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The low-energy behavior of a recently proposed model for the massive analytic running coupling of
QCD is studied. This running coupling has no unphysical singularities, and in the absence of masses
displays infrared enhancement. The inclusion of the effects due to the mass of the lightest hadron is
accomplished by employing the dispersion relation for the Adler D function. The presence of the
nonvanishing pion mass tames the aforementioned enhancement, giving rise to a finite value for the
running coupling at the origin. In addition, the effective charge acquires a plateaulike behavior in the low-
energy region of the timelike domain. This plateau is found to be in agreement with a number of
phenomenological models for the strong running coupling. The developed invariant charge is applied in
the processing of experimental data on the inclusive � lepton decay. The effects due to the pion mass play
an essential role here as well, affecting the value of the QCD scale parameter � extracted from these data.
Finally, the massive analytic running coupling is compared with the effective coupling arising from the
study of Schwinger-Dyson equations, whose infrared finiteness is due to a dynamically generated gluon
mass. A qualitative picture of the possible impact of the former coupling on the chiral symmetry breaking
is presented.
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I. INTRODUCTION

The theoretical analysis of strong interaction processes
at low energies represents a long-standing challenge for
quantum chromodynamics (QCD). Whereas the discovery
of asymptotic freedom [1] was followed by the rapid
development of perturbative tools for the detailed study
of the ultraviolet region, a reliable method for description
of hadron dynamics in the infrared domain is still missing.
Given that many important QCD phenomena, such as
hadronization, quark confinement, chiral symmetry break-
ing, and dynamical mass generation, are infrared in origin,
one resorts to the variety of models, in an attempt to obtain
a consistent quantitative description of the low-energy
dynamics.

The renormalization group (RG) method [2,3] plays a
fundamental role in the framework of quantum field theory
(QFT) and its applications. In the case of QCD, in order to
describe the physics in the asymptotical ultraviolet region,
one basically applies the RG method together with pertur-
bative calculations. In this case, owing to the asymptotic
freedom, a priori unknown RG functions can be parame-
terized by power series in the strong running coupling.
Eventually, this leads to approximate solutions of the RG
equations, which are used in the quantitative analysis of the
high-energy processes. However, such solutions possess
unphysical singularities in the infrared domain, contradict-
ing the general principles of the local QFT, and complicat-
ing the theoretical description and interpretation of the
intermediate- and low-energy experimental data.
address: nesterav@ific.uv.es
address: Joannis.Papavassiliou@uv.es

05=71(1)=016009(13)$23.00 016009
Nonetheless, these difficulties, being artifacts of the per-
turbative treatment of the RG method, can be circumvented
by judiciously incorporating nonperturbative information
about the hadron dynamics at low energies.

It is worth mentioning several well-known examples of
such ‘‘synthesis.’’ The short-range part of the static quark-
antiquark potential can be calculated perturbatively [4],
while its linear confining behavior at large distances is
corroborated by both the lattice results (see recent papers
[5]) and the string hadron models (see, e.g., book [6], and
references therein). These two inputs complement each
other and form the so-called ‘‘V scheme’’ [7] for the
QCD effective charge, which has proved to be successful
in describing hadrons as bound states of quarks [8]. The so-
called ‘‘I scheme’’ [9] is constructed along the same lines.
Here, the perturbative results are supplied with the large
distance behavior of the running coupling, coming from
the lattice study [10] of the topological structure of the
QCD vacuum. Interestingly enough, both aforementioned
schemes, although being based on different assumptions,
predict a similar infrared behavior for the strong running
coupling. Furthermore, the latter also agrees with that of
the model for the QCD analytic invariant charge developed
in Refs. [11,12] (see also Refs. [13,14] for the details).
There is also a number of methods which proceed from the
general properties of the perturbative power series for the
QCD observables in the framework of the renormalization
group formalism. For example, these are the ‘‘optimized
perturbation theory’’ [15,16], the method of effective
charges [17], the Brodsky-Lepage-Mackenzie convergence
criterion [18], the ‘‘optimal conformal mapping’’ method
[19], and the RG improvement of perturbative calculations
[20,21].
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Another important source of nonperturbative informa-
tion is provided by the relevant dispersion relations. The
latter, being based on the ‘‘first principles’’ of the theory,
supply one with the definite analytic properties with re-
spect to a given kinematic variable of a physical quantity in
hand. The idea of employing this information together with
perturbative treatment of the renormalization group
method forms the underlying concept of the so-called
‘‘analytic approach’’ to QFT. It was first proposed in the
framework of quantum electrodynamics (QED) and ap-
plied to the study of the invariant charge of the theory
[22]. Here the principle of causality implies the Källén-
Lehmann spectral representation for the QED running
coupling. Hence, the latter has to be an analytic function
in the complex q2 plane with the only cut along the
negative1 semiaxis of real q2. A number of authors (see,
e.g., Ref. [23]) have argued that a similar method can also
be useful for studying non-Abelian theories. Eventually,
proceeding from these motivations, the ‘‘dispersive ap-
proach’’ [24] and the ‘‘analytic approach’’ [25] to QCD
have been developed. According to the former one, the
nonperturbative effects of the strong interaction can be
reliably captured at an inclusive level by means of a
quantity, which constitutes the effective extension of the
perturbative running coupling to the low-energy scales.
The analytic approach to QCD has been successfully ap-
plied to the study of the strong running coupling [12,25],
perturbative series for the QCD observables [26], and some
intrinsically nonperturbative aspects of the strong interac-
tion [11,14,27]. Some of the main advantages of the latter
approach are the absence of unphysical singularities and a
fairly good higher-loop and scheme stability of the out-
coming results. Besides, in the framework of the analytic
approach the continuation of the ‘‘spacelike’’ theoretical
predictions for the QCD observables into the timelike
domain, that is crucial for handling the relevant experi-
mental data, can be carried out in a self-consistent way
[28].

In general, the effects due to the masses of light hadrons
(such as � meson) can be safely neglected only when one
studies the strong interaction processes at large momenta
transferred. For example, in order to relate the perturbative
results with the high-energy experimental data on the
electron-positron annihilation into hadrons, the massless
approximation of the dispersion relation for the Adler D
function may be used (see Sec. II for the details). But for
the hadron dynamics in the infrared domain the mass
effects become substantial. Apparently, this is important
for the description of the low-energy experimental data on
the inclusive � lepton decay. Both the results of perturba-
tion theory and the dispersion relation for the Adler D
function with the nonvanishing pion mass, are vital here
1A metric with signature ��1; 1; 1; 1� is used, so that positive
q2 corresponds to a spacelike momentum transfer.
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for properly processing these data. However, no such mass
effects have been taken into account within the analytic
approach to QCD so far.

The primary objective of this paper is to include the
effects due to the pion mass into the analytic approach to
QCD. The incorporation of such mass effects is studied on
the example of the model for the analytic running coupling
developed in Refs. [11,12]. Therein, the imposition of the
analyticity requirement has eventually resulted in the in-
frared enhancement (i.e., the singular behavior at q2 � 0)
of the invariant charge in hand. In general, one might
anticipate that the presence of masses affects the low-
energy behavior of the strong running coupling. Indeed,
as we shall see, the aforementioned singularity is tamed
down by the pion mass, thus giving rise to a finite infrared
limiting value for the QCD effective charge. Apparently, it
is important to apply the developed model to the descrip-
tion of those sets of experimental data, which display a
particular sensitivity to the infrared behavior of the QCD
running coupling. It is also of significant interest to exam-
ine, even at a qualitative level, the applicability of the
obtained invariant charge to the study of the chiral sym-
metry breaking through Schwinger-Dyson equations.

The layout of the paper is as follows. Section II is
devoted to the description of the strong interaction pro-
cesses in spacelike and timelike domains. This material
sets up the stage for the subsequent analysis of the massless
and massive cases. In Sec. III the analytic approach to
QCD is overviewed, with a particular emphasis on the
massless model for the invariant charge of [11,12]. The
effects due to the pion mass are incorporated into the latter
approach in Sec. IV. The basic features of the massive
strong running coupling in spacelike and timelike regions
are also studied therein. In Sec. V the developed model for
the invariant charge is applied to processing the experi-
mental data on the inclusive � lepton decay, a reasonable
estimation of the QCD scale parameter � being obtained.
In Sec. VI the derived massive analytic charge is compared
with the effective charge arising from the study of the
Schwinger-Dyson equations, whose infrared finiteness is
due to a dynamically generated gluon mass [29]. A quali-
tative picture of the possible impact of the former charge
on the chiral symmetry breaking is presented. In
Conclusions (Sec. VII) the basic results are summarized
and further studies within this approach are outlined.
II. STRONG RUNNING COUPLING IN SPACELIKE
AND TIMELIKE REGIONS

The consistent description of hadron dynamics in time-
like (Minkowskian) and spacelike (Euclidean) regions re-
mains the subject of intense studies. The strong interaction
processes involving the large spacelike momentum transfer
q2 > 0 (for instance, the deep inelastic lepton-hadron scat-
tering) can be examined perturbatively in the framework of
the RG method (see, e.g., Ref. [30]). However, in order to
-2
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3The relations (7) and (8) are not valid for the perturbative
running coupling �s�q2� because of the unphysical singularities
of the latter, see Sec. III for the details.
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handle the processes which depend on the timelike kine-
matic variable s � �q2 > 0 (for example, hadronic width
of the � lepton decay or total cross-section of the electron-
positron annihilation into hadrons), one first has to relate
the results of perturbation theory with the measured quan-
tities. Obviously, the question what is the expansion pa-
rameter for the QCD timelike processes arises at this stage
[31].

An indispensable method for the analysis of the strong
interaction processes in the timelike domain has been
proposed by Adler [32], and further developed in
Refs. [33,34]. In particular, it was argued that the logarith-
mic derivative of the hadronic vacuum polarization func-
tion ��q2�

D�q2� �
d��q2�

d lnq2
; (1)

which is also known as the Adler D function, provides a
firm ground for comparing the perturbative results with the
experimental data on the e�e� annihilation into hadrons.
Specifically, the dispersion relation [32]

D�q2� � q2
Z 1

4m2�

R�s�

�s� q2�2
ds (2)

embodies the required link between the measurable ratio of
two cross sections [35]

R�s� �
�e�e� ! hadrons; s�
�e�e� ! ����; s�

�
1

2�i
lim
"!0�

����s� i"� ����s� i"�	 (3)

and the Adler D function, which can be calculated pertur-
batively. In Eq. (3) s denotes the center-of-mass energy of
the annihilation process. Thus, one can continue the per-
turbative results for D�q2� into the timelike domain by
making use of the relation inverse to Eq. (2)

R�s� �
1

2�i
lim
"!0�

Z s�i"

s�i"
D����

d�
�
; (4)

where the integration path lies in the region of analyticity
of the function D����, see also Refs. [33,36].

So far, there is no systematic method for calculating the
Adler D function. Nevertheless, its asymptotic ultraviolet
behavior at q2 ! 1 can be computed perturbatively.
There, the effects due to the masses of light hadrons can
be neglected, and the AdlerD function of Eq. (1) is usually
approximated by the power series in the strong running
coupling �s�q2�

D�q2� � Nc
X
f

Q2f�1� d�q2�	; (5)

where Nc � 3 is the number of colors, Qf stands for the
charge of the fth quark,
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d�q2� ’ d1

�
�s�q2�
�

�
� d2

�
�s�q2�
�

�
2
� . . . ; (6)

d1 � 1, d2 ’ 1:9857� 0:1153nf , and nf is the number of
active quarks, see Refs. [36,37] for the details.

Thus, in order to compare the perturbative results with
the timelike experimental data, one first has to perform on
Eq. (6) the integral transformation given in Eq. (4). It is
worthwhile to underscore that this procedure distorts the
perturbative power series for the Adler D function drasti-
cally, since both real and imaginary parts of the running
coupling �s�q2� contribute to Eq. (4). Ultimately, the con-
tinuation presented in Eq. (4) results in a ‘‘nonpower’’
expansion for R�s�, and even in the deep ultraviolet asymp-
totic jq2j ! 1 the functions D�q2� and R�s� are different,
starting from the three-loop level, due to the so-called
�2 terms. Nonetheless, the ‘‘naive’’ extrapolation of the
strong running coupling to the timelike domain �̂�s� �
�s�jq2j� is also allowed for the perturbative expansion of
Eq. (6), but only if one restricts oneself to the deep ultra-
violet limit jq2j ! 1 of the one- or two-loop levels (see
Refs. [23,26,28,33,34,38,39] for the details).

Since the integral transformation (4) of the perturbative
results has to be carried out every time one deals with the
timelike strong interaction processes, for practical pur-
poses it is convenient to define [28] the timelike effective
charge �̂�s� in the same way as R�s� relates with D�q2�:

�̂�s� �
1

2�i
lim
"!0�

Z s�i"

s�i"
�����

d�
�
: (7)

In what follows the strong running coupling in the space-
like domain is denoted by ��q2�, and in the timelike
domain by �̂�s�. Obviously, the inverse relation between
these effective charges2

��q2� � q2
Z 1

4m2�

�̂�s�

�s� q2�2
ds (8)

holds as well3. It is important to emphasize that for a
detailed description of the infrared hadron dynamics the
pion mass cannot be neglected in Eqs. (2) and (8).

Apparently, for the self-consistency of the method de-
scribed above, one first has to bring the perturbative ap-
proximation for the Adler D function in Eq. (6) to
conformity with the dispersion relation of Eq. (2). This is
of a great significance when one intends to study the QCD
experimental data in the intermediate- and low-energy
regions. Indeed, the integral representation in Eq. (2) im-
plies the definite analytic properties in q2 variable for the
Adler D function. For example, in the massless limit
-3
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(m� � 0), it has to be an analytic function in the complex
q2 plane with the only cut �1< q2 � 0 along the nega-
tive semiaxis of real q2. However, the approximation of the
right-hand side of Eq. (5) by the perturbative expansion in
the strong running coupling given in Eq. (6) obviously
violates this condition. Nevertheless, this discrepancy can
be eliminated in the framework of the analytic approach to
QCD, which is discussed in the next section.
5Unlike the Shirkov-Solovtsov model [25], where the analy-
ticity requirement (12) was imposed on the perturbative running
coupling �s�q2� itself. In turn, this has led to a spectral density
III. MASSLESS ANALYTIC RUNNING COUPLING

As has already been mentioned in Sec. I, the dispersion
relations play a central role in the description of hadron
dynamics. Indeed, the general principles of the local QFT
(such as causality, spectrality, unitarity) are captured by the
relevant integral representations. These are, for instance,
the dispersion relation for the Adler D function (2) and the
Jost-Lehmann-Dyson representation [40] for the structure
function of the deep inelastic lepton-hadron scattering
processes. In turn, the dispersion relations provide one
with a certain nonperturbative information about the quan-
tity in hand, in particular, with the definite analytic prop-
erties in the kinematic variable. Undoubtedly, the latter
should be taken into account when one intends to venture
beyond the realm of perturbation theory.

It has recently been argued [24,25] that for the QCD
invariant charge ��q2� the Källén-Lehmann spectral rep-
resentation

��q2� �
Z 1

0

%��

� q2
d (9)

must hold in the absence of masses. The condition (9) is
identical to that needed4 for bringing the perturbative
approximation of the Adler D function in Eq. (6) to con-
formity with its dispersion relation (2), also enforcing the
validity of Eqs. (7) and (8). However, there are several
ways to incorporate the analyticity requirement of Eq. (9)
for the QCD running coupling into the RG formalism. In
other words, the perturbative asymptotic behavior of
�s�q

2� when q2 ! 1, together with the integral represen-
tation (9), is not enough to uniquely determine the relevant
spectral density %��. Eventually, this ambiguity has given
rise to different models for the strong running coupling
within the analytic approach to QCD (discussion of this
issue can also be found in Refs. [12,14,41–43]).

This section is devoted to a brief overview of one of the
massless models for the QCD analytic invariant charge
[11,12]. This model shares all the advantages of the ana-
lytic approach, namely, it contains no unphysical singular-
ities, and displays good higher-loop convergence and mild
dependence on the subtraction scheme. Besides, the run-
ning coupling of Refs. [11,12] was successful in the de-
scription of a wide range of QCD phenomena [14,27].
4In the limit of the massless pion m� � 0.
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Furthermore, it is of a particular interest to note that this
model has recently been rederived, proceeding from com-
pletely different motivations [13].

In the framework of perturbation theory the RG equation
for the QCD invariant charge ���2� � g2��2�=�4�� at the
‘-loop level takes the form

d ln��‘�
s ��2�

d ln�2
� �

X‘�1
j�0

�j

�
��‘�
s ��2�
4�

�
j�1
: (10)

Here ��‘�
s ��2� denotes the ‘-loop perturbative running

coupling, �j stands for the � function expansion coeffi-
cient (�0 � 11� 2nf=3; �1 � 102� 38nf=3; :::), and nf
is the number of active quarks. It is well known that the
solutions to Eq. (10) have unphysical singularities in the
infrared domain at any loop level. Specifically, the Landau
pole appears at the one-loop level, whereas the higher-loop
corrections introduce additional singularities of the cut
type into expression for the QCD invariant charge. In
turn, this contradicts the fundamental principles of the
local QFT, violating the representation given in Eq. (9).

In order to resolve this difficulty, in the framework of the
developed model [11,12] the analyticity requirement was
imposed on the � function perturbative expansion5

d ln��‘�
an ��2�

d ln�2
� �

(X‘�1
j�0

�j

�
��‘�
s ��2�
4�

�
j�1

)
an

: (11)

In this equation ��‘�
an ��2� is the ‘-loop analytic invariant

charge and the braces f. . .gan denote the ‘‘analytization’’ of
the expression contained in them [25]:

fA�q2�gan �
1

2�i

Z 1

0
lim
"!0�

�A��� i"� � A��� i"�	

�
d

� q2
: (12)

It is worth noting here that the way of incorporating the
analyticity requirement into the RG method given in
Eq. (11) is consistent with the general definition of the
QCD invariant charge, see Refs. [14,41].

At the one-loop level the RG Eq. (11) for the analytic
invariant charge can be solved explicitly [11]:

��1�
an �q2� �

4�
�0

z� 1

z lnz
; z �

q2

�2
: (13)

At the higher-loop levels only the integral representation
for the analytic running coupling has been derived. So, at
the ‘-loop level the solution to Eq. (11) acquires the form
somewhat different from that of Eq. (17), and, consequently, to
different properties of the QCD effective charge in the infrared
domain; see, e.g., Refs. [12,14,42,43] for the details.
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[12,41]:

��‘�
an �q2� �

4�
�0

z� 1

z lnz
exp

"Z 1

0
P �‘��� ln

�
1�


z

	
d


#
;

(14)

where P �‘��� � R�‘��� �R�1��� and

R�‘��� �
1

2�i
lim
"!0�

X‘�1
j�0

�j
�4��j�1

f���‘�
s ��� i"�	j�1

� ���‘�
s ��� i"�	j�1g: (15)

The obtained massless running coupling (14) has the
correct analytic properties in the q2 variable demanded in
Eq. (9), namely, it has the only cut q2 � 0 along the
negative semiaxis of real q2. In particular, the latter follows
from the Källén-Lehmann integral representation that
holds for the invariant charge (14):

��‘�
an �q2� �

4�
�0

Z 1

0

 �‘���
� z

d: (16)

In this equation  �‘��� denotes the ‘-loop spectral density

 �‘��� �  �1��� exp

"Z 1

0
P �‘���� ln

��������1� �


��������d��
#

�

�
cos �‘��� �

ln
�
sin �‘���

�
; (17)

where

 �‘��� � �
Z 1


P �‘����

d�
�
; (18)

and

 �1��� �
�
1�

1



	
1

ln2� �2
(19)

is the one-loop spectral density. In the exponent of Eq. (17)
the principal value of the integral is assumed (see
Refs. [12,14] for details).

The massless analytic running coupling of Eq. (14) pos-
sesses a number of appealing features. First of all, it has no
unphysical singularities at any loop level, and contains no
adjustable parameters6. Thus, similarly to the perturbative
approach, the QCD scale parameter � remains the basic
characterizing quantity of the theory. In addition, the in-
variant charge (14) incorporates the ultraviolet asymptotic
freedom with the infrared enhancement in a single expres-
sion, which plays an essential role in applications of the
developed model to the description of the quenched lattice
simulation data [13,27,44]. Moreover, this analytic running
coupling has universal asymptotics both in the ultraviolet
6It is worth noting here that the Shirkov-Solovtsov running
coupling [25] has no adjustable parameters, either. So, both these
models are the ‘‘minimal’’ ones in this sense.
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and infrared regions at any loop level, and displays a good
higher-loop and scheme stability. The detailed analysis of
the properties of the invariant charge (14) and its applica-
tions can be found in Refs. [14,27,41,45].

As has been discussed in Sec. II, for the consistent
description of a number of strong interaction processes
one has to employ the continuation of the QCD effective
charge to the timelike region, in the way given in Eq. (7).
For the massless case under consideration it is convenient
to choose the integration contour in Eq. (7) in the form
presented in Fig. 1. Eventually, this leads to the following
extension of the invariant charge of Eq. (14) to the timelike
domain [12]

�̂ �‘�
an �s� �

4�
�0

Z 1

w
 �‘���

d

; w �

s

�2
; (20)

where s � �q2 > 0, and the spectral density  �‘��� is
defined in Eq. (17). The obtained result supports the hy-
pothesis due to Schwinger [46,47] concerning the propor-
tionality between the � function and the relevant spectral
density (see also Ref. [28]).

The one-loop effective charge of Eq. (20) has the fol-
lowing asymptotic in the high-energy limit s! 1:

�̂ �1�
an �s� ’

4�
�0

1

lnw

�
1�

�2

3

1

ln2w
�O

�
1

ln4w
;
1

w

	�
: (21)

On the one hand, this running coupling has the correct
ultraviolet behavior, determined by the asymptotic free-
dom. On the other hand, the so-called �2 terms have also
appeared in the expansion (21). As it was noticed in Sec. II,
these terms play a key role in the description of the strong
FIG. 1. The integration contour in Eq. (7) for the massless
case. The physical cut of the strong running coupling ����� [see
Eq. (9)] is shown along the positive semiaxis of real � .

-5



A. V. NESTERENKO AND J. PAPAVASSILIOU PHYSICAL REVIEW D 71, 016009 (2005)
interaction processes in the timelike domain. It is interest-
ing to note that, similarly to the spacelike running coupling
in the massless case of Eq. (13), the one-loop effective
charge (20) also has an enhancement in the infrared do-
main (see Refs. [12,14]):

�̂ �1�
an �s� ’

4�
�0

1

wln2w
; s! 0: (22)

However, the type of this singularity differs from that of the
invariant charge in Eq. (13) by the logarithmic factor.
Nevertheless, it is precisely this feature of the timelike
running coupling that enables one to handle the integrals
of a specific form over the infrared region, and, in particu-
lar, to process the experimental data on the inclusive semi-
leptonic branching ratio for the case of the massless pion.
In turn, the latter provides one with the relevant estimation
of the QCD scale parameter � � �508� 61� MeV, see
Sec. V for the details.

The plots of the functions ��1�
an �q2� and �̂�1�

an �s� are shown
in Fig. 2. In the ultraviolet limit these expressions have
identical behavior determined by the asymptotic freedom.
However, there is an asymmetry between them in the
intermediate and low-energy regions. Thus, the relative
difference between these effective charges is about several
percent at the scale of the Z boson mass, and increases
when approaching the infrared domain. Evidently, this
circumstance has to be taken into account when one han-
dles the experimental data (see also review [14] and refer-
ences therein for details).

It is worthwhile to emphasize that the mass effects have
not been included in the formulation of the models for the
strong running coupling in the framework of the analytic
approach to QCD, so far. Thus, the obtained results can be
applied, for example, to the study of the experimental data
FIG. 2. The one-loop massless analytic running coupling in the
spacelike [Eq. (16), q2 > 0] and timelike [Eq. (20), s � �q2 >
0] regions. The values of parameters are � � 508 MeV, nf � 2
active quarks.
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at high energies, where the masses of the lightest hadrons
can be neglected, the pure gluodynamics, and the quenched
lattice simulation data (see also Refs. [13,14]). However,
for the detailed description of the infrared hadron dynam-
ics, the mass effects have to be incorporated into the
analytic approach to QCD. The next section is devoted to
this task.
IV. MASSIVE ANALYTIC EFFECTIVE CHARGE

As has been noticed in previous sections, the � meson
plays a crucial part in the description of the strong inter-
action processes at low energies. So far the main thrust of
the analytic approach to QCD has focused on eliminating
intrinsic difficulties of perturbation theory, such as the
unphysical singularities of the strong running coupling
(see Sec. III). On the other hand, mass effects within this
formalism remain largely unexplored, thus far. Therefore,
the objective of this section is to incorporate the effects due
to the pion mass into the analytic approach to QCD.

Evidently, the original dispersion relation for the Adler
D function [32] [see Eq. (2)] with the nonvanishing mass of
the � meson is the proper object to study here. Indeed,
Eq. (2) implies definite analytic properties in the q2 vari-
able for D�q2�. Namely, the latter has to be an analytic
function in the complex q2 plane with the only cut begin-
ning at the two-pion threshold �1< q2 � �4m2� along
the negative semiaxis of real q2. However, its approxima-
tion in Eq. (6) violates this condition due to the spurious
singularities of the perturbative running coupling �s�q2�.
Nevertheless, this disagreement can be avoided by impos-
ing the analyticity requirement of the form7

d�q2; m2�� �
Z 1

4m2�

ß��

� q2
d (23)

on the right-hand side of Eq. (6). Therefore, the QCD
effective charge itself has to satisfy the integral represen-
tation

��q2; m2�� �
Z 1

4m2�

%��

� q2
d (24)

in this case as well. Otherwise, one would encounter a
contradiction between the dispersion relation for the Adler
D function of Eq. (2) and its approximation given in
Eq. (6). Besides, the condition (24) enforces the validity
of relations (7) and (8) for the case of the nonvanishing
pion mass.

In general, there are several models for the invariant
charge within the analytic approach to QCD (see Sec. III
for the details). This is so by virtue of the fact that the
behavior of the strong running coupling �s�q

2� at the
ultraviolet asymptotic, which is known from perturbation
7The spectral function ß�� in Eq. (23) is supposed to capture
the known perturbative contributions to d�q2; m2��.
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FIG. 3. The integration contour in Eq. (7) for the case of the
massive pion. The physical cut of the effective charge
����;m2�� [see Eq. (24)] is shown along the positive semiaxis
of real � .
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theory, together with the analyticity requirement of the
form of Eq. (9) or Eq. (24), is not enough to uniquely
determine the relevant spectral density %��. The model
for the analytic invariant charge [11,12] has proved to be
successful in the description of the strong interaction pro-
cesses of both perturbative and intrinsically nonperturba-
tive nature [14,27]. We shall therefore adopt the spectral
density of Eq. (17) in what follows.

Thus, one arrives at the following integral representation
for the massive analytic invariant charge (see also
Refs. [48,49])

��‘�
an �q2; m2�� �

4�
�0

Z 1

$

 �‘���
� z

d; z �
q2

�2
; (25)

where  �‘��� denotes the ‘-loop spectral density of
Eq. (17) and $ � 4m2�=�2. It is worth noting from the
very beginning that the nonvanishing mass of the � meson
drastically affects the low-energy behavior of this strong
running coupling. Indeed, instead of the infrared enhance-
ment in the massless case of Eq. (14), one has here the
infrared finite limiting value for the massive invariant
charge in Eq. (25),

��‘�
0 �

4�
�0

Z 1

$
 �‘���

d

; (26)

which depends on the value of the pion mass. At the
ultraviolet asymptotic, where the nonperturbative contri-
butions are negligible, the result of Eq. (25) tends to the
perturbative running coupling ��‘�

s �q2�:

��‘�
an �q2; m2�� ’ �

�‘�
s �q2� �O

�
�2

q2
;
�2

q2
1

ln�q2=�2�
;
4m2�
q2

�
:

(27)

In this equation the limits q2 � �2 and q2 � 4m2� are
assumed. In particular, the one-loop effective charge of
Eq. (25) reads for q2 � 4m2�

��1�
an �q2; m2�� ’ �

�1�
s �q2� �

4�
�0

1

z lnz

�
4

�0

1

z

�
�
2
� �$� 1� arctan

�
ln$
�

	�

�
4

�0

1

z

Z ln$

�1
ey arctan

�
y
�

	
dy: (28)

It is worthwhile to mention also that in the limit of massless
pion m� � 0 the effective charge (25) coincides with the
running coupling of Eq. (14).

In order to handle the strong interaction processes in-
volving the timelike kinematic variable one first has to
relate the experimental data with the perturbative results
(see Sec. II). For practical purposes it is convenient to
employ here the extension of the spacelike running cou-
pling to the timelike domain given by Eq. (7). The analytic
properties in the q2 variable of the QCD invariant charge
016009
��q2� are different for the massless (9) and massive (24)
cases (see Figs. 1 and 3, respectively). Thus, the continu-
ation (7) of the massive strong running coupling (25) to the
timelike region results in (see Refs. [48,49] also)

�̂ �‘�
an �s;m2�� �

4�
�0

Z 1

w
&�� $� �‘���

d

; (29)

where s � �q2 � 0, &�x� stands for the Heaviside step
function (see, e.g., Ref. [50]),  �‘��� is the ‘-loop spectral
density defined in Eq. (17), and $ � 4m2�=�2.

Let us address now the basic features of the running
coupling in Eq. (29). First of all, it is very interesting to
note here that the effective charges of Eqs. (25) and (29)
have a common finite value in the infrared limit jq2j ! 0,
given by Eq. (26). Second, the timelike massive effective
coupling of Eq. (29) has the ‘‘plateaulike’’ behavior in the
deep infrared domain:

�̂ �‘�
an �s;m2�� � ��‘�

0 ; 0 �
���
s

p
� 2m�: (30)

Besides, for
���
s

p
> 2m� there is no difference between the

massless and massive timelike running couplings of
Eqs. (20) and (29), respectively, since the mass of the �
meson affects the timelike effective charge (29) only in the
region

���
s

p
� 2m�, where it does not run (see Fig. 4).

Therefore, in the ultraviolet asymptotic s! 1, the expan-
sion (21), which accounts for the �2 terms, also holds for
the running coupling of Eq. (29). The hypothesis due to
Schwinger [46,47] concerning the proportionality between
the � function and the relevant spectral density holds for
-7



FIG. 4. The one-loop massive analytic effective charge in the
spacelike and timelike domains [Eqs. (25) and (29), respec-
tively]. The values of parameters are: � � 623 MeV, nf � 2
active quarks.
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the massive timelike effective charge of Eq. (29) as well.
Apparently, in the limit of vanishing pion massm� ! 0 the
results of this section reproduce the massless case de-
scribed in Sec. III.

It is worth noting here that some other models for the
QCD effective charge also display a plateau similar to (30)
in the infrared domain. In particular, the aforementioned
optimized perturbation theory method [16] predicts the
stagnation of the timelike effective coupling in the region���
s

p
& 300 MeV, in striking coincidence with the result

obtained in Eq. (30). Moreover, the so-called ‘‘H model,’’
with a similar freezing of the effective charge to a constant
value in the infrared domain, has proved to be useful in
studying of the dynamical chiral symmetry breaking (see,
e.g., Ref. [51]).

V. INCLUSIVE � LEPTON DECAY

In order to draw a quantitative conclusion on the low-
energy behavior of a model for the strong running cou-
pling, one needs the relevant estimation of the QCD scale
parameter �. The latter can be extracted, for example,
from the experimental data on the strong interaction pro-
cesses. Among them, the measurement of the � decay
width is most suitable for our purposes, since these data
are fairly precise, and this process probes the infrared
hadron dynamics at energies below the � lepton mass 0 ����
s

p
� M�. Let us turn now to the study of this hadron

process, restricting ourselves to the one-loop level at this
stage.

The experimentally measurable quantity here is the in-
clusive semileptonic branching ratio

R� �
"��� ! hadrons�)��
"��� ! e� #)e)��

: (31)
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One can split this ratio into three parts, namely R� �
R�;V � R�;A � R�;S. The terms R�;V and R�;A account for
the contributions to Eq. (31) of the decay modes with the
light quarks only, and they correspond to the vector (V) and
axial-vector (A) quark currents, respectively. The accuracy
of the experimental measurement of these terms is several
times higher than that of the strange width ratio R�;S, which
accounts for the contribution to Eq. (31) of the decay
modes with the s quark. Thus, let us proceed with the
nonstrange part of the ratio R� (31) associated with the
vector quark currents

R�;V �
Nc
2
jVudj2SEW�1� ,0

EW � ,QCD�; (32)

see Refs. [39,52,53] for detailed discussion of this issue. In
Eq. (32) Nc � 3 is the number of colors, jVudj � 0:9738�
0:0005 denotes the Cabibbo-Kobayashi-Maskawa matrix
element [54], SEW � 1:0194� 0:0050 and ,0EW � 0:0010
are the electroweak corrections [53,55], and ,QCD stands
for the strong correction. The recent measurements of the
ratio (32) gave R�;V � 1:775� 0:017 (ALEPH
Collaboration, Ref. [56]) and R�;V � 1:764� 0:016
(OPAL Collaboration, Ref. [57]). Assuming that these
data have equal statistical weights, one arrives at the aver-
aged value

R�;V � 1:769� 0:017: (33)

In the framework of the approach in hand the strong
correction in Eq. (32) at the one-loop level takes the form

,�1�QCD �
2

�

Z M2
�

0

�
1�

s

M2
�

	
2
�
1� 2

s

M2
�

	
�̂�1��s�

ds

M2
�
; (34)

see, e.g., papers [12,14,39], and references therein. In
Eq. (34) �̂�1��s� is the one-loop strong running coupling
in the timelike region, and M� � �1776:99�0:29�0:26� MeV de-
notes the mass of the � lepton [54]. As was shown in
previous sections, the mass of the � meson entering the
dispersion relation for the Adler D function (2) affects the
low-energy behavior of the QCD effective charge �̂�s�.
Consequently, handling the experimental data on the in-
clusive � lepton decay is different for the cases of massless
and massive pion. In order to demonstrate how the estima-
tion of the QCD scale parameter � is affected by the
nonvanishing mass of the � meson, let us study both
instances.

For the limit of massless pion m� � 0, the one-loop
strong correction ,QCD to the R�;V ratio (32) is given by
Eq. (34), with �̂�1��s� being the one-loop massless effective
charge of Eq. (20). Although the latter possesses the en-
hancement at s! 0 [see Eq. (22)], the resulting singularity
is integrable. Then, it is useful to represent the QCD
correction in a more convenient form
-8
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,�1�QCD�M
2
�� �

4

�0

Z 1

0
�-3 � 2-2 � 2� �1��-��d-

�
1

�
�̂�1�
an �M2

��; (35)

where �̂�1�
an �s� is the running coupling (20),  �1��� denotes

the one-loop spectral density (19), and the notations - �
s=M2

� and� � M2
�=�2 are used. For the experimental data

given in Eq. (33) one gets the value � � �508� 61� MeV
for the QCD scale parameter. This estimation corresponds
to nf � 2 active quarks, and its uncertainty is due to the
errors in the values of R�;V, jVudj, SEW, and M�. The
relevant behavior of the massless analytic invariant charge
in the spacelike and timelike regions [Eqs. (16) and (20),
respectively] is shown in Fig. 2.

Let us proceed now to the case of the nonvanishing pion
mass. Here, the one-loop QCD correction to the R�;V ratio
reads as

,�1�QCD�M
2
�; m

2
�� �

2

�

Z M2
�

0

�
1�

s

M2
�

	
2

�

�
1� 2

s

M2
�

	
�̂�1�
an �s;m2��

ds

M2
�
; (36)

where �̂�1�
an �s;m2�� is the one-loop massive analytic charge

of Eq. (29) and m� � �134:9766� 0:0006� MeV stands
for the �0 meson mass [54]. In general, in the framework
of the analytic approach there is no need to involve the
contour integration in Eq. (34), since the effective charge
�̂�s�, appearing in the integrand, contains no unphysical
singularities in the region s � 0. In other words, the inte-
gration in Eq. (34) can be performed in a straightforward
way. Thus, one can cast the strong correction (36) into a
convenient form

,�1�
QCD�M

2
�; m

2
�� �

4

�0

Z 1

-0
�-3 � 2-2 � 2� �1��-��d-

�
1

�
�̂�1�
an �M2

�; m2��; (37)

where -0 � 4m2�=M
2
� and the other notations have been

explained above. For the experimental data (33) the esti-
mation8 � � �623� 81� MeV has been obtained for nf �
2 active quarks. The uncertainty here is because of the
errors of R�;V, jVudj, SEW, M�, and m�. The corresponding
infrared limiting value of the massive effective charge (26)
is ��1�

0 � 1:475� 0:170. The low-energy behavior of the
analytic running coupling in the spacelike and timelike
domains [Eqs. (25) and (29), respectively] is presented in
Fig. 4.
8It is worthwhile to note here that the one-loop perturbative
analysis of the strong correction in Eq. (32) (see, e.g., Ref. [53])
gives the value of the QCD scale parameter � � �690� 57�
MeV for two active quarks.
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Thus, in the framework of the approach in hand it proves
to be important to take into account the mass of the �
meson in processing the low-energy QCD data.
Specifically, the relative difference between the obtained
estimations of the scale parameter � for the massive and
massless cases is about 20%. This is so by virtue of the fact
that the contribution to the strong correction (34) of the
effects due to the pion mass

-,�1�
QCD�M

2
�; m

2
�� �

4

�0

Z -0

0
�-3 � 2-2 � 2� �1��-��d-

(38)

turns out to be significant. At the same time, since the
scales involved in the integral (38) are very low, for some
models for the analytic running coupling the difference
between the limits of massive and massless � meson may
not be so sizable. For example, in the case of the Shirkov-
Solovtsov model [25], where the relevant spectral density
reads as  �1�

ss �� � 1=�ln2� �2�, the relative difference
between the values of the QCD scale parameter, extracted
from the experimental data on the inclusive � lepton decay
(33), is about 1%, but the obtained estimations appear to be
rather large. Namely, at the one-loop level with nf � 2
active quarks one gets the values � � �965�280�212� MeV for
the case of the massless � meson, and � �
�976�281�213� MeV for the nonvanishing pion mass.
VI. APPLICABILITY TO THE CHIRAL
SYMMETRY BREAKING

Based on the study of gauge invariant Schwinger-Dyson
equations, Cornwall proposed a long time ago that the self-
interactions of gluons give rise to a dynamical gluon mass,
while preserving at the same time the local gauge symme-
try of the theory [29]. This gluon ‘‘mass’’ is not a directly
measurable quantity, but has to be related with other physi-
cal quantities, such as the glueball spectrum, the energy
needed to pop two gluons out of the vacuum, the QCD
string tension, or the QCD vacuum energy (see paper [58],
and references therein).

One of the main phenomenological implications of this
analysis is that the presence of the gluon mass mg satu-
rates9 the running of the strong coupling at low energies.
Namely, instead of increasing indefinitely in the infrared,
as perturbation theory predicts, it ‘‘freezes’’ at a finite
value, determined by the gluon mass. In particular, the
nonperturbative effective coupling obtained in Ref. [29]
is given by

�C�q
2� �

4�
�0

1

ln�z� 4M2
g�q2�=�2	

; z �
q2

�2
; (39)
9Another discussion of the impact of the gluon mass on the
infrared behavior of the strong running coupling can be found,
e.g., in Ref. [59].
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FIG. 6. A typical dependence of .�0� on the infrared limiting
value of the QCD effective charge ��0�, S�1�p� � A�p�6p�
.�p�.
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where Mg�q
2� denotes the dynamical gluon mass

M2
g�q2� � m2g

�
ln�z� 4m2g=�

2�

ln�4m2g=�2�

�
�12=11

: (40)

Here the nontrivial dependence of the dynamically gener-
ated gluon mass (40) on the momentum q2 is crucial for the
renormalizability of the theory. The running coupling (39)
has the infrared finite limiting value �C�0� �
4���0 ln�4m2g=�2�	�1. It is worth noting that the above
equation makes sense only for the gluon mass satisfying
mg >�=2. For typical values of mg � 500 MeV and � �

300 MeV, one obtains for the case of the pure gluodynam-
ics (nf � 0) an estimation �C�0� ’ 0:5. An independent
analysis presented in Ref. [60] yields a maximum allowed
value for �C�0� of about 0.6. The incorporation of fermions
into the effective charge [61] does not change the picture
qualitatively (at least for the quark masses of the order of
�), resulting in an approximate expression

�cp�q2� �
4�

11 ln�z� $g� � 2nf ln�z� $q�=3
: (41)

In this equation $g � 4m2g=�
2, $q � 4m2q=�

2, a light
quark constituent mass is mq � 350 MeV [54], and mg �

�500� 100� MeV stands for the gluon mass. The effective
coupling of Eq. (39) was the focal point of extensive
scrutiny, and has been demonstrated to furnish an unified
description of a wide variety of the low-energy QCD data
[62].

In general, an important unresolved question in this
context is the incorporation of the QCD effective charge
into the standard Schwinger-Dyson equation governing the
dynamics of the quark propagator S�p�

S�1�p� � S�10 �p� � g2
Z d4k

�2��4
0�S")-�); (42)

see Fig. 5 also. In particular, since QCD is not a fixed point
theory, the usual QED-inspired gap equation must be
modified, in order to incorporate the running charge and
asymptotic freedom. The usual way of accomplishing this
eventually reduces to the replacement 1=k2 ! ��k2�=k2 in
the corresponding kernel of the gap equation, where ��k2�
is the QCD running coupling. The inclusion of ��k2� is
essential for arriving at an integral equation for S�p� which
is well behaved in the ultraviolet. Indeed, the additional
logarithm in the denominator of the kernel due to the
running coupling ��k2� improves the convergence of the
FIG. 5. Graphical representation of Eq. (42).
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integral. However, since the perturbative form of ��k2�
diverges at low energies as 1= ln�k2=�2� when k2 ! �2,
some form of the infrared regularization for the invariant
charge ��k2� is needed, whose details depend on the spe-
cific assumptions one is making regarding the nonpertur-
bative hadron dynamics. At this point the issue of the
critical coupling makes its appearance. Specifically, as is
well known, there is a critical infrared limiting value of the
running coupling, to be denoted by �cr, below which there
are no nontrivial solutions to the resulting gap equation,
i.e., there is no chiral symmetry breaking; see Fig. 6. Thus,
the invariant charge ��k2� employed within the gap equa-
tion must be such that (i) it gives rise to a nonsingular
answer, (ii) it reaches large enough values at k2 ! 0 in
order to overcome �cr, and (iii) it does not contradict
existing low-energy experimental results.

The incorporation of the effective charge of Eq. (39) into
a gap equation has been studied for the first time in
Ref. [63]. There it was concluded that chiral symmetry
breaking solutions for .�p� could be obtained only for
unnaturally small values of the gluon mass, namely
mg=� ’ 0:8. This is so because the typical value of �cr
found in the standard treatment of the gap equation10 is
�cr ’ 1:2 (see, e.g., Ref. [64]), which is what the expres-
sion for �C�0� yields for the above ratio of mg=�. This
issue was further investigated in Ref. [61], where a system
of coupled gap and vertex equations was considered. The
upshot of this study was that no consistent solutions to the
system of integral equations could be found, due to the fact
that the allowed values for ��0�, dictated by the vertex
equation, were significantly lower than �cr, i.e., not large
enough to trigger chiral symmetry breaking. A similar
analysis was presented in Ref. [65], together with several
10The exact value of �cr depends on the number of active
flavors as well as on the various approximations employed in
deriving the gap equations, such as the choice of gauge, or the
inclusion of gauge-technique inspired Ansätze for the quark-
gluon vertex, but these issues do not alter significantly our
qualitative discussion.
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FIG. 7. Comparison of the massive analytic running coupling
(25) (solid curves) with the effective charge (41) (dashed
curves). The values of parameters are the following: nf � 2
active quarks, � � 704 MeV (a), � � 542 MeV (b), gluon
mass mg � 400 MeV and � � 350 MeV (c), gluon mass mg �

600 MeV and � � 150 MeV (d).
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other models for the nonperturbative QCD running cou-
pling [66].

In what follows we will suggest a possible resolution of
this problem, inspired by the infrared behavior of the
massive analytic invariant charge of Eq. (25). The basic
observation is captured in Fig. 7. Namely, the effective
charge with a gluon mass (dashed curves) and the analytic
charge (solid curves) coincide for a large range of mo-
menta, and they only begin to differ appreciably in the deep
infrared domain k2 & �2. In this region the analytic charge
(25) rises abruptly, almost doubling its size between k2 �
�2 and k2 � 0, whereas the running coupling (41) in the
same momentum interval remains essentially fixed to a
value11 of about 0.6. A possible picture that emerges
from this observation is the following. It may be that the
concept of the dynamically generated gluon mass fails to
capture all the relevant dynamics in the very deep infrared,
where confinement or other nonperturbative effects make
their appearance. At that point it could be preferable to
switch to a description in terms of the analytic charge (25),
which (i) coincides with that of Cornwall in the region
where the latter furnishes a successful description of data,
and (ii) since it overcomes the critical value �cr, offers the
possibility of accounting for chiral symmetry breaking at
the level of gap equations.
11The precise numerical values of mg=� and m�=� do not chan
separated.
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VII. CONCLUSIONS

In this paper the effects due to the mass of the � meson
are incorporated into the analytic approach to QCD. The
nonvanishing pion mass gives rise to an infrared finite
limiting value for the QCD effective charge. Besides, the
latter acquires the plateaulike behavior in the deep infrared
domain of the timelike region 0 �

���
s

p
� 2m�. It is of a

particular interest to note that such stagnation is also
predicted by a number of phenomenological models for
the strong running coupling. The developed analytic effec-
tive charge is applied to processing the experimental data
on the inclusive � lepton decay. The effects due to the pion
mass play a substantial role here, affecting the estimation
of the QCD scale parameter �. A quantitative conclusion
on the applicability of the obtained massive running cou-
pling to the study of chiral symmetry breaking is drawn.

It would be interesting to further scrutinize the devel-
oped approach. First of all, it is of particular relevance to
include the higher order perturbative corrections in the
study of the experimental data on the inclusive � lepton
decay. Moreover, it might also be important to incorporate
the nonperturbative terms, arising from the operator prod-
uct expansion (see also Ref. [67]) and from the so-called
nonlocal chiral quark model [68], into the Adler D func-
tion. In addition, a detailed study of the gap equation, with
the analytic charged plugged into it, is needed in order to
verify if indeed one encounters nontrivial solutions, whose
size is phenomenologically relevant. Specifically, one
should check by making use of, e.g., the Pagels-Stokar
method [69], whether the solutions obtained for .�p� can
reproduce a reasonable value of the pion-decay constant
f�. It is also interesting to apply the developed model to
the study of the pion electromagnetic form factor F��q�
(see paper [70], and references therein). At the same time, a
crucial point to explore is whether the massive analytic
effective charge satisfies a variety of phenomenological
constraints, imposed by the low-energy experimental data
on the infrared behavior of the QCD running coupling, see,
e.g., papers [62,71], and references therein.
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ge qualitatively this picture, as long as the two scales are well
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