase [22], and to understand the
behavior of color superconductivity by varying arbitrarily
the three quark chemical potentials [27]. Eventually, the
inclusion of the �-equilibrium as well as charge and color
neutrality, will give us a reasonable picture of cold quark
matter within stars, and will make possible a comparison
with experimental data.
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