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We consider Wilson’s SU(N) lattice gauge theory (without fermions) at negative values of 8 = 2N/g?
and for N = 2 or 3. We show that in the limit 8 — —oo, the path integral is dominated by configurations
where links variables are set to a nontrivial element of the center on selected nonintersecting lines. For
N = 2, these configurations can be characterized by a unique gauge invariant set of variables, while for
N =3 a multiplicity growing with the volume as the number of configurations of an Ising model is
observed. In general, there is a discontinuity in the average plaquette when g2 changes its sign which
prevents us from having a convergent series in g2 for this quantity. For N = 2, a change of variables
relates the gauge invariant observables at positive and negative values of 8. For N = 3, we derive an
identity relating the observables at B8 with those at 8 rotated by =24/3 in the complex plane and show
numerical evidence for a Ising like first order phase transition near 8 = —22. We discuss the possibility of
having lines of first order phase transitions ending at a second order phase transition in an extended bare

parameter space.
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L. INTRODUCTION

It has been known from the early days of QED that
perturbative series have a zero radius of convergence [1].
This has not prevented Feynman diagrams to become an
essential tool in particle physics. However, perturbative
series need to be used with caution. The divergent nature
of QED series was foreseen by Dyson as a consequence of
the apparently pathological nature [1] of the ground state in
a fictitious world with negative e?. Like charges then
attract and pair creation can be invoked to produce states
where electrons are brought together in a given region and
positrons in another. Dyson concludes that as this process
sees no end, no stable vacuum can exist.

For Euclidean lattice models, related situations are en-
countered. For scalar field theory with /\d)“ interactions,
configurations with large field values make the path inte-
gral ill-defined when A < 0 (provided that no higher even
powers of ¢ appear in the action with a positive sign and
that the path of integration is not modified). Modified series
with a finite radius of convergence can be obtained by
introducing a large field cutoff [2,3]. We are then consid-
ering a slightly different problem. In simple situations [4],
it is possible to determine an optimal value of the field
cutoff that, at a given order in perturbation, minimizes or
eliminates the discrepancy. For nonabelian gauge theories
in the continuum Hamiltonian formulation, the substitution
g — ig makes the quartic part unbounded from below and
the cubic part nonhermitian.

It should be noted that in quantum mechanics [5], it is
possible to change the boundary conditions of the
Schrédinger equation in such a way that the spectrum of
an harmonic oscillator with a perturbation of the form ix?
or —x* stays real and positive. The procedure can be
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extended to scalar field theory in order to define a sensible
i¢* theory [6]. Even though conventional Monte Carlo
calculations would fail for these models, complex
Langevin methods can be used to calculate Green’s func-
tions [7].

In the case of lattice gauge theory with compact gauge
groups, the action per unit of volume is bounded from
below and there is no large field problem. Consequently,
these models have well-defined expectation values when
g> <0 and we can consider the limit g2 — 0~. In this
article, we discuss the behavior of Wilson loops for
SU(N) lattice gauge theory with g> <0. This work is
motivated by the need to understand the unexpected be-
havior of the lattice perturbative series for the 1 X 1 pla-
quette calculated up to order 10 [§—10]. An analysis of the
successive ratios [11,12] may suggest that the series has a
finite radius of convergence and a nonanalytic behavior
near B = 5.7 in contradiction with the general expectations
that the series should be asymptotic and the transition from
weak to strong coupling smooth.

We consider here pure (no fermions) gauge models with
a minimal lattice action [13]. For definiteness this model
and our notations are defined in Sec. II. The extrema of the
action are discussed in III and enumerated for SU(2) and
SU(3). We then discuss (Sec. IV) the case of SU(2) and
show that planar Wilson loops with an area A (in plaquette
units) pick up a factor (—1)* when g> becomes negative
and the behavior for g2 < 0 is completely determined by
the behavior with g2 > 0. As the Wilson loops are nonzero
when g2 — 07, the ones with an odd area have a disconti-
nuity which invalidates the idea of a regular perturbative
series.

The case of SU(3) is discussed in Sec. V where we
derive identities involving Wilson loops calculated with a
coupling rotated by =*27/3 in the complex plane.
Consequently, for N = 3, we have no a-priori knowledge
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regarding the behavior of Wilson loops when g2 < 0. We
report numerical evidence for a first order phase transition
near B = 6/g* =~ —22 using methods similar to Ref. [14].
The implications of our findings are summarized in the
conclusions.

II. THE MODEL, NOTATIONS

In the following, we consider the minimal, unimproved,
lattice gauge model originally proposed by K. Wilson [13].
Our conventions and notations are introduced in this sec-
tion for definiteness. We consider a cubic lattice in D
dimensions. A SU(N) group element is attached to each
link / and U, denotes its fundamental representation. U,
denotes the conventional product of U, (or hermitian con-
jugate) along the sides of a 1 X 1 plaquette p. The minimal
action reads

S = B> [1 = (1/N)ReTr(U,)] (1)
p

with B8 = 2N/g?. The lattice functional integral or parti-
tion function is

Z= ]‘[de,e—S )
1

with dU, the SU(N) invariant Haar measure for the group
element associated with the link /. The average value of
any quantity &) is defined as usual by inserting £ in the
integral and dividing by Z.

In the following, we consider symmetric finite lattice
with LP sites and periodic boundary conditions. For rea-
sons that will become clear in the next sections, L will
always be even. The total number of 1 X 1 plaquettes is
denoted

N ,=L°D(D —1)/2 3)
Using
f=-0/N,)nz )
we define the average density

P(B) = 0af/9B = (/N )OI = (1/N)ReTr(U,))).
p
(%)

In statistical mechanics, f would be the free energy density
multiplied by 8 and P the energy density. In analogy we
can also define the constant volume specific heat per pla-
quette

Cy = —p%P/3B. ©)

III. THE LIMIT 8 — —

In the limit 8 — —oo, we expect the functional integral
to be dominated by configurations which maximize
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>pll = (1/N)ReTr(Up)]. In the opposite limit (8 —
+00), the same quantity needs to be minimized which
can be accomplished by taking U; as the identity
everywhere.

We first consider the question of finding the extrema of
TrU. For our study of the behavior when 8 — —oo0, we are
particularly interested in finding absolute minima of TrU.
Using TrU = Tr(VUVT) for V unitary, U = e with H

iVHV

traceless and hermitian, and Ve'Vi=e , we can di-

agonalize H and write

N-1 N-1
ReTrU = Z cos(¢p;) + cos(Z d)i). @)
i=1 i=1

The extremum condition then reads
N—1
sin(¢;) + sin(X (b,-) =0, (8)
i=1

fori =1, ... N — 1. The trivial solution is all ¢»; = 0. We
then have ReTrU = N which is an absolute maximum.

For N = 2, we have only one nontrivial solution ¢ =
7, which corresponds to the nontrivial element of the
center U = —1. We then have ReTrU = —2 which is an
absolute minimum.

For N = 3, we have five nontrivial solutions. Two cor-
respond to the nontrivial elements of the center (¢; =
¢, = *2/3). The matrix of second derivatives has two
positive eigenvalues and these two solutions correspond to
a minimum. We use the notation = e?7/31 on the
diagonal. We have ReTr(Q) = —3/2, which we will see is
an absolute minimum. The other three solutions are (¢ =
T, ¢ =0), (¢ =0,¢y=m) and (¢, =7, ¢y = 7).
They correspond to elements conjugated to diagonal ma-
trices belonging to the three canonical SU(2) subgroups
with the SU(2) element being the non trivial center ele-
ment. These three solutions have matrices of second de-
rivatives with eigenvalues of opposite signs and correspond
to saddle points rather than minimum or maximum. In the
three cases ReTrU = —1.

For general N, it is clear that we can always find at least
one group element U such that ReTrU is an absolute
minimum. In particular, for N even, U = —1 is such a
group element, with ReTrU = —N (the individual matrix
elements must have a complex norm less then one). For
N =3 and odd, it is easy to check that all ¢; = (N —
1)ar/N is a solution of the extremum condition Eq. (8). For
this choice, ReTrU = —N|cos[(N — 1)ar/N]| which is
clearly negative and tends to —N as N becomes large.
This solution (the element of the center the closest to
—1) gives an absolute minimum of 7rU for N = 3 and
we conjecture that it is also the case for larger N.

We can now obtain an absolute minimum of the action if
we can build a configuration such that ReTrUp takes its
absolute minimum value for every plaquette. This can be
accomplished by the following construction. In the
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Appendix, we show that (at least for D = 4) and for L
even, it is possible to construct a set of lines on the lattice
such that every plaquette shares one and only one link with
this set of lines. We call such a set of links &. One can then
put an element which gives an absolute minimum of
ReTrU on the links of & and the identity on all the other
links. For SU(2), there is only one possible choice that
minimizes ReTrU, namely U = —1. For SU(3), there are
two possible choices U = Q or U = Q1. We emphasize
that the construction only works for L even. If L is odd,
there will be lines of frustration in every plane.

The set of links & is not unique. Starting with a given set,
we can generate another one by translating the lines by one
lattice spacing or rotating them by 7/2 about the lattice
axes. By direct inspection, it is easy to show that for D = 2
there are 4 such a sets of lines while for D = 3 there are
eight of them.

Enumerating all the gauge inequivalent minima of the
action at negative B for arbitrary D and N appears as a
nontrivial problem. In the rest of this section, we specialize
the discussion to N =2 or 3. In order to discriminate
among gauge inequivalent configurations, it is useful to
make the following (gauge invariant) argument: in order to
have an absolute minimum of the action, for every 1 X 1
plaquette p, the product U ,(n) of the U, along p starting at
any site n of p, is a nontrivial element of the center. Under
alocal gauge transformation, U ,(n)— V(n)U,, m)V(n)t =
U,(n) since U,(n) commutes with any SU(N) matrix. For
the same reason, changing n along the plaquette amounts
to a VUV conjugation and has no effect on the center.
Consequently, configurations with a different set of 1l =
{U,} are not gauge equivalent. One can think of 1 as a set
of electric and magnetic field configurations.

For SU(2), there is only one, uniform, set 1l where all the
elements U, = —1. For D = 2, this can be realized in four
different ways by putting —1 on the four distinct sets L.
These four configurations are all gauge equivalent. The
gauge transformations that map these four configurations
into each others can be obtained by taking V = —1 on
every other sites of the lines of ¥. For D = 3, it is also
possible to show that the eight configurations that can be
constructed with a similar procedure can also be shown to
be gauge equivalent. The gauge transformation can be
obtained by taking V = —1 on every other sites of the
lines of ¥ pointing in two particular directions and in such
way that one half of the lines created by the gauge trans-
formation associated with one direction “‘annihilate’” with
one half of the lines created by the gauge transformation
associated with the other direction. We conjecture that in
higher dimensions, the configurations that minimize the
action for SU(2) are also related by gauge transformations.

For SU(3) the situation is quite different because for
every link of a particular &, we have two possible non-
trivial element of the center. Since there are N, =
LPD(D — 1)/2 plaquettes on a LP lattice and one link of
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& per plaquette, shared by 2(D — 1) plaquette, we have
DLP /4 links in any {. Picking a particular &, it possible to
construct 2PL°/4 distinct 11. Consequently, there are at least
2PLP/4 gauge inequivalent minima of the action for SU(3).
Note that 2PL°/4 always is an integer for L even, which has
been assumed. In the case D = 4, the degeneracy is simply
2L* which is the same as the number of confi gurations of an
Ising model on a L* lattice.

In summary, we predict a discontinuity in P as g°
changes sign. In the limit 8 — + o0, we have P — 0, while

in the limit 8 — —oo, we expect P — 2 for N even, and
1 + | cos[(N — 1)ar/N]| for N odd.

IV. N=2

In this section we discuss SU(2) gauge theories at nega-
tive B. The basic idea is that it is possible to change
BReTrU, into —BReTrU, by making the change of
variables U; — —U, for every link [ of a particular .
Since —1 is an element of SU(2) and since the Haar
measure is invariant under left or right multiplication by
a group element, this does not affect the measure of inte-
gration. Consequently, we have

Z(=B) = N Z(B). ©))
Taking the logarithmic derivative as in Eq. (5), we obtain
P(B) + P(—=B) = 2. (10)

This identity can be seen in the symmetry of the curve
P(B) shown in Fig. 1. The validity of Eq. (10) can be
further checked by calculating the difference

A(B) = |P(B) + P(—B) — 2|, (1D
which should be zero except for statistical fluctuations.

Figure 2 illustrates this statement and shows that the sta-
tistical errors of our calculations are of order 10~ or less.

S'U(Z.)
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1.5} . .

P i.of -
0.5} . ]

.
'“uuouunoouuug

0.0
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B

The average action density P(83) for SU(2).

FIG. 1.
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FIG. 2. A(B) defined in Eq. (11) versus B.

The relation between P(* ) of Eq. (10) together with
the assumption that P(+00) = 0, is in agreement with the
statement made in Sec. III that P seen as a function of g> =
2N/ 3, jumps discontinuously by two as g becomes nega-
tive. This invalidates the idea that P could have a regular
expansion about g?> =0 with a nonzero radius of
convergence.

This relation can also be used in the opposite limit and
expanded about 8 = 0. The odd terms cancel automati-
cally. The even terms of order two and higher add and
cannot cancel. Consequently, the even coefficients of the
strong coupling expansion of P(8) and the odd coefficients
of the free energy should vanish, in agreement with explicit
calculations [15].

The discontinuity at g> = 0 can be extended to Wilson
loops of odd area (in plaquette units). To see this, let us
consider a Wilson loop W(C) with C a contour that is the
boundary of an area made out of A plaquettes. For sim-
plicity, let also assume that this area is connected and has
no self-intersections. Under the change of variables U; —
— U, for every link [ of an arbitrary set ¥, we have W(C) —
(—1)AW(C). This follows from the fact that for any line,
the parity of the number of links of C shared with this line,
is the same as the number of plaquettes of the area in
contact with this lines. Since & shares a link with every
plaquette, we obtain the desired result. This can be sum-
marized as

(W(C)-p = (=DUW(C))p. (12)

We can now try to interpret the change of the Wilson
loop with the area in a term of a potential. We consider a
rectangular R X T contour C and write

W(R, T, B) = (W(C))g x e ERAT. (13)
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From Eq. (12) this implies
E(R, —|Bl) = E(R,|B]) + imR. (14)

This property can be related to the fact that the configura-
tions of minimum action are invariant under translations by
two lattice spacings but not under translations by one
lattice spacing. This also confirms our expectation that
the hamiltonian develops a nonhermitian part.

V.N=3

For N = 3, —1 is not a group element and the closest
thing to the change of variables used for N = 2 that we can
invent is a multiplication by a nontrivial element of the
center {1 for the links of a particular set £. We then obtain

3 Re{*TrU,—ReTrU,
Z(¢B) = e1-0BN, 7(B) X <e(ﬁ/ )gg £ ')> )
B
15)
In the case N = 2, { is replaced by —1, (...)s becomes 1
and we recover Eq. (9). In the case of SU(3), the factor
(...)g prevents us from deriving an exact identity analog to
Eq. (10) for SU(2). It is however possible to obtain an
approximate generalization which is a good approximation
for small B. Setting 8 = (*x, taking the logarithmic de-
rivative with respect to x and setting x = {3, we obtain

P(EB) =1—="+ *P(B) + O(P). (16)
Taking the real part and using 1 + ¢ + {? = 0, we obtain

P(B) + P({B) + P({*B) =3+ O(B%,  (17)

which can be seen as an approximate SU(3) version of
Eq. (10). The cancellation of the terms of order 1, 2,4 and 5
occurs independently of the values of the coefficients at
these orders. The absence of contribution of order 3 and the
presence of a nonzero contribution at order six comes from
the fact [16] that /n(Z)/t, has a zero (nonzero) contribu-
tion at order 4 (7).

As it does not seem possible to obtain P(B) for B real
and negative from our knowledge at B real and positive, we
have to resort to a direct numerical approach. The results
are shown in Fig. 3. A discontinuity near 8 = —22 is
clearly visible. This indicates a first order phase transition.

The metastable branches have been studied following
the approach of M. Creutz [14] used to study of a fist order
transition for SU(5). As 8 becomes more and more nega-
tive, the system becomes more ordered but has also higher
average energy P, the supercooled/heated terminology
may be confusing and will be avoided.

We have run Monte Carlo simulations on a 8* lattice at
B = —22 with four different initial configurations. Our
best estimate of the critical 8 for this volume is —22.09.
The first initial configuration was completely ordered (in
the B — —oo sense, with P = 1.5) by putting a nontrivial
element of the center on a set of lines . As we set 8 =
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SU(3)
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FIG. 3. The average action density P(8) for SU(3)

—22, we expect to stay on the upper branch and end up
with P = 1.39 (black dots in Fig. 4) for many iterations.
The second configuration was completely random (empty
circles) and stayed on the lower branch when 3 was set to
—22,toend up at P = 1.34. The third configuration (empty
squares) was initially random, we then temporarily set 8 =
—27 letting P go up to 1.38, expecting to reach lower
metastable branch. When S is set to —22, P stabilized to
the lower value 1.34. Finally, we prepared a fourth initial
configuration (empty triangles) by first setting a nontrivial
element of the center on a given ¥ and then temporarily
setting 8 = —17 until P is near 1.35 expecting to reach the
upper metastable part. When g is finally set to —22, we
reach the upper branch value P = 1.39. Figure 4 is quite
similar to Fig. 1 of Ref. [14] and has the same type of
crossings.

) v ) v ! v I
1.40¢ i
C0a00,40000000,0,8,080660R60,000,0205621

A

1.38} .

1.36}¢- -
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00540
[a} UDEDHEUDTDHHHDLHLF 5
OnO ,‘oooo\'ms:);s@«/BDSQQSDUUQE

1.34 [~ QOUOOOI:‘D o0-o000 !

1.32L— : -
0 50 100 150

iterations

200

FIG. 4. P as a function of iterations for the four initial con-
figurations described in the text.
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We believe that the first order transition observed above
is similar to the one observed [17] for the D = 4 Z, gauge
theory. This model is dual to a nearest neighbor Ising
model. In Fig. 5, we show histograms of the distribution
of ImU below, near and above the transition. ImU allows
to separate the two nontrivial elements of the center ) and
Q. As B becomes more negative and goes through the

Distribution

3 -2 -1 0 1 2 3

Im(Tﬁqg

FIG. 5. Distribution of ImTrU for three values of .
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transition, a broad distribution around O develops two
bumps which keep separating and sharpening as one would
observe in an Ising model.

The transition can also be seen as a singularity in the
specific heat defined in Eq. (6) as shown in Fig. 6. As
expected the height of the peak increases with the volume.
The location of the transition sightly moves left as the
volume increases.

Finally, we would like to compare the decay of the
Wilson loop at negative B for SU(2) and SU(3). In
Fig. 7, we have plotted the Wilson loop (W(1, R)) for these
two groups. For SU(2) we observe the same decay as at
positive B but with alternated signs as predicted in Sec. I'V.
For SU(3), the decay is much faster than at the positive
value of 8 and show that the sign alternates as long as the
signal is larger than the statistical fluctuations (namely for
R =6).

The sign alternates at relatively low values of |8|. This
agrees with the strong coupling expansion which predicts a
(—1B1/18)®*1 behavior for B negative and small in ab-
solute value.

VI. CONCLUSIONS

We have studied lattice gauge theories at negative 3.
Wilson loops are well-defined and calculable with the
Monte Carlo method. However, the limits 8 — *oo of P
differ and an expansion in g2 « 1/ cannot have a finite
radius of convergence. This statement has been substanti-
ated for N = 2 and 3, but from the discussion of Sec. III, it
seems clear that it should extend to general N.

We found a first order phase transition near 8 = —22.
At this point, it seems unrelated to the known transition
near 8=~ +6 and branch cuts in the complex plane dis-
cussed by J. Kogut [18]. However, a more complete picture
may appear if we study P for a larger class of action. It is
conceivable that by introducing a linear combination of

f ]
o i '.

c 8 B .\: A i
v ° °®
8 A 4 \.l .\./ \O °
6 6+4 0| A\AA AT
al 4r4 |

0
e R \ A
N aﬁé/‘&’fnﬁé ADADALANDSEN D

—22.2 -22.1 -22.0 -21.9 -21.8

B

FIG. 6. The specific heat Cy versus [ near the first order phase
transition.
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—~ =-1.0t _ -
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o 2.0 ———— ]
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| / R
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FIG. 7. The Wilson loop (W(1, R)) at 8 = *2.5 for SU(2) and
B = =6 for SU(3).

terms involving larger contours than the 1 X 1 plaquette,
multiplied by one free parameter, we could create a line of
first order phase transition ending at a second order phase
transition. Another possibility would be to add an adjoint
term as in Ref. [19]. Finding new second order phase
transitions would allow us to define a nontrivial continuum
limit.
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APPENDIX: MAXIMAL SETS OF NON-
INTERSECTING OF LINES ON A CUBIC LATTICE

In this Appendix, we consider a D dimensional cubic
lattice. We restrict the use of ““line’’ to collections of links
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along the D principal directions of the lattice and the use of
“plane” to collections of plaquettes along the D(D — 1)/2
principal orientations. In other words, these objects are
lines and planes in the usual sense, but we exclude some
“oblique’ sets that can be constructed out of the sites.

We now try to construct a set of lines such that every
plaquette shares one and only one link with this set. It is
obvious that these lines cannot intersect, otherwise, at the
point of intersection and in the plane defined by the two
lines, we could fit four plaquettes, each sharing two links
with the lines. These lines cannot be obtained from each
other by a translation of one lattice spacing in one single
direction, otherwise the set of lines would share two oppo-
site links on the plaquettes in between the two lines.

For D = 2, the problem has obvious solutions, we can
pick for instance a set of vertical lines separated by two
lattice spacings. Using translation by one lattice spacing
and rotation by /2, it is possible to obtain three other
solutions. For D > 2, it is sufficient to show that for every
plane (in the restricted sense defined above), we have a
D = 2 solution. As this restricted set of planes contains all
the plaquette ounce, we would have then succeeded in
proving the assertion. If such a solution exists, it is invari-
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ant by a translation by two lattice spacing in any direction.
Consequently, we only need to prove the existence of the
set of lines on a 2 lattice with periodic boundary con-
ditions. The full solution is then obtained by translation of
the 2P solution. If the lattice is finite, this only works if L is
even, an assumption we have maintained in this article.

On a 2P lattice, the lines (as defined above) are con-
structed by fixing D — 1 coordinates values to be 0 or 1 and
leaving the remaining coordinate arbitrary. For instance,
for D = 3, a line in the third direction coming out of the
origin will be denoted (0, 0, A) where A stands for arbitrary
and means O or 1. In general D, there are D2P~! such lines.
Consequently, there are D2P links, each shared by 2(D —
1) plaquettes. There are thus D2P2(D — 1)/4 = D(D —
1)2P~1 plaquettes. A set of lines which has exactly one link
in common with every plaquette, has D(D —
1)2P~1/[2(D — 1)] = D272 links in other words it must
contain D2P73 lines. For D = 2, such a set has only one
line and there are four possible choices. For D = 3, an
example of solution is {(4, 0, 0), (0, A, 1), (1, 1, A)}. Tt is not
difficult to show that there are eight distinct solutions of
this type. For D = 4, a solution consists in eight lines. An
example of solution is

{(4,0,0,0),(0,4,0,1),(0,1,A,0),(0,0, 1, A), (1,1,0,A), (1,0, A, 1), (1,A, 1,0), (A, 1, 1, 1)}.
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