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Vacuum alignment in technicolor models provides an attractive origin for the quarks’ CP violation and,
possibly, a natural solution for the strong-CP problem of QCD. We discuss these topics in this paper. Then
we apply them to determine plausible mixing matrices for left and right-handed quarks. These matrices
determine the Cabibbo-Kobayashi-Maskawa matrix as well as new mixing angles and phases that are
observable in extended technicolor (ETC) and topcolor (TC2) interactions. We determine the contribu-
tions of these new interactions to CP-violating and mixing observables in the K0, Bd and Bs systems.
Consistency with mixing and CP violation in the K0 system requires assuming that ETC interactions are
electroweak generation-conserving even if technicolor has a walking gauge coupling. Large ETC gauge
boson masses and small intergenerational mixing then result in negligibly small ETC contributions to
B-meson mixing and CP violation and to Re��0=��. We confirm our earlier strong lower bounds on TC2
gauge boson masses from Bd– �Bd mixing. We then pay special attention to the possibility that current
experiments indicate a deviation from standard model expectations of the values of sin2	 measured in
Bd ! J= KS, KS, �0KS, and �KS, studying the ability of TC2 to account for these. We also determine
the TC2 contribution to 	MBs and to Re��0=��, and find them to be appreciable.
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1Appendix A contains our estimates of METC=gETC in generic
TC2 models with walking technicolor.

2Electroweak SU�2� and U�1�1;2 commute.
3We assume throughout this paper that the effective U�1�1

coupling should be strong, at least for the top and bottom quarks,
so that the SU�3�1 coupling does not need to be fine-tuned for top
condensation. This raises the concern that the U�1�1 coupling has
I. INTRODUCTION AND OVERVIEW

In this paper we study predictions of topcolor-assisted
technicolor models for CP violation in the K0 and B0

systems. We are particularly interested in determining
whether these or similar models with CP-violating
flavor-changing neutral currents can account for the appar-
ent discrepancies with standard model predictions of the
parameters measured in Bd ! J= KS, KS, �0KS and
�KS [1–5]:

sin2	J= KS � �0:72� 0:05 �1	

sin2	KS � �0:50� 0:25 �Babar �2	�

sin2	KS � �0:06� 0:33 �Belle �3	�

sin2	�0KS � �0:27� 0:21 �4	

sin2	�KS � �0:48�0:38

0:47 � 0:11 �5	

(1)

Topcolor-assisted technicolor (TC2) is the most fully-
developed dynamical description of electroweak and flavor
physics (for recent reviews, see Refs. [6,7]). It consists of
strong technicolor (TC) and topcolor gauge interactions
that induce spontaneous breakdown of electroweak
SU�2� �U�1� symmetry to U�1�EM and a large top-quark
condensate h�tti � �100 GeV�3 and mass mt ’ 170 GeV.
The strong gauge groups, plus color and at least part of
electroweak U�1�, are embedded in an extended techni-
color (ETC) gauge group GETC [8] which, when broken at
high energies, provides the 5 MeV to 5 GeV hard masses
of all standard model fermions, including the top-quark.
The masses of ETC gauge bosons range from METC ’ 10–
address: aomartin@bu.edu
address: lane@bu.edu
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50 TeV for mq�METC� ’ 5 GeV up to METC ’ 2000–
20; 000 TeV for mq�METC� ’ 5 MeV.1 Such large ETC
masses for the light quarks are necessary to adequately
suppress their CP-conserving and violating j	Sj � 2 in-
teractions. Reasonable quark masses are then possible
because of the ‘‘walking’’ technicolor gauge coupling
[9–12] that strongly enhances the technifermion conden-
sate h �TTiETC.

In TC2 models, the large top, but not bottom, condensate
and mass is due to SU�3�1 �U�1�1 gauge interactions
which are strong near 1 TeV [13]. The SU�3�1 interaction
is t–b symmetric while U�1�1 couplings are t–b asym-
metric.2 In particular, the U�1�1 hypercharges of t and b
must satisfy Y1LtY1Rt > 0 and, probably, Y1LbY1Rb < 0 (see
Sec. IV). This makes these forces supercritical for breaking
the top-quark chiral-symmetry, but subcritical for bottom.3

There are weaker SU�3�2 �U�1�2 gauge interactions in
which light quarks (and leptons) may or may not
participate.

For TC2 to be consistent with precision measurements
of the Z0 [15], the two U�1�’s must be broken to weak
hypercharge U�1�Y at an energy somewhat higher than
1 TeV by electroweak-singlet condensates [16]. This
a Landau pole at low energy [14]. One resolution of this
difficulty is that the embedding of U�1�1 and other TC2 gauge
groups into GETC—necessary to avoid an axion [8]—occurs at a
low enough energy to forestall the Landau pole.
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breaking results in a heavy color-singlet Z0 boson which
plays a central role in this paper. The two SU�3�’s are
broken at 1 TeV to their diagonal SU�3�C subgroup—
ordinary color. A massive octet of ‘‘colorons’’, V8, mediate
the broken topcolor SU�3� interactions.

There are two variants of TC2: The ‘‘standard’’ version,
which we denote STC2 [13], in which only the third
generation quarks are SU�3�1 triplets. The third generation
quarks also transform underU�1�1. Whether the lighter two
quark generations also transform under U�1�1 is a model-
dependent question. In this paper we assume that they do.
Indeed, in some models, U�1�1 anomaly cancellation may
require it [16]. In STC2 strongly-coupled flavor-changing
neutral current (FCNC) interactions are mediated by both
V8 and Z0 exchange.4 In order that they not be prohibitively
large for the light quarks, the first two generations must
have flavor-symmetric U�1�1 hypercharges, i.e., for the
electroweak eigenstates,

Y1Lu � Y1Ld � Y1Lc � Y1Ls; Y1Ru � Y1Rc;

Y1Rd � Y1Rs:
(2)

The other variant is the ‘‘flavor-universal’’ version,
FUTC2 [17,18]. There, all quarks are SU�3�1 triplets.
The third generation quarks transform under U�1�1 and
we assume again that the light generations do too. In
FUTC2, only Z0 exchange induces new FCNC interactions.
Therefore, the U�1�1 hypercharges of light quarks must
satisfy Eq. (2) here as well. We consider both TC2 variants
in this paper.

In Sec. II we review vacuum alignment in technicolor
theories and show how this determines CP violation in
quark interactions. Vacuum alignment is the process in
which ETC and TC2 interactions lift the degeneracy of
the infinity of vacua associated with spontaneous breaking
of technifermion and quark chiral symmetries. It can in-
duce CP violation in a theory which is superficially CP
invariant. This leads to a new, natural scenario for solving
the strong-CP problem of QCD.5 Alignment generates the
matrices QL;R � �U;D�L;R that rotate left- and right-
handed up and down quarks from the electroweak basis
to the mass-eigenstate one. The Cabibbo-Kobayashi-
Maskawa (CKM) matrix is V � Uy

LDL. Observable
CP-violating phases appear in the ordinary weak interac-
tions through V and in the TC2 and ETC interactions
through QL;R. We review and update general constraints
on the form of the alignment matrices in Sec. II.

In Sec. III we describe the TC2 and ETC interactions
we use for B0 and K0 studies in later sections. Here we
show how the quark-alignment matrices enter these inter-
actions. We also discuss an important assumption we must
make for ETC interactions, namely, that they are electro-
4Of course, ETC interactions induce FCNC effects as well.
5Some of the material presented in Sec. II appeared in the

conference proceedings Refs. [7,19,20]
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weak generation-conserving. In Sec. IV we discuss the
main constraints on ETC and TC2 that arise from the
requirement that TC2 causes no quark other than the top
to condense, and from neutral meson mixing and CP
violation. Mixing of Bd and �Bd leads to lower bounds on
MV8

and MZ0 . We confirm the bounds found earlier in
Ref. [21], and we are in some disagreement with a later
study by Simmons [22]. In Sec. V we present the formal-
ism for calculating the TC2 contributions to Bd ! XKS.
Because of our assumption of electroweak generation
conservation, the ETC contributions are negligible.
Section VI is a brief review of the definition of the experi-
mental sin2	eff , as opposed to the standard model value,
�sin2	�SM � sin�2 arg�V�

td�	, where Vtd is the CKM matrix
element.

Section VII contains our main results. They are based on
three ‘‘models’’ of the quark mass matrix that are inspired
by the CP-violation scenario described in Sec. II. Once the
mass matrices are written down, the alignment matrices
QL;R are determined. We use these to compare the predic-
tions of TC2 with experiment for Bd ! J= KS, KS,
�0KS and �KS. We also calculate the influence of TC2
on xs � 	MBs=�Bs and Re��0=��. Our main conclusions
are these: (i) If DR is 2� 2 by 1� 1 block-diagonal—as
may be necessary to avoid excessive Bd– �Bd mixing, both
TC2 variants predict that the same value of sin2	 is
measured in all these processes and that this value is the
one expected in the standard model—even though TC2
may contribute appreciably to the decay amplitudes. (ii) If
DR is not block-diagonal, the value of sin2	 extracted
from Bd ! J= KS is the standard model expectation, but
other Bd ! XKS decays may lead to different values and
even fit the central values of current measurements.6 We
find that TC2 can account for discrepancies as large as
those in the central values of, say, the current Belle mea-
surement, but this typically requires large U�1�1 hyper-
charges, especially in the FUTC2 variant. These are
worrisome because they suggest the U�1�1 coupling has a
Landau pole at relatively low energies [14]. This problem
is less pronounced with STC2 than with FUTC2 because
the latter variant has only the Z0 to influence the decays.
(iii) Depending on the mixing angles in theDL;R alignment
matrices, we find that TC2 (plus the standard model) can
produce values of xs ranging from the experimental lower
bound of about 20 up to several hundred.

II. VACUUM ALIGNMENT AND CP VIOLATION IN
TECHNICOLOR

Quark CP violation in technicolor models is a conse-
quence of ‘‘vacuum alignment’’ [24–26]. The idea is
simple: In technicolor, large flavor/chiral symmetries of
6Burdman has recently carried out similar studies [23] in
which he considered the effects of warped extra dimensions
and of topcolor V8 (but not Z0) exchange.

-2



10In TC2 models with topcolor breaking by technifermion
condensation [16], N � 10. This large N raises the question of
technicolor’s contribution to precisely measured electroweak
quantities such as S, T, and U. Calculations that show techni-
color to be in conflict with precision measurements have been
based on the assumption that technicolor dynamics are just a
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the technifermions and quarks are spontaneously broken
when their dynamics become strong. This leads to an
infinity of degenerate vacua. The degeneracy is at least
partly lifted by ETC interactions which explicitly break all
global flavor symmetries. Vacuum alignment is the process
of finding the (perturbative) ground state which minimizes
the expectation value of the chiral-symmetry-breaking
Hamiltonian H 0. This Hamiltonian is generated by the
exchange of ETC gauge bosons and it is natural to assume
that it is CP-conserving. As Dashen first showed, however,
the ground state j�i which minimizes h�jH 0j�i may not
respect the same CP symmetry that H 0 does. In this case,
CP is spontaneously broken and j�i is discretely degen-
erate.7 As we discuss below, this scenario offers the possi-
bility of naturally solving the strong-CP problem of
QCD—without an axion and without a massless up quark.

New CP-violating phases are introduced into the K0 and
B0 decay amplitudes by quark-alignment matricesQL;R. To
understand how the QL;R are determined, we briefly de-
scribe vacuum alignment in technicolor theories. Readers
familiar with this material can skip to Eq. (12).

As in Ref. [27], we consider simple models in which a
single kind of technifermion interacts with itself and with
quarks via ETC interactions. Leptons are ignored. There
are N doublets of these technifermions, TL;RI �
�UL;RI;DL;RI�, I � 1; 2; . . . ; N, all assumed to transform
according to the fundamental representation of the TC
gauge group SU�NTC�. They are ordinary color-singlets.8

There are three generations of SU�3�C triplet quarks
qL;Ri � �uL;Ri; dL;Ri�, i � 1; 2; 3. Left-handed fermions
are electroweak SU�2� doublets and right-handed ones
are singlets. Here and below, we exhibit only flavor, not
TC and QCD, indices.

The joint T –q chiral flavor group of our model
is Gf � �SU�2N�L � SU�2N�R	T � �SU�6�L � SU�6�R	q.9

When the TC and QCD couplings reach critical values,
these symmetries are spontaneously broken to Sf �
SU�2N� � SU�6�. Rather than fix the symmetry-breaking
Hamiltonian and vary over the ground states, it is conve-
nient to work in a ‘‘standard vacuum’’ j�i whose symme-
try group is the the vectorial SU�2N�V � SU�6�V , and
chirally rotate H 0. Fermion bilinear condensates in j�i
have the simple form
7We are aware that spontaneous CP violation at 1 TeV implies
a significant domain-wall problem. Should this mechanism
prove successful, we are confident that cosmologists will find
a way to eliminate the problem.

8This is not correct for TC2 where some technifermions are
expected to be triplets under SU�3�1 or SU�3�2. This complica-
tion is not important for the analysis of K0 and B0 decays in later
sections.

9The fact that heavy quark chiral symmetries cannot be treated
by chiral perturbative methods will be addressed below. We have
excluded anomalous UA�1�’s strongly broken by TC and color
instanton effects. Therefore, alignment matrices must be
unimodular.
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h�j �ULIURJj�i � h�j �DLIDRJj�i � 
-IJ	T

h�j �uLiuRjj�i � h�j �dLidRjj�i � 
-ij	q:
(3)

Here, 	T ’ 2�F3
T and 	q ’ 2�f3� where FT �

246GeV=
����
N

p
is the technipion decay constant.10

We write the ETC Hamiltonian in the phenomenological
four-fermion form (sum over repeated flavor indices) 11

H 0 � H 0
TT �H 0

Tq �H 0
qq

� �TT
IJKL

�TLI0
1TLJ �TRK01TRL

��Tq
IijJ

�TLI01qLi �qRj01TRJ � h:c:

��qq
ijkl �qLi01qLj �qRk01qRl � LL and RR terms:

(4)

Here, the fields TL;RI and qL;Ri stand for all 2N technifer-
mions and six quarks, respectively. The � coefficients are
O�g2ETC=M

2
ETC� times ETC boson mixing factors and

group theoretical factors for the broken generators of
ETC. The LL and RR terms do not enter vacuum align-
ment, but they can be important for quark FCNC interac-
tions. The �’s may have either sign. In all calculations, we
must choose the �’s to avoid very light pseudoGoldstone
bosons (e.g., axions). Hermiticity of H 0 requires
��TT

IJKL�
� � �TT

JILK, etc., Assuming, for simplicity, that
color and technicolor are embedded in a simple nonabelian
ETC group, the instanton angles 4TC and 4QCD are equal.
Without loss of generality, we may work in vacua in which
they are zero. Then strong-CP violation in QCD is char-
acterized by �4q � argdet�Mq�, whereMq is the quark mass
matrix. The assumption of time-reversal invariance for this
theory before any potential breaking via vacuum alignment
then means that all the �’s are real and so �TT

IJKL � �TT
JILK,

etc.
scaled-up version of QCD [28–30]. However, this cannot be
because of the walking TC gauge coupling [7]. In walking
technicolor there must be something like a tower of spin-one
technihadrons reaching almost to the ETC scale, and these states
contribute significantly to the integrals over spectral functions
involved in calculating S, T, and U. Therefore, in the absence of
detailed experimental knowledge of this spectrum, including the
spacing between states and their coupling to the electroweak
currents, it is not possible to calculate S, T, U reliably.

11We assume that ETC interactions commute with electroweak
SU�2�, though not with U�1� nor color SU�3�. All fields in
Eq. (4) are electroweak, not mass, eigenstates. In writing H 0,
we assume that topcolor breaking to SU�3�C �U�1�Y has oc-
curred. Broken topcolor interactions can always be put in the
form of terms appearing in H 0.
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13We shall assume that 0m remains small in FUTC2, even
though quarks have strong SU�3�1 interactions there.

14Two other sorts of corrections need to be studied. The first are
higher-order ETC and electroweak contributions to ETT . The
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Vacuum alignment now proceeds by minimizing the
expectation value of H 0 rotated by elements of Gf=Sf.
Make the transformations TL;R ! WL;RTL;R and qL;R !
QL;RqL;R, where WL;R 2 SU�2N�L;R and QL;R 2
SU�6�L;R. Then

H 0�W;Q� � H 0
TT�WL;WR� �H 0

Tq�W;Q�

�H 0
qq�QL;QR�

� �TT
IJKL

�TLI0W
y
LI0I0

1WLJJ0TLJ0

� �TRK0Wy
RK0K0

1WRLL0TRL0 � � � � : (5)

Since T and q transform according to complex repre-
sentations of their respective color groups, the vacuum
energy to be minimized has the form

E�W;Q� � h�jH 0�W;Q�j�i

� ETT�W� � ETq�W;Q� � Eqq�Q�

� 
�TT
IJKLWJKW

y
LI	TT


 ��Tq
IijJQijW

y
JI � c:c:�	Tq 
�qq

ijklQjkQ
y
li	qq

� 
�TT
IJKLWJKW

y
LI	TT�1� 7�: (6)

The factor 7 � O�10
11� is explained below. Vacuum
alignment must preserve electric charge conservation,
and so the minimum of E occurs in the subspace of
block-diagonal alignment matrices

WL;R �

�
WU
L;R 0
0 WD

L;R

�
; QL;R �

�
UL;R 0
0 DL;R

�
: (7)

Note that time-reversal invariance of the unrotated
Hamiltonian H 0 implies that E�W;Q� � E�W�; Q��.
Hence, spontaneous CP violation occurs if the solutions
W0, Q0 to the minimization problem are not real (up to an
overall ZN phase).

In Eq. (6), 	TT , 	Tq and 	qq are positive four-fermion
condensates in the standard vacuum, j�i. They are renor-
malized at the appropriate METC scale and are given ap-
proximately by

	TT ’ �	T�METC�	
2

	Tq ’ 	T�METC�

	q�METC�	qq ’ �	q�METC�	
2:

(8)

In walking technicolor (see Appendix A)

	T�METC� & �METC=�TC�	T��TC�

� 102 
 104 � 	T��TC�: (9)

In QCD, however,12
12In TC2, Eq. (10) must be modified to account for the
embedding of SU�3�C into SU�3�1 � SU�3�2 and the latter
group’s embedding into GETC.
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	q�METC� ’ �log�METC=�QCD�	
0m	q��QCD�

’ 	q��QCD�; (10)

where the anomalous dimension 0m of �qq is small.13 Thus,

7 �
	Tq�METC�

	TT�METC�
’
	qq�METC�

	Tq�METC�
’

�TC

METC

�
f�
FT

�
3

& 10
11

(11)

for FT ’ 100 GeV. This ratio is 102–104 times smaller
than it is in a technicolor theory in which the coupling does
not walk.

The last line of Eq. (6) makes clear that we should first
minimize the energy ETT in the technifermion sector.
Because W may be assumed block-diagonal, ETT factor-
izes into two terms, EUU � EDD, in whichWU andWD may
each be taken unimodular. We may then minimize sepa-
rately in the U and D sectors. This determines W0 �
�WU

0 ; W
D
0 � , and as we shall see, �4q, up to corrections of

O�10
11� from the quark-sector.14 This result is then fed
into ETq which is minimized to determine Q0—and the
nature of weak CP violation in the quark-sector—up to
corrections which are also O�10
11�.

In Ref. [27], it was shown that minimizing ETT leads
to three possibilities for the phases in W. (We drop
its subscript ‘‘0’’ from now on.) Let us write
WIJ � jWIJj exp�iIJ�. Consider an individual term,

�TT

IJKLWJKW
y
LI	TT , in ETT . If �TT

IJKL > 0, this term is
least if IL � JK; if �TT

IJKL < 0, it is least if IL �
JK � �. We say that �TT

IJKL � 0 links IL and JK, and
tends to align (or antialign) them. Of course, the constraints
of unitarity may partially or wholly frustrate this align-
ment. The three cases for the phases IJ are:
(1) T
electro
The sec
if the t
Glasho
correct

-4
he phases are all unequal, irrational multiples of �
that are random except for the constraints of unitar-
ity and unimodularity.
(2) A
ll of the phases are equal to the same integer
multiple of 2�=N (mod �). This may occur when
all phases are linked and aligned, and the value
2�=N is a consequence of the unimodularity of
WU and WD. In this case we say that the phases
are ‘‘rational’’.
(3) S
everal groups of phases may be linked among
themselves but not with others. The phases may
then be only partially aligned and they take on
weak ones are naively O�10 �, much too large for �4q.
ond are due to �Tt�tT terms in ETq which may be important
op condensate is large. Wethank J. Donoghue and S. L.
w for emphasizing the potential importance of these
ions.
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various rational multiples of �=N0 for one or more
integers N0 from 1 to N.
As far as we know, such nontrivial rational phases (i.e.,
� 0; �; �=2) occur naturally only in ETC type theories.
They are a consequence of ETT being quadratic, not linear,
in W and of the instanton-induced unimodularity con-
straints on W. Given these three possibilities, we now
investigate the quarks’’ CP violation.

There are two kinds of CP violation. Weak CP violation
enters the standard weak interactions through the CKM
phase -13 and the ETC and TC2 interactions through
physically observable combinations of phases in the
quark-alignment alignment matrices QL;R. Strong CP
violation, which can produce electric dipole moments
1010 times larger than the experimental bound, is a con-
sequence of instantons [31]. No theory of the origin of CP
violation is complete which does not eliminate strong CP
violation. Resolving this problem amounts to achieving
�4q & 10
10 naturally. Let us see how this might happen
in technicolor.

The ‘‘primordial’’ quark mass matrix element �Mq�ij,
the coefficient of the bilinear �q0Riq

0
Lj of quark electroweak

eigenstates, is generated by ETC interactions and is given
by15
�Mq�ij �
X
I;J

�Tq
IijJW

y
JI	T�METC�

�q; T � u;U or d;D�:
(12)
The �Tq
IijJ are real ETC couplings of order

(102-104 TeV�
2 (see Appendix A). Since the quark-
alignment matrices QL;R which diagonalize Mq to
Mq are unimodular, argdet�Mq� � argdet�Mq� �

argdet�Mu� � argdet�Md�. Therefore, strong CP viola-
tion depends entirely on the character of vacuum alignment
in the technifermion sector—the phases IJ of W—and
by how the ETC factors �Tq

IijJ map these phases into the
�Mq�ij.

If the IJ are random irrational phases, �4q could van-
ish only by the most contrived, unnatural adjustment of
the �Tq and, so, this case generically exhibits strong
CP violation. If all IJ � 2m�=N (mod �), then all
elements of Mu have the same phase, as do all elements
of Md. Then, UL;R and DL;R will be real orthogonal
matrices, up to an overall phase. There may be strong
matrix element �Mu�tt arises almost entirely from the
duced condensation of top quarks. We assume that h�tti
u�tt are real in the basis in which 4QCD � 0. Since

olor, color, and topcolor groups are embedded in ETC,
-conserving condensates are real in this basis.
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CP violation, but there will no weak CP violation in any
interaction.

There remains the possibility, which we assume hence-
forth, that the IJ are different rational multiples of �.
Then, strong CP violation will be absent if the �Tq map
these phases onto the primordial mass matrix so that
(i) each element �Mq�ij has a rational phase and
(ii) these add to zero in argdet�Mq�. In the absence of an
explicit ETC model, we do not know whether this can
happen, but we see no reason it cannot. For example, there
may be just one pair �IJ� for which �Tq

IijJ � 0 for fixed �ij�.
An ETC model which achieves such a phase mapping
would solve the strong CP problem, i.e., �4q & 10
11,
without an axion and without a massless up quark. This
is, in effect, a ‘‘natural fine-tuning’’ of phases in the quark
mass matrix: rational phase solutions are stable against
substantial changes in the nonzero �TT . There is, of course,
no reason weak CP violation will not occur in this
scenario.

Determining the quark-alignment matrices QL;R be-
gins with minimizing the vacuum energy (using 	Tq �

	T	q)

ETq�Q� � 
Tr�MqQ� h:c:�	q�METC� (13)

to find Q � QLQ
y
R. When �4q � 0, this is equivalent to

making the mass matrix diagonal, real, and positive.
Whether or not �4q � 0, the matrix MqQ is hermitian up
to the identity matrix [24],

M qQ
QyMy
q � i8q1; (14)

where 8q is the Lagrange multiplier associated with the
unimodularity constraint on Q [32], and 8q vanishes if �4q
does. Therefore, MqQ may be diagonalized by the single
unitary transformation QR and, so,16

Mq �

�
Mu 0
0 Md

�
� Qy

RMqQQR � Qy
RMqQL: (15)

The CKM matrix is V � Uy
LDL. Carrying out the vec-

torial phase changes on qL;Ri required to put V in the
standard form with a single CP-violating phase -13, one
obtains [33,34]
16Since quark vacuum alignment is based on first order chiral
perturbation theory, it is inapplicable to the heavy quarks c; b; t.
However, since it just amounts to diagonalizing Mq when �4q �
0, it correctly determines the quark unitary matrices UL;R and
DL;R and the magnitude of strong and weak CP violation.
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V �

0BB@
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

1CCA �

0BB@
c12c13 s12c13 s13e


i-13


s12c23 
 c12s23s13ei-13 c12c23 
 s12s23s13ei-13 s23c13
s12s23 
 c12c23s13ei-13 
c12s23 
 s12c23s13ei-13 c23c13

1CCA: (16)
Here, sij � sin4ij, and the angles 412, 423, 413 lie in the
first quadrant. Additional CP-violating phases appear in
UL;R and DL;R; certain linear combinations are observable
in the ETC and TC2 interactions. We discuss next the form
of Mu, Md and UL;R, DL;R imposed by experimental
constraints on ETC and TC2.

First, limits on FCNC interactions, especially those
contributing to 	MK � MKL –MKS and the CP-violation
parameter �, require that ETC bosons coupling to the two
light generations have masses METC=gETC * 103 TeV
(see Ref. [7] for the latest estimates). These can produce
quark masses less than about ms�METC� ’ 100 MeV in a
walking technicolor theory (see Fig. 12 in Appendix A).
We expect similar or smaller masses in the first two rows of
Mu;d (except Mcc ’ 1 GeV). Extended technicolor bo-
sons as light as 50–100 TeV are needed to generate
mb�METC� ’ 4 GeV. Flavor-changing neutral current in-
teractions mediated by such light ETC bosons must be
suppressed by small mixing angles between the third and
the first two generations.17

The most important feature of Mu is that the TC2
component of �Mu�tt, m̂t � 160–170 GeV, is much larger
than its other elements, all of which are generated by ETC
exchange. In particular, off-diagonal elements in the third
row and column of Mu are expected to be no larger
than the 0.01–1.0 GeV associated with mu and mc.
So, Mu and UL;R are very nearly block-diagonal with
jUL;Rtui j � jUL;Ruitj � -tui .

There is an argument that the matrix Md must have, or
nearly have, a triangular texture [16]; also see Ref. [35]: In
1995 Kominis argued that in topcolor models the SU�3�1 �
U�1�1 couplings of the bottom quark are not far from the
critical values required for condensation. Consequently,
there ought to exist so-called ‘‘bottom pions’’—relatively
light ( ’ 300 GeV) scalar bound states of �tLbR and �bLbR
that couple strongly ( / m̂t) to third generation quarks
[36]. Bottom pions will induce excessive Bd– �Bd mixing
unless jDLbdDRbdj & 10
7. In addition to this, since UL is
block-diagonal, the observed CKM mixing between the
first two generations and the third must come from the
down sector matrixDL. These considerations (and the need
for flavor symmetry in the two light generations) imply that
the Md is approximately triangular, with its dR; sR $ bL
17We must assume that the ETC interactions H 0
qq are electro-

weak generation-conserving to suppress j	Sj � 2 FCNC inter-
actions adequately. We also assume that the magnitude of �qq

ijkl is
comparable to that of �Tq

iILl and/or �Tq
JjkK. See Eq. (23) in Sec. III.
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elements Mdb and Msb much smaller than its dL; sL $
bR elements.

A triangular Md was produced in the TC2 models of
Refs. [16,37,38] by choosing the topcolor U�1�1 charges to
forbid ETC interactions that induce the dR; sR $ bL matrix
elements Mdb, Msb. Then DR, like UL;R, is nearly 2� 2
times 1� 1 block-diagonal. Although both V8 and Z0

exchange produce FCNC interactions, this constraint plus
the approximate flavor symmetry implied by Eq. (2) mean
that many interesting FCNC effects arise only from left-
handed �b0Lb

0
L
�b0Lb

0
L TC2 interactions. Then the magnitudes

and phases of the mixing factors are simply related to those
of CKM elements (as in Eq. (17) below).

Kominis’ argument for near-criticality of b-quark TC2
interactions relied on assuming it had standard-model
U�1�1 hypercharges Y1Lb � 1=6 and Y1Rb � 
1=3 and
that the U�1�1 coupling is not very strong (to avoid a
Landau pole at low energy). As we noted above, however,
a strong U�1�1 coupling is needed to avoid fine-tuning the
SU�3�1 coupling, while the Landau pole might be avoided
if U�1�1 is embedded in GETC at low enough energy. Thus,
we view the existence of bottom pions as arguable at best.
For STC2, we shall consider both cases: DR is block-
diagonal and it is not.

In Ref. [22] Simmons pointed out that there may be an
amelioration of the bottom pion contribution to Bd– �Bd
mixing in FUTC2. There, all quarks have strong attractive
SU�3�1 interactions so that there would be ‘‘q-pions’’ with
flavor-symmetric couplings for all the quarks if U�1�1 is
relatively weak—as Simmons assumed necessary to avoid
a Landau pole. Such q-pions would not induce Bd– �Bd
mixing. However, whether or not light quarks transform
under U�1�1, the heavy ones do and their U�1�1 couplings
should not be weak. This ruins the flavor symmetry of q-
pions’ couplings and Simmons’ argument fails.
Furthermore, if light quarks do have U�1�1 interactions
then, like the bottom quark’s, they probably must be re-
pulsive. This calls into question the very existence of all q-
pions except the top pion. In short, the matter of q-pions
and their induced Bd– �Bd mixing is highly uncertain. In
FUTC2, even more than in STC2, the argument for Md to
be triangular and DR block-diagonal is weak and, like
Simmons, we shall not be bound by it.

Because mixing between the third generation and the
two lighter ones comes from DL, in either TC2 variant we
have (using Vtb � 1, and independent of the form of DR)

Vtdi � V�
tbVtdi � ULttD

�
LbbU

�
LttDLbdi � D�

LbbDLbdi : (17)

This relation is good to 5%. Together with the assumption
-6
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that DR is block-diagonal, it was used in Ref. [21] to put
limits on the TC2 V8 and Z0 masses from Bd– �Bd mixing. It
was shown there that MV8

, MZ0 * 5 TeV � m̂t. This im-
plies that the TC2 gauge couplings must be tuned to within
1% or better of their critical values—an uncomfortably
fine-tuning in a dynamical theory. For FUTC2, Simmons’
q-pion argument and assumption that U�1�1 is relatively
weak led her to conclude that this bound could be lowered
for the Z0 (as well as for the V8 which does not mediate
FCNC interactions). We revisit this question in Sec. III and
conclude that the boundMV8;Z0 * 5 TeV generally holds in
both TC2 variants.

To calculate the TC2 and ETC contributions to
CP-violating parameters in K and B-decays, we generated
three representative sets of alignment matrices UL;R

and DL;R. They were created by carrying out vacuum
alignment with a nonhermitian primordial mass matrix
Mq satisfying argdet�Mq� � 0. The first set of alignment
matrices (Mass Model 1) has a block-diagonal DR, as was
assumed Ref. [21].18 Mass Models 2 and 3 have DR �DL.
The mass and alignment matrices are presented in
Appendix B. As we shall see in Sec. V, a discrepancy in
the value of sin2	 measured in different decays is possible
only in models with a non-block-diagonal DR.

III. TC2 AND ETC INTERACTIONS

At energies well below MV8;Z0 , the effective TC2 current
� current interaction is

H TC2 � H Z0 �H V8
�

g2Y
2M2

Z0

JZ01J
1
Z0 �

g2C
2M2

V8

JA1JA1;

(18)

where

JZ01 �
X

:�L;R

X
i

�Y1:i cot4Y 
 Y2:i tan4Y� �q
0
:i01q

0
:i;

JA1 �
X

:�L;R

�X
i�t;b

Ah 

X

i�u;d;s;c

Al

�
�q0:i01

:A
2
q0:i:

(19)

The primed fields are electroweak eigenstates. The cou-
plings gY and gC are the standard model hypercharge and
color couplings, defined in terms of the original SU�3�
18Sets of alignment matrices were created in this way in
Refs. [7,20] to calculate the TC2 and ETC contributions to �.
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(U�1�) couplings by

gC �
g1g2�����������������
g21 � g22

q ;
g1
g2

� cot4C � 1

gY �
g01g

0
2�������������������

g021 � g022
q ;

g01
g02

� cot4Y � 1

TheU�1�1 andU�1�2 hypercharges Y1:i and Y2:i satisfy the
flavor symmetry conditions in Eq. (2) and, of course, YLi �
Y1Li � Y2Li � 1=6 and YRi � Y1Ri � Y2Ri � ei, the elec-
tric charge of qi. We shall ignore the Y2:i tan4Y terms in
our calculations. The couplings of the heavy and light
quarks to the coloron, Ah and Al, depend on the TC2
model. In STC2, only the third generation couples to the
strong SU�3�1, so that Ah � cot4C and Al � tan4C. In this
case, both H Z0 and H V8

contain FCNC interactions. In
FUTC2, all quarks have the same coupling to the colorons,
Ah � 
Al � cot4C, and only H Z0 has FCNC interactions.

Expanding H TC2 for the FUTC2 and STC2 variants,
and keeping only the strongly-coupled U�1�1 and SU�3�1
contributions to potential FCNC interactions, we obtain

H FU � H Z0 �
g2Ycot

24Y
2M2

Z0

�
X
i;j

X
:1;:2�L;R

Y:1iY:2j �q
0
:1i
01q0:1i �q

0
:2j
01q

0
:2j

;

(20)

H S � H Z0 �H V8

� H FU �
g2Ccot

24C
2M2

V8

�
X

i;j�t;b

X
:1;:2�L;R

�q0:1i0
1 :A

2
q0:1i �q

0
:2j
01

:A
2
q0:2j:

From now on, we denote Y1:i by Y:i. Remember that we
assume that all quarks transform nontrivially under the
strong U�1�1.

Still assuming that the ETC gauge group commutes with
electroweak SU�2�, the ETC four-quark interaction to low-
est order in g2ETC is
H ETC � H 0
qq � �LL

ijkl� �u
0
Li0

1u0Lj � �d0Li0
1d0Lj� � �u

0
Lk0

1u0Ll � �d0Lk0
1d0Ll�

� � �u0Li0
1u0Lj � �d0Li0

1d0Lj� ��
u;LR
ijkl �u0Rk0

1u0Rl ��d;LR
ijkl

�d0Rk0
1d0Rl�

��uu;RR
ijkl �u0Ri0

1u0Rj �u
0
Rk0

1u0Rl ��dd;RR
ijkl

�d0Ri0
1d0Rj �d

0
Rk0

1d0Rl ��ud;RR
ijkl �u0Ri0

1u0Rj �d
0
Rk0

1d0Rl: (21)
Since the ETC gauge group contains technicolor, color and
topcolor, and flavor as commuting subgroups, the flavor
currents in H ETC are color and topcolor singlets. The
operators are renormalized at the ETC scale of their
-7
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�-coefficients. Hermiticity and CP-invariance of H ETC
implies that �ijkl � ��

jilk � ��
ijkl. When written in terms

of mass-eigenstate fields qL;Ri �
P
j�Q

y
L;R�ijq

0
L;Rj with

Q � U;D, an individual term in H ETC has the form� X
i0j0k0l0

�q1q2:1:2
i0j0k0l0 Qy

:1ii0
Q:1j0jQ

y
:2kk0

Q:2l0l

�

� �q:1i0
1q:1j �q:2k01q:2l: (22)

The �’s in H ETC are of order g2ETC=M
2
ETC. A reason-

able (and time-honored) guess for the magnitude of the
�ijkl is that they are comparable to the ETC coefficients
that generate the quark mass matrix Mq. To estimate the
FCNC in H ETC, we elevate this to a rule: The ETC scale
METC=gETC in a term involving weak eigenstates of the
form �q0iq

0
j �q

0
jq

0
i or �q0iq

0
i �q

0
jq

0
j (for q0i � u0i or d0i) is approxi-

mately the same as the scale that generates the �q0Riq
0
Lj mass

term, �Mq�ij. A plausible, but approximate, scheme for
correlating a quark mass mq�METC� with METC=gETC is
presented in Appendix A (see Fig. 12).

Extended technicolor masses, METC=gETC *

1000 TeV, are necessary, but not sufficient, to suppress
FCNC interactions of light quarks to an acceptable level.
Without further suppression by CKM-like mixing angles,
the ETC masses required for compatibility with � are so
large that, even with walking technicolor, light-quark
masses are too small [7]. Thus, we need to assume that
H ETC is electroweak generation-conserving, i.e.,

�q1q2:1:2
ijkl � -il-jk�

q1q2:1:2
ij � -ij-kl�

0q1q2:1:2
ik : (23)

Considerable FCNC suppression then comes from off-
diagonal elements in the alignment matrices QL;R.

Note that the TC2 and ETC interactions generally have
RL ��V � A� � �V 
 A�	 and RR ��V � A� � �V � A�	
‘‘wrong chirality’’ structure as well as the LL ��V 
 A� �
�V 
 A�	 and LR ��V 
 A� � �V � A�	 structure found in
standard model contributions to FCNC interactions.
IV. CONSTRAINTS ON THE TC2 AND ETC
INTERACTIONS

The first constraint we consider is that which top-quark
condensation, but not bottom nor light-quark condensation,
places on the TC2 couplings and hypercharges. In the
Nambu-Jona-Lasinio approximation, a �qq condensate oc-
curs when the quark’s couplings satisfy

<q�V8� � <q�Z0� �
g2CA

2
q

3�2 �
g2Ycot

24Y�YLqYRq�

4�2 � 1:

(24)

The so-called critical values of the couplings occur when
the equality is satisfied. As we have stressed, both terms
should be O�1� to avoid fine-tuning. In STC2, this strongly
suggests that
015011
YLtYRt > 0; YLbYRb < 0 �STC2�: (25)

Because A2
l � tan24C � 1, the constraint on light quarks

is rather loose, however:

g2Ycot
24YYLqYRq=4�2 < 1 �STC2�: (26)

In FUTC2, the condition that only the top-quark condenses
is most simply met by requiring that, for all quarks except
top,

YLqYRq < 0 �FUTC2�: (27)

We assume this from now on.
Other limits on the couplings and masses in H TC2 and

H ETC come from mixing and CP violation in the K0 and
Bd meson systems. The constraint from the kaon � parame-
ter for models in which DR is block-diagonal were dis-
cussed in Refs. [7,20]. For �ssss ’ �2000 TeV�
2 and
MV8

’ MZ0 ’ 10 TeV, it was shown there it is not difficult
to account for the measured value of �. For models with a
nontrivial DR and these mass scales, the � parameter is not
a strong constraint at all. Varying the relative strengths and
signs of �ssss and �0

ssss can cause changes of up to �100
times the standard model �. The more incisive constraint
on TC2—but not on ETC—comes from �Bd–Bd mixing.
This was considered first (mainly for STC2) in Ref. [21]
and reconsidered (especially for FUTC2) in Ref. [22]. We
reconsider both TC2 variants in this section.

The B0
H –B0

L mass difference 	MBd � �3:22� 0:05� �
10
10 MeV is directly related to the off-diagonal matrix
element M12 of the �Bd 
 Bd Hamiltonian [39]. Since
j�12j � jM12j, we have 	MBd � 2jM12j. The standard
model contributions to M12 come from box diagrams
which are proportional to V2

td and therefore carry a CKM
phase 
2	. New physics contributions, at tree and loop
levels, can alter the magnitude and phase ofM12. However,
M12-mixing occurs in all neutral B decays, so that new
physics in mixing alone cannot explain the sin2	 discrep-
ancy (see Sec. VI).

In both FUTC2 and STC2, the dominant new contribu-
tion to M12 comes from �b0b0 �b0b0 terms in H TC2. For
FUTC2, the interaction is

H FU�M12� �
g2Ycot

24Y
8M2

Z0

� ��	YL�2�DLbbD�
Lbd�

2� �db�V
A� �db�V
A

� �	YR�2�DRbbD�
Rbd�

2� �db�V�A� �db�V�A

� 2�	YL��	YR��DLbbD�
LbdDRbbD�

Rbd�

� � �db�V
A� �db�V�A � h:c:	; (28)

where � �db�V�A � �d01�1� 05�b and the appearance of
	Y: � Y:b 
 Y:d reflects the approximate flavor symme-
try of Eq. (2). Then M12 is estimated in the vacuum
insertion approximation to be [21,22]:
-8
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2�M12�FU �
g2Ycot

24Y
3M2

Z0

F2
Bd
B̂BdM

2
Bd
�B


	Y2

L�DLbbD
�
Lbd�

2

� 	Y2
R�DRbbD

�
Rbd�

2 


�
3

2
�

M2
B

�mb �md�
2

�

� 	YL	YR�DLbbD
�
LbdDRbbD

�
Rbd�

�
: (29)

For STC2 models, there is also a coloron contribution:

2�M12�S � 2�M12�FU �
g2Ccot

24C
9M2

V8

F2
Bd
B̂BdM

2
Bd
�B

�


�DLbbD

�
Lbd�

2 � �DRbbD
�
Rbd�

2




�
3

2
�

M2
B

�mb �md�
2

�
�DLbbD

�
LbdDRbbD

�
Rbd�

�
:

(30)

Here, �B � 0:55� 0:01 is a QCD radiative correction
factor for the LL and RR product of color-singlet currents
and we assume it to be the same for the LR product. We
take FBd

��������
BBd

p
� �200� 40� MeV [40], where FBd and

BBd are, respectively, the Bd–meson decay constant and
bag parameter. The additional factor of 1=3 in the coloron
contribution comes from the Fierz rearrangement to a
product of color-singlet currents. These TC2 contributions
to M12 are added to the standard-model one [39],

2�M12�SM �
G2
F

6�2 �BMBdF
2
Bd
M2
WS0�xt��V

�
tbVtd�

2; (31)

where the top-quark loop function S0�xt� � 2:3 for xt �
m2
t �mt�=M2

W and mt�mt� � 167 GeV. The TC2 contribu-
tions to M12 come from operators renormalized at MZ0 and

CP VIOLATION AND MIXING IN TECHNICOLOR MODELS
015011
MV8
rather than at MW . For simplicity, we take MZ0 � MV8

unless stated otherwise. We assume that operator renorm-
alizations fromMZ0 toMW are simply multiplicative, O�1�,
and can therefore be ignored19.

As Simmons pointed out, including the RR and LR
operators in M12 opens the possibility of obtaining lower
mass limits than in Ref. [21]. She found MZ0 * 1 TeV in
FUTC2. However, Simmons assumed smaller U�1�1 cou-
plings than we do. Furthermore, DR and DL matrix ele-
ments that lead to lower TC2 boson masses may not arise
from alignment with plausible mass models. This, in fact,
is what we found for the mass matrices considered in
Appendix B.

To set the mass limits, we followed Ref. [21] in assum-
ing that the SU�3�1 and U�1�1 couplings of the top-quark
are each half their critical value, <t�V8� � <t�Z0� � 1=2,
i.e.,

g2Ccot
24C �

3�2

2
; g2Ycot

24YYLtYRt � 2�2: (32)

We also assumed �	YL�
2 � �YLb 
 YLd�

2 � YLtYRt. These
assumptions are reasonable, given the need to avoid fine-
tuning, but the mass limits are somewhat sensitive to them.
As noted above, we also assumed MV8

� MZ0 for STC2.
Because all the mixing matrix factors are determined by
the primordial quark mass matrix Mq, the only remaining
free parameters are the ratio of hypercharge differences,
> � 	YR=	YL, and the gauge boson masses. Equating
twice the total jM12j to the measured 	MBd , we determined
the gauge boson mass limit as a function of >. The lowest
possible gauge boson masses for the interval of 
5< ><
5 for STC2 and FUTC2 and the three sets of alignment
matrices are:
MASS MODEL TC2 MODEL Mmin FINE TUNING

1 STC2 23:9 TeV 0:05%

2 STC2 5:0 TeV 0:9%

3 STC2 10:5 TeV 0:2%

1 FUTC2 21:3 TeV 3%

2 FUTC2 7:0 TeV 3%

3 FUTC2 10:1 TeV 3%

(33)
19Since TC2 contributions occur at tree level, �12 is unaffected.
Therefore, we still have j�12j � jM12j, and the ratio q=p, which
describes the degree of mixing in the physical eigenstates (in
Eq. (53) below), is still a pure phase [39].
The last column is an estimate of the fine-tuning of the TC2
couplings; this is discussed below.

In Mass Models 2 and 3, which produce jDRbqj ’

jDLbqj, the bounds on MV8;Z0 are lower than in Model 1,
as Simmons anticipated. However, this effect is not limited
to FUTC2. Nor are the bounds as low as Simmons deter-
mined because she assumed a relatively weak U�1�1 cou-
pling and YLbYRb � 
1=18. Although Mass Model 1
satisfies the relationship Eq. (17) used in Ref. [21], the
mass limits do not agree. The disagreement is caused by
using different values of Vtd. The mass limits scale ap-
-9
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proximately as jVtdj in Model 1. In Ref. [21], the minimal
values jVtdj � 0:005 and 0.0034 were used. Here, we
derived Vtd from Mq, obtaining jVtdj � :0075 in Model
1 and jVtdj � 0:0055 in Models 2 and 3. As noted in
Ref. [22], once DR is no longer block-diagonal, the
	MBd constraint is no longer model-independent, i.e.,
determined solely by the CKM element Vtd. This is clearly
demonstrated in the factor of 1.5–2 difference in the
bounds for Models 2 and 3.

Finally, producing a TC2 contribution m̂t ’ 165 GeV to
the top-quark mass with such large Z0 and V8 masses
implies fine-tuning of the couplings to their critical value
[15]. The fine-tuning is characterized by the magnitude
of

<t�Z
0�
m̂2
t

M2
Z0
log�

M2
Z0

m̂2
t
� � <t�V8�

m̂2
t

M2
V8

log�
M2
V8

m̂2
t
�

<t�Z
0��1
 m̂2

t

M2
Z0
log�

M2
Z0

m̂2
t
�	 � <t�V8��1


m̂2
t

M2
V8

log�
M2
V8

m̂2
t
�	

(34)

In Ref. [21], with MV8
’ 5 TeV and MZ0 ’ 10 TeV, the

fine-tuning was found to be 0.5% using the NJL approxi-
mation with half-critical couplings. UsingMZ0 � MV8

with
the appropriate STC2 mass limits, we obtain the fine-
tuning estimates & 1% listed in Eq. (33). In FUTC2, the
situation is somewhat better if we lower MV8

to the limit
allowed by precision electroweak observables, MV8

’

1:6 TeV [18]. This leads to fine-tuning of 3%. Fine-tuning
is also ameliorated if we allow �	YL�

2 < YLtYRt. This
allows a lowerMZ0 . Obviously, this difference in the hyper-
charges cannot be too extreme. In summary, despite more
general assumptions on the structure of the alignment
matrices, we find the couplings to be as fine-tuned as in
Ref. [21]. The principal reason is that we insist on a large
U�1�1 coupling to avoid fine-tuning <t�V8�!
20A factor of GF=
���
2

p
has been taken out for easy comparison

with the standard model contribution.
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V. Bd ! J= KS, 
KS, �0KS AND �KS

With the assumption that ETC interactions are
generation-conserving, their contributions to Bd decays
are suppressed by small mixing angles and hence negli-
gibly small. The TC2 contributions to b! s �qq decays
are obtained by writing Eqs. (20) in terms of mass eigen-
states and making use of the unitarity of the DL;R:

H FU �
g2Ycot

24Y
2M2

Z0

X
:1;:2�L;R

D�
:1bs

D:1bb	Y:1 �s:10
1b:1

�
X

j�u;d;s;c

Y:2qj �q:2j01q:2j � h:c:;

H S � H FU �
g2Ccot

24C
2M2

V8

�
X

:1;:2�L;R

D�
:1bs

D:1bb �s:10
1 :A

2
b:1

�

� X
j�d;s

jD:2bjj
2 �

X
j�u;c

jU:2tjj
2

�
�q:2j01

:A
2
q:2j

� h:c:

(35)

The standard model contribution to a Bd-decay interac-
tion is written as a sum over a standard set of operators,
each multiplied by the appropriate Wilson coefficient.
These coefficient functions are found at MW by calculating
the necessary QCD and electroweak (EW) penguin (loop)
diagrams. We rewrite the TC2 interactions in terms of the
same set of operators by Fierzing color octet products and
using parity to relate matrix elements of wrong chirality
operators to the standard ones. The TC2 coefficient func-
tions involve combinations of hypercharges and U�1�1 and
SU�3�1 couplings rather than loop factors.

The standard operators have LL and LR chirality.
Casting the RR and RL operators from TC2 in the same
color and charge structure as these, we obtain the eight
wrong chirality operators
Q̂0
3 � ��sb�V�A

X
q

� �qq�V�A Q̂0
5 � ��sb�V�A

X
q

� �qq�V
A Q̂0
4 � � �s<b	�V�A

X
q

� �q	q<�V�A

Q̂0
6 � ��s<b	�V�A

X
q

� �q	q<�V
A Q̂0
7 �

3

2
� �sb�V�A

X
q

eq� �qq�V
A Q̂0
9 �

3

2
��sb�V�A

X
q

eq� �qq�V�A

Q̂0
8 �

3

2
� �s<b	�V�A

X
q

eq� �q	q<�V
A Q̂0
10 �

3

2
� �s<b	�V�A

X
q

eq� �q	q<�V�A;

(36)
where eq is the charge of quark q. The total TC2 contri-
bution is the sum of the standard and wrong chirality
portions.20
H eff;TC2�1 � MZ0 �

�
GF���
2

p
X10
i�3

�Ci;TC2�1�Q̂i�1� � C0
i;TC2�1�Q̂

0
i�1�	: (37)

Using parity, for Bd-decays to a pair of pseudoscalars or a
pesudoscalar and a vector,
-10
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hPPjQ̂0
ijBdi � 
hPPjQ̂ijBdi;

hPVjQ̂0
ijBdi � �hPVjQ̂ijBdi:

(38)

the effective Hamiltonian reduces to a sum over standard
operators alone:

H eff;TC2 �
GF���
2

p
X10
i�3

�Ci;TC2 � C0
i;TC2�Q̂i; (39)

where the � ( 
 ) sign is for Bd ! PV (PP).
The Wilson coefficient contributions ~Ci � Ci � C0

i from
coloron and Z0 interactions are tabulated below. They are to
be multiplied by the mixing factor DLbbD�

Lbs ’ VtbV
�
ts and

by
���
2

p
=�4GF�. The coloron contributions are (up to smaller

terms of O�jDLbdj
2�:

~C3;V8
� 


g2Ccot
24C

2M2
C

jDLbsj
2

9
�1� A3ei-�

~C4;V8
�
g2Ccot

24C
2M2

C

jDLbsj
2

3
�1� A3ei-�

~C5;V8
� 


g2Ccot
24C

2M2
C

jDLbsj
2

9
�A2 � Aei-�

~C6;V8
�
g2Ccot

24C
2M2

C

jDLbsj
2

3
�A2 � Aei-�

~C7;V8
�
g2Ccot

24C
2M2

C

jDLbsj
2

9
�A2 � Aei-�

~C8;V8
� 


g2Ccot
24C

2M2
C

jDLbsj
2

3
�A2 � Aei-�

~C9;V8
�
g2Ccot

24C
2M2

C

jDLbsj
2

9
�1� A3ei-�

~C10;V8
� 


g2Ccot
24C

2M2
C

jDLbsj
2

3
�1� A3ei-�

(40)

The Z0 contributions are:

~C3;Z0 �
g2Ycot

24Y�	YL�
2

2M2
Z0

�
YLd
	YL

�
2YRd � YRu

3	YL
>Aei-�

~C5;Z0 �
g2Ycot

24Y�	YL�
2

2M2
Z0

�
2YRd � YRu

3	YL
�
YLd
	YL

>Aei-�

~C7;Z0 �
g2Ycot

24Y�	YL�2

2M2
Z0

�
2�YRu 
 YRd�

3	YL
�

~C9;Z0 �
g2Ycot

24Y�	YL�2

2M2
Z0

��
2�YRu 
 YRd�

3	YL
>Aei-�

(41)

The free parameters are >, A, and -, defined by
015011
> �
	YR
	YL

; A �

��������DRbs

DLbs

��������; - � arg
�
DRbbD

�
Rbs

DLbbD�
Lbs

�
:

(42)

The V8 and Z0 coefficients appear in the effective STC2
Hamiltonian, while in FUTC2, the coloron coefficients
are absent. The gluonic and electroweak color-singlet pen-
guin operators Q̂3; Q̂5; Q̂7, and Q̂9 receive contributions
from both coloron and Z0 exchange, while the color octet
product penguin operators Q̂4; Q̂6; Q̂8, and Q̂10 receive
only coloron contributions. There is no TC2 contribution
to the standard tree level operators Q̂1; Q̂2. In the defini-
tions of ~Ci;TC2, we imposed the hypercharge restrictions in
Eq. (2). The nonstandard CP-violating terms are propor-
tional to DRbs=DLbs. For models with DR nearly block-
diagonal, the TC2 contributions are therefore coherent
with the standard ones and do not cause a sin2	
discrepancy.

We have neglected the standard model contributions
from penguin operators with internal up or charm quarks.
These contain CP conserving phases and are consequently
the source of direct CP violation within the standard
model. Since the TC2 interactions we have included are
all tree level interactions, the total SM� TC2 Hamiltonian
will contain no direct CP violation. For simplicity we have
also neglected standard electromagnetic penguin and chro-
momagnetic penguin operators. For reviews that include
these operators and their possible influence on CP violat-
ing B decays see Ref.[41,42]

To combine TC2 and standard-model effects, we need to
run the TC2 contributions from MZ0 down to MW using the
renormalization group equation (RGE). The RGE for the
coefficient functions of the standard 	B � 1 operators is
known and has been calculated to several orders in <s (see
Ref. [43]). Loop-level gluon (SU�3�1;2 gauge boson) ef-
fects can mix the operators, so the RGE for the coefficient
functions is a matrix equation.

An important approximation we make to obtain the
RGE is to consider only QCD renormalization effects.
Electroweak contributions are negligible. But strong
U�1�1 and SU�3�1 (in FUTC2) renormalizations are
not. The former are very model-dependent and their effect
hard to predict. The latter are intractable because of the
strong<C cot4C coupling, but it is not implausible that they
do not alter the pattern of operator mixing. The RGE is
then

Ci;TC2�MW� �
X
j

Û�MZ0 ;MW�ijCj;TC2�MZ0 �;

Û�MZ0 ;MW�ij � exp
Z g1�MZ0 �

g1�MW �
dx
0T�x�ij
	�x�

�
:

(43)

Here 0T�x� is the transposed anomalous dimension matrix,
and 	�x� the QCD beta function. In our calculations, we
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used the O�<C� 	 and 0-functions [43] and included only
standard model particles21. After running the TC2 effects,
we have the total standard plus TC2 Hamiltonian at MW .

H eff�MW� �
GF���
2

p


VubV

�
us�C1Q̂

u
1 � C2Q̂

u
2�

� VcbV�
cs�C1Q̂

c
1 � C2Q̂

c
2�


 VtbV
�
ts

X10
i�3

�Ci;SM 
 ~Ci;TC2�Q̂i

�
: (44)

Finally, we run the standard-model plus TC2 Wilson
coefficients from MW down to the desired energy 1
(here, mb):

Ci�1� �
X
j

Û�MW;1�ijCj�MW�; (45)

where

Ci�MW� � Ci;SM�MW� �
X
j

Û�MZ0 ;MW�ijCj;TC2�MZ0 �:

(46)

The evolution matrix in Ci�1� has the same form as in
Eq. (43) except that limits involve the QCD coupling gC
rather than the SU�3�1 coupling. The anomalous dimension
matrix and the beta function in Eq. (45) include only five
quark flavors. The resulting Hamiltonian, with possible
new CP-violating phases from DR, is

H eff�b! s �qq� �
GF���
2

p VtbV�
ts

X
i

~Di�1�Q̂i�1� (47)

where

~Di�1� �
X
j

Û�MW;1�ij�Cj;SM�MW�

�
X
k

Û�MZ0 ;MW�jkCk;TC2�MZ0 �	: (48)

To apply this Hamiltonian to a particular b! s �qq pro-
cess, we evaluate the amplitude using the factorization
approximation [44,45]. There the operators are split into
two subcurrents:

hh1h2jQ̂i � j11j
1
2 jBdi

� hh1jj11j0ihh2jj
1
2 jBdi � hh2jj11j0ihh1jj

1
2 jBdi;

(49)

where we ignored annihilation terms such as
hh1h2jj11j0ih0jj21jBi. The hhijj1jBdi portion is a form
factor that can be measured in a semileptonic decay, while
hhjjj1j0i is a measurable decay constant. The values of the
form factors and decay constants we used in our calcula-
21We adjusted the renormalization and subtraction scheme in
[43] to be consistent with the current results for MW , mt, and <s
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tions can be found in Ref. [44]. Different operators with
different chiral and color prefactors will contribute de-
pending on the particular decay process. For example:

A�B! KS� / hj��ss�V
Aj0ihKSj��sb�V
AjBi

�

�
~D3 � ~D4 


1

2
~D9 


1

2
~D10

��
1

NQCD
� 1

�

� ~D5 

1

2
~D7 �

1

NQCD

�
~D6 


1

2
~D8

��
: (50)

The factorized amplitude includes only the contribution
from color-singlet operators. To compensate for the con-
tributions from other operators, the number of color NC is
treated as a parameter22. Because of the possible depen-
dency on the effective number of colors (and other more
technical reasons), we caution that the factorization ap-
proximation is not a good approximation for all modes.
Factorization for the decay modes �0KS;�KS, and to some
extent KS, is considered to be reliable [45].23 After the
amplitude is factored, it is useful to separate its real and
imaginary parts:

A�B! f� � VCKM�X � iY�;

X �
X
i

Re�ai ~Di�; Y �
X
i

Im�ai ~Di�:
(51)

where the ai are numerical factors multiplying the coeffi-
cient functions ( ~Di) in the factorized amplitude and VCKM
is the standard model CKM factor for the process. In
models with block-diagonal DR, Y � 0 for the Bd !
XKS decays we consider and all correct measurements
return the same value of sin2	.
VI. THE EXTRACTION OF sin2eff

With the Hamiltonian in Eq. (47) renormalized and
factorized at mb, we proceed with the standard CP formal-
ism described in many review papers [39,46]. The asym-
metry we are interested in for comparison to sin2	
involves interference between the �Bd–Bd mixing phase
M and the decay phase D. It is defined by

aMD�t� �
��B0

phys�t� ! f	 
 �� �B0
phys�t� ! f	

��B0
phys�t� ! f	 � �� �B0

phys�t� ! f	
: (52)

The state B0
phys is a meson that started at production time

t � 0 as a Bd but contains both Bd and �Bd at later times.
The CP asymmetry is described in terms of the phase-
convention-independent parameter :CP:
For all calculations we use NC � 3
23Because of tree dominance of the J= mode, factorization is

not carried out in the same manner as the other modes, but it is
still reliable.
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:CP �

�
q
p

�
A� �B0 ! �f�

A�B0 ! f�
� �

�
q
p

�
A� �B0 ! f�

A�B0 ! f�
(53)

where � is the CP eigenvalue of the final state.24 The q=p
factor comes from B mixing and describes the proportion
of Bd to �Bd in the mass eigenstates. It is a pure phase, but
with the addition of TC2 effects that phase may no longer
be 	 � arg�V�

td�, so we write

�
q
p

�
TC2

� e
2iM : (54)

We can write Eqs. (29) and (30) as the standard model
phase arg�2V�

td� times some complex number. The phase of
this complex number is the nonstandard mixing phase.
Since only the TC2LR and TC2RR contributions contain
phases different from arg�2V�

td�, the mixing phase is

M � arg�V�
td� � arctan


Im�TC2RR � TC2LR�

Re�SM� TC2�

�
: (55)

In the standard model, the amplitude ratio �A=A for the
decay modes Bd ! XKS has unit magnitude and no imagi-
nary part (to within 4%).

Since our standard plus TC2 Hamiltonian contains no
sources of direct CP violation, the magnitude of the am-
plitude ratio will not change. The addition of TC2 effects
therefore alters only the phase of �A=A:

D �
1

2
arctan



2X

YX2 
Y2

�
; (56)

and X and Y are the real and imaginary parts of A (see
Eq. (51)). It is possible to obtain a sin2	 discrepancy with
an additional decay phase but no additional mixing phase.
The value of D depends on the final state, since the
operators that contribute to a decay and their relative
strength depend on the decay mode and are determined
by the factorization. If there is no new CP-violating decay
phase, then Y � D � 0.

Expressed in terms of :CP, the asymmetry at time t is

aMD �
�1
 j:CPj2� cos�	Mt� 
 2Im�:CP� sin�	Mt�

�1� j:CPj2�
:

(57)

The term we are interested in is the one proportional to
Im�:CP�. In the standard model, D � 0 so that
Im�:CP� � 
 sin2	. In TC2 models, the Im�:CP� term
becomes
24Therefore this formalism only applies to final states that are
CP eigenstates.
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sin2	eff � sin�2�M 
D�	: (58)

Any discrepancy among the various decay modes is there-
fore due to differing decay phases.
VII. COMPARISONS WITH EXPERIMENT

A. sin2eff in Bd ! XKS Decays

Using this formalism, we calculated sin2	eff for the
decays Bd ! J= KS, KS, �0KS and �KS. The current
experimental values are recorded again here. They are
unsettled, but seem to show a discrepancy, especially be-
tween J= KS and the Belle measurement of KS and,
possibly, �0KS[1–5]:

sin2	J= KS � �0:72� 0:05 �1	

sin2	KS � �0:47� 0:34 �Babar �2	�

sin2	KS � �0:06� 0:33 �Belle �3	�

sin2	�0KS � �0:27� 0:21 �4	

sin2	�KS � �0:48�0:38

0:47 � 0:11 �5	

(59)

In Mass Model 1, jDRbsj � jDLbsj and jDRbdj �
jDLbdj, so sin2	eff is the same for all modes, with 	eff �
arg�V�

td� � 0:516 (see B). This and the other models were
not tuned to give arg�V�

td� � 	J= KS , but it would not be
difficult to do so. Nor did we attempt to match the experi-
mental Vcb ’ 0:04, so that the jVtsj ’ jVcbjwe use below to
determine the standard model’s contribution to 	MBs is too
small.

There can be a sizable differences in the values of
sin2	eff for J= KS and the other modes in Mass Model
2. The discrepancies j sin2	XKS 
 sin2	J= KS j are plotted
in Figs. 1–6 for both TC2 variants as a function of the
parameters YRu and YRd.25 We again assumed the Z0 and V8

couplings are half-critical (Eq. (32)) and that 	Y2
L �

YLtYRt. To maximize the TC2 contribution, we used the
lowest bounds on MZ0 � MV8

found in Eq. (33). (For a
similar analysis that contains only the coloron contribu-
tion, see Ref. [23]). The parameters 	YL � 
0:5 and
YLq � 1 were chosen to avoid light-quark condensation.
Only negative hypercharges, YRu and YRd, are included in
the FUTC2 variant because of condensation constraints.
Clearly, large discrepancies are possible in both TC2 vari-
ants. In STC2, jYRuj and jYRdj & 2 are sufficient to pro-
duce the central values of the discrepancies. Because of the
larger MZ0;V8

in FUTC2, somewhat larger jYRdj are needed
to produce the discrepancies for KS and �0KS. As we
have discussed, large hypercharges and a strong U�1�1
25The sharp features in these figures are caused by the arctan-
gent in the expression for D becoming large whenever the
argument in the denominator of (56) approaches zero.
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FIG. 3. j sin2	�0KS 
 sin2	J= KS j as a function of YRd and YRu
in the STC2 variant of Model 2. Greyscale is the same as in
Fig. 1.
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FIG. 1. Discrepancy j sin2	KS 
 sin2	J= KS j in the STC2
variant of Mass Model 2 as a function of YRd and YRu.
j sin2	KS 
 sin2	J= KS j � 1 (black), >0:75, >0:5, >0:25,
<0:25 (white).
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coupling are problematic because they make the U�1�1
Landau pole occur at an uncomfortably low scale.

In Mass Model 3, the only appreciable difference from
sin2	eff for J= KS for moderate hypercharges occurs for
KS in the STC2 variant of the model. This case is shown
in Fig. 7. Large discrepancies in the FUTC2 case require
even larger hypercharges than in Model 2. The discrepan-
-5 -4 -3 -2 -1 0
-5

-4

-3

-2

-1

0

YRd

YRu

FIG. 2. Discrepancy j sin2	KS 
 sin2	J= KS j in the FUTC2
variant of Model 2, as a function of YRd and YRu. Greyscale is the
same as in Fig. 1.
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cies are generally much smaller than in Model 2 because
MZ0;V8

are about twice as large in Model 3.

B. Other TC2 Effects: �MBs and �0=�

With MZ0;V8
and 	YR=	YL deduced from 	MBd , we can

predict 	MBs . Its experimental lower bound is 8:622�
10
9 MeV [34]. The formalism for calculating the mass
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-4

-2

0
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YRu

FIG. 4. j sin2	�0KS 
 sin2	J= KS j as a function of YRd and YRu
in the FUTC2 variant of Model 2. Greyscale is the same as in
Fig. 1.
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FIG. 6. j sin2	�KS 
 sin2	J= KS j as a function of YRd and YRu
in the FUTC2 variant of Model 2. Greyscale is the same as in
Fig. 1.
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FIG. 5. j sin2	�KS 
 sin2	J= KS j as a function of YRd and YRu
in the STC2 variant of Model 2. Greyscale is the same as in
Fig. 1.
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difference is similar to that used to obtain Eqs. (29) and
(30) for M12�Bd�. As before, ETC contributions are negli-
gible because we assumed they are generation-conserving
up to mass mixing. For TC2, the strange quark mass
ms replaces md, the CKM factor changes to VtbV

�
ts, and

D�
L;Rbd to D�

L;Rbs. Additionally, the SU�3�-breaking differ-

ence between FBs

������
B̂s

q
and FBd

������
B̂d

q
is included. As was the
015011
case for 	MBd , all TC2 contributions occur at tree level,
leaving �12�Bs� unchanged from its standard model
prediction.

The mass difference 	MBs was calculated in both TC2
variants of Mass Models 1–3 using the TC2 gauge boson
masses in Eq. (33). We obtained for 	MBs and xs �
	MBs=�Bs :
MASS MODEL TC2 MODEL 	MBs�MeV� � 10
8 xs

1 STC2 1:24 27

2 STC2 13:2 293

3 STC2 1:03 23

1 FUTC2 1:24 27

2 FUTC2 3:99 88

3 FUTC2 1:01 22

(60)
The agreement between the two cases in Model 1 is
fortuitous. The values would be different had we used
values of MV8

� MZ0 larger than the lower bounds. The
standard model contribution to 	MBs is 8:96�
10
9 MeV, slightly larger than the current experimental
lower bound. The results for Mass Model 2 are quite
different. The standard model contribution is smaller
in this case, �	MBs�SM � 4:48� 10
9 MeV, because
jVtsj � jDLbsD�

Lbbj is smaller than it is in Model 1. Had
we tuned our CKM matrix to give the value of jVtsj � jVcbj
in Ref. [34], it would double. The TC2 contribution is
much larger here than that from the standard model be-
cause MZ0;V8

are 20–30% of what they are in Model 1.
The smaller values of 	MBs in Model 3 are due mainly to
the larger TC2 boson masses. The standard model con-
tribution in this case is the same as in Model 2 since
Models 2 and 3 have almost identical CKM matrices.
For all of these mass models, TC2 contributions have
a much larger effect on 	MBs than they do on
	MBd because the CKM factor is larger: jVtbV�

tsj �
jDLbbD�

Lbsj � 5jVtbV�
tdj � 5jDLbbD�

Lbdj. In short, our
TC2 mass models can accommodate values of xs rang-
-15
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ing from 1 to 15 times the current experimental lower
bound.

Finally, we calculated the quantity Re��0=�� measuring
the ratio of direct to indirect CP violation in K0 ! ��
decays. It depends on the relative size and phases of the
	I � 3

2 and 	I � 1
2 amplitudes. Tree level and EW penguin

operators contribute to both isospin amplitudes, while
gluonic penguin operators contribute only to 	I � 1

2 .
The world-average experimental value is Re��0=�� �
16:6� 1:6� 10
4 [47] while the latest standard model
predictions are in the range 5–30� 10
4 [48].

The TC2 contributions to K0 ! �� are incorporated
following the procedure of Sec. V.26 They are written in
terms of standard 	S � 1 operators, run down toMW using
the RGE, and combined with the standard model contribu-
tions. The TC2 	S � 1 Wilson coefficients before running
are similar to the 	B � 1 coefficients in Eqs. (40) and
(41), with ms replacing mb, and D:bsD�

:bd replacing
D:bbD

�
:bd. For this kaon system observable, the standard

model plus TC2 Hamiltonian must be evaluated near
1 GeV. Running down to mb is carried out in the same
way as before. To evolve from mb to 1 GeV, we must
remove the bottom and charm quarks at the appropriate
energies. This requires successively mapping a five quark
theory onto an effective four-quark theory, then the four-
quark theory onto a three quark one; see Ref. [43].

Once the effective Hamiltonian at 1 GeV is obtained, the
expression for Re��0=�� including TC2 contributions can
26The ETC contributions to K0 ! ��, calculated at the ETC
scale, are highly suppressed by the large ETC gauge boson
masses and by mixing angles. (They were first estimated in
2000 by G. Burdman (unpublished), and we concur with him.)
Running effects may enhance them, but not enough to make
them comparable to the standard model contributions—except,
possibly, in the case of FUTC2 where quarks have strong SU�3�1
interactions. As for Eq. (11), we assume that quark anomalous
dimensions are not large in FUTC2.
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be obtained by generalizing the expressions given in (see
Refs. [43,47])

Re
�
�0

�

�
� Im�VtsV

�
td�P

�1=2�
tot 
 P�3=2�

tot �	: (61)
Here, P�	I�
tot contains the matrix elements of the stan-

dard model plus the j	Ij � 1
2 and 3

2 contributions from
TC2.27 The additional phases in the TC2 contribu-
tions may make these matrix elements complex. We use
as inputs the experimental values � � �2:271�
0:017� � 10
3 exp�i�=4�, the 	I � 1

2 amplitude ReA0 �

3:33� 10
7 GeV, and the ratio ReA2=ReA0 � 0:045.
Only � receives appreciable ETC and TC2 contributions
and, as we noted earlier, it is not a stringent constraint on
TC2. The other two inputs (ReA0 and ReA2=ReA0) have
mainly standard model contributions. Using the same val-
ues for 	YL and YLd as for sin2	eff , we calculated
Re��0=�� as a function of the YRd and YRu hypercharges.
In the table in Eq. (62), we list the standard model con-
tribution—whose phase is contained in Im�VtsV�

td�, the
TC2 contribution involving YLd—whose phase is the
same, and the TC2 contribution from DR, which is propor-
tional to YRd 
 YRu, i.e., Re��0=�� � SM� TC2�YLd� �
TC2� �YRd 
 YRu�. The V8 contribution is negligible
compared to the standard one.
MASS MODEL TC2 MODEL SM� 10
4 TC2�YLd� � 10
4 TC2� �YRd 
 YRu�10
4

1 STC2 13:3 
0:18 27

2 STC2 10:3 
10:8 422

3 STC2 10:1 
0:50 100

1 FUTC2 13:3 
0:23 34

2 FUTC2 10:3 
5:52 217

3 FUTC2 10:1 
0:53 107

(62)
In Figs. 8–11 we plot, for the Models 1–3, bands in the
YRd–YRu plan corresponding to two and five sigma spreads
from the central experimental value of Re��0=��. For
Models 1 and 3 the plots of Re��0=�� in FUTC2 and in
STC2 are nearly identical, a result of both TC2 variants
having approximately the same minimum Z0 mass. It is
clear from the table that YRd 
 YRu must be close to zero
(very close for Model 2) and slightly negative. The two
hypercharges must be so close in Model 2 that they would
be a strain on building a complete model with its mass
matrix.

VIII. SUMMARY

We have reviewed how vacuum alignment in techni-
color theories causes spontaneous CP violation, and we
described a possible natural solution to the quarks’ strong
27The j	Ij � 1
2 and 3

2 matrix elements were taken from
Ref. [43,47], except for hQ̂6i0 and hQ̂8i2, where we used the
large-NC lattice results given in Ref. [39].
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FIG. 9. Re��0=�� as a function of YRd and YRu in the STC2
variant of Model 2. The 2D and 5D bands are the same as in
Fig. 8.
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FIG. 7. j sin2	KS 
 sin2	J= KS j as a function of YRd and YRu
in the STC2 variant of Mass Model 3. Greyscale is the same as in
Fig. 1.
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CP problem—one which has no axion and no massless
up quark. In these theories, flavor mixing and CP viola-
tion appears in the standard weak interactions, as well as
in new four-fermion ETC and TC2 interactions. We ex-
plored the compatibility of these new effects with cur-
rent measurements, especially of sin2	eff . In contrast
with previous work [7,20], we did not limit ourselves to
alignment models with mixing and CP violation solely in
-1 -0.5 0.5 1
YRd

-1

-0.5

0.5

1

YRu

FIG. 8. Re��0=�� as a function of YRd and YRu in the STC2
variant of Model 1. Solid lines indicate �5D, dashed lines �2D
from the central experimental value of 16:6� 10
4.
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the left-handed quark-sector, i.e., in the DL alignment
matrix.

Mixing and CP violation in the K0 system constrain the
ETC gauge boson masses to be so large that they do not
contribute appreciably to any B-meson decays or mixing.
Therefore, we focused on TC2 interactions in their stan-
dard (STC2) and flavor-universal (FUTC2) variants, work-
ing with SU�3�1 and U�1�1 couplings <t�V8� and <t�Z0�
-0.4 -0.2 0.2 0.4
YRd

-0.4

-0.2

0.2

0.4

YRu

FIG. 10. Re��0=�� as a function of YRd and YRu in the FUTC2
variant of Model 2. The 2D and 5D bands are the same as in
Fig. 8.
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28See Ref. [49] for an attempt to calculate this integral in a
walking technicolor model.
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chosen large enough to avoid their fine-tuning. For each
variant, we considered three models of the quark mass
matrices with argdet�Mq� � 0, designed to give a fairly
realistic CKM matrix, V � Uy

LDL, and various amounts of
mixing in the DR alignment matrix.

We found that Bd-mixing constraints require MV8;Z0 *

5-25 TeV even in models with a non-block-diagonal DR.
These bounds are as higher than those found in Ref. [21]
because of the larger value of jVtdj used here. They are
considerably higher than the MZ0 * 1 TeV estimated in
Ref. [22]. The principal reason for that disagreement is our
insistence on using a large U�1�1 coupling <q�Z0� to avoid
fine-tuning <q�V8�. But, we cannot win because the larger
TC2 boson masses also require fairly severe fine-tuning, at
the level of 3%–0:05%. Future measurements of 	MBs
may cause the TC2 gauge boson mass limit to increase
further, as we found that models with MZ0 � MV8

�

5 TeV predict values for 	MBsand xs up to 15 times
greater than the current experimental bound.

Employing a minimal renormalization scheme, we cal-
culated the effect of TC2 interactions on Bd ! XKS de-
cays. We found that both variants of TC2 can predict a
sin2	eff discrepancy among Bd ! XKS modes. However,
this discrepancy is directly related to the magnitudes and
phase difference between DRbq and DLbq matrix elements,
and thus is possible only for models with quark mass
matrices with non-block-diagonal DR (Models 2 and 3).
In these models, we found that moderate YRd; YRu hyper-
charges are generally sufficient to achieve discrepancies
consistent with the current experimental values.

The contributions from TC2 to Re��0=�� were also cal-
culated and found to be significant, even for models with
block-diagonal DR. To accommodate the experimental
value of Re��0=�� in the alignment models considered,
we must have YRd � YRu. This further restricts the range
of sin2	eff values an individual alignment model can gen-
erate, especially in the FUTC2 variant, as can be seen from
Figs. 1–7.

To sum up, new sources of flavor mixing and CP viola-
tion from TC2 interactions can be compatible with all
constraints and still yield a discrepancy in the observable
sin2	eff . However, to accomplish this fit, the Z0 and V8

masses must be rather large so that TC2 interactions are
fine-tuned at about the percent level. Somewhat surpris-
ingly, TC2 effects also tend to produce large values for
Re��0=�� and 	MBs . We may have to wait till the end of
this decade before we know the value of the latter.
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APPENDIX A: ETC GAUGE BOSON MASS SCALES

To set the ETC strengths �TT;�Tq;�qq in H 0 of
Eq. (4), we are assuming a TC2 model containing N
identical electroweak doublets of technifermions. The
technipion decay constant (which sets the technicolor en-
ergy scale) is then FT � F�=

����
N

p
, where F� � 246 GeV is

the fundamental weak scale. We estimate the ETC masses
in H 0 by the rule stated in Sec. III: The ETC scale
METC=gETC in a term involving weak eigenstates of the
form �q0iq

0
j �q

0
jq

0
i or �q0iq

0
i �q

0
jq

0
j (for q0i � u0i or d0i) is approxi-

mately the same as the scale that generates the �q0Riq
0
Lj mass

term, �Mq�ij.
The ETC gauge boson mass METC�q� giving rise to a

quark mass mq�METC�—an element or eigenvalue of
Mq—is defined by [5]

mq�METC� ’
g2ETC

M2
ETC�q�

h �TTiETC: (A1)

Here, the quark mass and the technifermion bilinear con-
densate, h �TTiETC, are renormalized at the scale METC�q�.
The condensate is related to the one renormalized at the
technicolor scale �TC ’ FT by

h �TTiETC � h �TTiTC exp
Z METC�q�

�TC

d1
1
0m�1�

�
: (A2)

Scaling h �TTiTC from QCD, we expect

h �TTiTC � 	T ’ 4�F3
T � 4�F3

�=N3=2: (A3)

The anomalous dimension 0m of the operator �TT is given
in perturbation theory by

0m�1� �
3C2�R�
2�

<TC�1� �O�<2
TC�; (A4)

where C2�R� is the quadratic Casimir of the technifermion
SU�NTC� representation R. For the fundamental repre-
sentation of SU�NTC� to which we assume our technifer-
mions T belong, it is C2�NTC� � �N2

TC 
 1�=2NTC. In
a walking technicolor theory, however, the coupling
<TC�1� decreases very slowly from its critical chiral-
symmetry-breaking value at �TC, and 0m�1� ’ 1 for
�TC & 1 & METC.

An accurate evaluation of the condensate enhancement
integral in Eq. (A2) requires detailed specification of the
technicolor model and knowledge of the 	�<TC�-function
for large coupling.28 Lacking this, we estimate the en-
hancement by assuming that
-18
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FIG. 11. Re��0=�� as a function of YRd and YRu in the STC2
variant of Model 3. The 2D and 5D bands are the same as in
Fig. 8.
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0m�1� �

(
1 for �TC < 1<METC=F

0 for 1>METC=F
(A5)

Here, METC is the largest ETC scale, i.e., the one generat-
ing the smallest term in the quark mass matrix for F � 1.
The parameter F > 1 parameterizes the departure from the
strict walking limit (which we characterize by 0m � 1
up to METC=F). Then, using Eqs. (A1) and (A2), we
obtain
FIG. 12. Extended technicolor scale METC=gETC as a function
of quark mass mq renormalized at METC for F � 1 (solid curve),
10 (dashed), and 100 (solid).
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METC�q�
gETC

�

8>>><>>>:
����������������
64�3<ETC

p
F2
�

Nmq
if METC�q�<METC=F�������������������

4�METCF2
�

FNmq

r
if METC�q�>METC=F

(A6)

To evaluate this, we take <ETC � 3=4, a moderately strong
value as would be expected in walking technicolor, N �
10, a typical number of doublets in TC2 models with
topcolor breaking (see, e.g., Ref. [16]). Then, taking the
smallest quark mass at the ETC scale to be 10 MeV, we
find METC � 7:17� 104 TeV. The resulting estimates
of METC=gETC are plotted in Fig. 12 for F � 1; 10,
and 100. They run from METC=gETC � 47 TeV for mq �

5 GeV to 2:34=
����
F

p
� 104 TeV= for mq � 10 MeV. Very

similar results are obtained for <ETC � 1=2 and N � 8:
METC=gETC � 48 TeV for mq � 5 GeV to 2:38=

����
F

p
�

104 TeV= for mq � 10 MeV.
APPENDIX B: THREE MASS MODELS AND THEIR
ALIGNMENT

In Sec. II we described a scenario for solving the strong
CP problem of QCD. Briefly, it was based on the natural
appearance of vacuum-aligning phases in the technicolor
sector which are rational multiples of � and the assump-
tion that ETC interactions map these phases onto the
primordial quark mass matrix Mq of Eq. (12) in such a
way that

argdet�Mq� � argdet�Mu� � argdet�Md� � 0: (B1)

Since Mq in this case is brought to real, positive, diago-
nal form Mq by unimodular matrices QL;R � �U;D�L;R,
then argdet�Mq� � 0 also. In the absence of an explicit
ETC model, we cannot construct Mq from ‘‘first prin-
ciples’’. In this appendix, therefore, we write down mass
matrices with rational phases satisfying Eq. (B1), carry out
vacuum alignment in the quark-sector by minimizing the
energy ETq�Q � QLQ

y
R� � 
Tr�MqQ� h:c:�	q�METC�,

and thus determine the aligning matrices QL;R, and the
CKM matrix V � Uy

LDL with its unphysical phases re-
moved.29 We remind the reader that these Mq have not
been ‘‘fine-tuned’’ to give jVuidjj in complete accord with
values found in Ref. [34]

A. Mass Model 1: Block-Diagonal DR
As we discussed in Sec. II, there is an argument, albeit

one we believe is questionable, that Md must have a nearly
triangular texture to suppress Bd– �Bd mixing induced by
29The programs to carry out quark-sector vacuum alignment
were developed by Tonguç Rador in 2000.
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bottom pions. That texture is needed to make jDRbdj �
jDLbdj. This model has such a primordial Md. Then,
because the very large TC2 contribution to �Mu�tt makes
mixing angles between u; c and t very small, all mixing
015011
between the heavy and light generations in this model
occurs in DL. To create small mu and md while having a
large CKM angle 412 ’ 0:2, we take mass matrices with a
seesaw structure:
Mu�METC� �

0BB@
�0; 0� �200; 0� �0; 0�

�16; 2�=3� �900; 0� �0; 0�

�0; 0� �0; 0� �160000; 0�

1CCA;

Md�METC� �

0BB@
�0; 0� �20;
�=3� �0; 0�

�22; 0� �100; 0� �0; 0�

�17; 0� �145;
�=3� �3500;
�=3�

1CCA:
(B2)

The notation is �j�Mq�ijj; arg��Mq�ij		, with masses in MeV, and these matrices are renormalized at METC � 103 TeV.
The quark mass eigenvalues extracted from Mq are:

mu � 3:47; mc � 922; mt � 160000;

md � 4:22; m2 � 104; mb � 3503:
(B3)

Quark masses at the EW scale will be enhanced by QCD and, possibly, TC2 renormalizations which we will not carry out.
For the calculations in Secs. IV, V, VI, and VII, we took quark masses from Ref. [34].

The U�3� matrices U � ULU
y
R and D � DLD

y
R obtained by minimizing the vacuum energy ETq are:

U �

0BB@
�0:972; �=3� �0:233;
2�=3� �0; 0�

�0:233; 0� �:972; 0� �0; 0�

�0; 0� �0; 0� �1:000; 0�

1CCA;

D �

0BB@
�0:922;
2�=3� �0:387; 0� �0:0047; 0:014��

�0:387; �=3� �0:921; 0� �0:0402; �=3�

�0:0141;
0:755�� �0:0379;
0:986�� �0:999; �=3�

1CCA;
The minimization routine we use must determine the 6� 6
block-diagonal Q � �U;D� all at once because it, not U
and D separately, is unimodular. It is obvious that large
elements of U and D have phases which are rational multi-
ples of�, reflecting those in Mu and Md. But the program
has a little difficulty determining precisely the phases for
small matrix elements. For example, the phase 0:014� of
Ddb is probably zero. We do not believe there are large
errors in any of the phases in these matrices. Therefore, the
observable combinations of phases in V � Uy

LDL andQL;R
below should be well-determined.

By Nuyts’ theorem [32], the mass matrix MqQ which
minimizes the vacuum energy is diagonalized by the single
block-diagonal SU�6� matrix QR � �U;D�R. With Q and
QR determined, we obtain QL � QQR and Mq �

Qy
RMqQL. We then construct V and remove its five un-

observable phases to put it in the standard form, Eq. (16).
This leaves 2� 6
 1
 5 � 6 independent phases in the
QL. To maintain the vacuum’s alignment, these five qLi
phase changes must be accompanied by the same trans-
formations on the qRi. No further quark phase changes are
permissible, leaving QR with 11 independent phases. One
of these is the overall TR3 angle, argdet�DR� �

 argdet�UR�. Only the remaining 10 QR-phases, five
each in UR and DR, appear in the right-handed flavor
ETC and TC2 currents and are, in principle, measurable.

The phase-adjusted CKM matrix is:
-20
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V �

0BB@
�0:976; 0� �0:216; 0� �0:0045;
0:977�

�0:216; 3:142� �0:976; 0� �0:0415; 0�

�0:0075;
0:516� �0:0410; 3:161� �0:999; 0�

1CCA: (B4)

The angles 4ij and phase -13 corresponding to this matrix are:

412 � 0:218; 423 � 0:0415; 413 � 0:00455; -13 � 0:977: (B5)

The magnitudes of the Vuidj are in fair agreement with those in Ref. [34]. The phase-adjustedQL;R matrices are (up to terms
of O�10
5��:

UL �

0BB@
�1:000; 0:291� �0:017;
1:867� �0; 0�

�0:017;
0:756� �1:000; 0:227� �0; 0�

�0; 0� �0; 0� �1:000; 0:225�

1CCA;

DL �

0BB@
�0:978; 0:294� �0:207; 0:224� �0:0049;
0:821�

�0:207; 3:435� �0:977; 0:224� �0:041; 0:225�

�0:0074;
0:291� �0:041; 3:387� �0:999; 0:225�

1CCA;

UR �

0BB@
�0:976;
0:756� �0:217; 0:227� �0; 0�

�0:216; 2:385� �0:976; 0:227� �0; 0�

�0; 0� �0; 0� �1; 0:225�

1CCA;

DR �

0BB@
�0:982; 2:388� �0:188;
0:824� �2:4� 10
4;
0:822�

�0:188; 0:294� �0:982; 0:223� �0:0012; 0:203�

�0; 0� �0:0012; 2:34� �1:000;
0:822�

1CCA:

(B6)

By design, DR is very nearly block-diagonal.
B. Mass Model 2: Nontrivial DR

This model has nonzero heavy-light generational mixing inDR. Elements are again of the form �j�Mq�ijj; arg��Mq�ij		:

Mu�METC� �

0BB@
�0; 0� �200; 0� �0; 0�

�16; 2�=3� �900; 0� �0; 0�

�0; 0� �0; 0� �160000; 0�

1CCA;

Md�METC� �

0BB@
�0; 0� �20;
�=3� �0; 0�

�22; 0� �100; 0� �140;
�=3�

�17; 0� �100;
�=3� �3500;
�=3�

1CCA:
(B7)

The primordial mass matrices in Model 2 are similar to those of Model 1, except that the off-diagonal elements �Md�bs and
�Md�sb are comparable. For this reason, the physical masses of Model 2 are practically identical to those of Model 1, but
we will not obtain a block-diagonal DR. The matrices U;D minimizing the vacuum energy are:

U �

0BB@
�0:972; �=3� �0:233;
2�=3� �0; 0�

�0:233; 0� �:972; 0� �0; 0�

�0; 0� �0; 0� �1:000; 0�

1CCA;

D �

0BB@
�0:921;
0:655�� �0:388; 0� �0:010;
0:996��

�0:388; �=3� �0:921;
0:011�� �0:0334; 0:727��

�0:0097;
0:794�� �0:0336; 0:566�� �0:999; �=3�

1CCA;
The phase-adjusted CKM matrix is:
015011-21
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V �

0BB@
�0:977; 0� �0:214; 0� �0:0049; 5:259�

�0:214; 3:142� �0:976; 0� �0:0292; 0�

�0:0055;
0:826� �0:0290; 3:172� �1:000; 0�

1CCA: (B8)

The corresponding angles 4ij and phase -13 are:

412 � 0:216; 423 � 0:0292; 413 � 0:00489; -13 � 1:024: (B9)

The most important features of Model 2 are the size of the CKM element jVtdj � 0:0055, jVtsj � 0:029 compared to
jVtdj � 0:0075, jVtsj � 0:041 in Model 1. The smaller jVtdj is, the lighter their Z0 and V8 can be while still complying with
the constraints from Bd mixing. Lighter gauge bosons then lead to larger TC2 contributions to decay and mixing processes.
The CKM element jVtsj in Model 2 is only �70% of the value in Ref. [34], which is known by the unitarity relation to be
jVtsj � jVcbj � 0:040. The calculation of 	MBs is affected the most by this discrepancy as explained in Sec. VIIB.

The phase-adjusted alignment matrices are:

UL �

0BB@
�1:000;
1:842� �0:019;
4:035� �0; 0�

�0:0169;
2:889� �1:000;
1:941� �0; 0�

�0; 0� �0; 0� �1:000;
1:909�

1CCA;

DL �

0BB@
�0:979;
1:839� �0:205;
1:908� �0:0051; 3:328�

�0:205; 1:267� �0:978;
1:944� �0:029;
1:943�

�0:0055; 3:548� �0:0290; 1:263� �0:999;
1:909�

1CCA;

UR �

0BB@
�0:976;
2:889� �0:217;
1:941� �0; 0�

�0:217; 0:252� �0:976;
1:941� �0; 0�

�0; 0� �0; 0� �1;
1:909�

1CCA;

DR �

0BB@
�0:981; 0:220� �0:192; 3:292� �1:6� 10
4; 3:293�

�0:191;
1:839� �0:981;
1:908� �0:040; 3:344�

�0:0077; 1:303� �0:0397; 1:215� �0:999; 3:327�

1CCA:

(B10)

Note that jDRbqj is actually larger than jDLbqj for q � d; s.
C. Mass Model 3: Nontrivial DR with jDRbqj ’ jDLbqj

This model also has a nontrivial heavy-light generational mixing inDR, but we start from a more symmetric Md than in
Mass Model 2:

Mu�METC� �

0BB@
�0; 0� �200; 0� �0; 0�

�16; 2�=3� �900; 0� �0; 0�

�0; 0� �0; 0� �160000; 0�

1CCA;

Md�METC� �

0BB@
�0; 0� �20;
�=3� �0; 0�

�22; 0� �100; 0� �100;
�=3�

�17; 0� �100;
�=3� �3500;
�=3�

1CCA:
(B11)

The physical masses at METC are again almost identical to those of Model 1. The minimizing matrices U;D are:

U �

0BB@
�0:972; �=3� �0:233;
2�=3� �0; 0�

�0:233; 0� �:972; 0� �0; 0�

�0; 0� �0; 0� �1:000; 0�

1CCA;

D �

0BB@
�0:922;
0:659�� �0:388; 0� �0:0061;
0:993��

�0:388; �=3� �0:921;
0:008�� �0:0273; 0:640��

�0:0096;
0:796�� �0:0263; 0:659�� �0:999; �=3�

1CCA;
The CKM matrix in standard form is:
015011-22
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V �

0BB@
�0:977; 0� �0:215; 0� �0:0048;
1:023�

�0:215; 3:142� �0:976; 0� �0:0290; 0�

�0:0055;
0:816� �0:0289; 3:172� �1:000; 0�

1CCA: (B12)

Its angles 4ij and phase -13 are

412 � 0:216; 423 � 0:0290; 413 � 0:00482; -13 � 1:023: (B13)

Like Mass Model 2, this model has a small CKM Vtd element. We therefore expect lower Z0 and V8 mass bounds than in
Model 1. That is indeed the case, but they are somewhat larger than in Model 2. This demonstrates the difficulty of
obtaining model-independent lower bounds on MZ0;V8

from the Bd-mixing constraint with non-block-diagonal DR—a
situation already emphasized by Simmons [22].

The phase-adjusted QL;R are:

UL �

0BB@
�1:000;
1:891� �0:017;
4:074� �0; 0�

�0:017;
2:939� �1:000;
1:980� �0; 0�

�0; 0� �0; 0� �1:000;
1:958�

1CCA;

DL �

0BB@
�0:979;
1:889� �0:205;
1:958� �0:0050; 3:278�

�0:205; 1:228� �0:978;
1:983� �0:0289;
1:983�

�0:0055; 3:509� �0:0289; 1:214� �1:000;
1:958�

1CCA;

UR �

0BB@
�0:976;
2:939� �0:217;
1:980� �0; 0�

�0:217; 0:203� �0:976;
1:980� �0; 0�

�0; 0� �0; 0� �1:000;
1:958�

1CCA;

DR �

0BB@
�0:982; 0:181� �0:190; 3:253� �1:6� 10
4; 3:253�

�0:190;
1:888� �0:981;
1:958� �0:0290; 3:302�

�0:0054; 1:254� �0:0285; 1:158� �1:000; 3:278�

1CCA:

(B14)

The effect of the more symmetric Md is seen in the �bd� and �bs� elements of DL and DR:
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