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We present a class of supersymmetric models in which the lightest Higgs boson mass can be as large as
a few hundred GeV (200 � 300 GeV) while the successful minimal supersymmetric standard model
prediction for gauge coupling unification is preserved. The theories are formulated on a 5D warped space
truncated by two branes, and a part of the Higgs sector is localized on the infrared brane. The structure of
the Higgs sector in the four-dimensional effective theory below the Kaluza-Klein mass scale is essentially
that of the next-to-minimal supersymmetric standard model, or related theories. However, large values of
the next-to-minimal supersymmetric standard model couplings at the weak scale are now possible as these
couplings are required to be perturbative only up to the infrared cutoff scale, which in general can be much
lower than the unification scale. This allows the possibility of generating a large quartic coupling in the
Higgs potential thereby significantly raising the Higgs boson mass bound. We present two particularly
simple models. In the first model, the quark and lepton fields are localized on the ultraviolet brane, where
the grand unified symmetry is broken. In the second model, the quark and lepton fields are localized on the
infrared brane, and the unified symmetry is broken both on the ultraviolet and infrared branes. Our
theories potentially allow the possibility of a significant reduction in the fine-tuning needed for correct
electroweak symmetry breaking, although this is somewhat model dependent.
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I. INTRODUCTION

Postulating supersymmetry as a solution to the hierarchy
problem results in significant constraints on the mass of the
lightest Higgs boson. For instance, in the minimal super-
symmetric standard model (MSSM), the theoretical upper
limit on the lightest neutral Higgs boson mass is known
to be around 130 GeV, assuming all superpartners have
masses below a TeV [1,2]. This is also, roughly, the
bound that arises in the minimal extension of the MSSM,
so called the next-to-minimal supersymmetric standard
model (NMSSM) [3], assuming that the NMSSM singlet
couplings remain perturbative up to the scale of gauge
coupling unification, �GUT [4]. This upper limit is com-
plemented on the lower side by experimental data con-
straining the lightest Higgs boson mass to be above
114 GeV for many interesting regions of parameter space
[5]. Thus, it becomes important to understand the theoreti-
cal implications for supersymmetry if the lightest neutral
Higgs boson is discovered to have a mass significantly
above 130 GeV.

In this paper we present a class of supersymmetric
models in which the lightest Higgs boson mass can be as
large as about a few hundred GeV (200 � 300 GeV) while
preserving the successful MSSM prediction for gauge
coupling unification. Recall that in the NMSSM the exist-
ing tight upper limit for the lightest Higgs mass arises from
the requirement that the couplings for the Higgs fields are
all perturbative up to the unification scale �GUT. However,
this requirement does not necessarily have to be imposed
if, for example, the Higgs fields are composite (or mixtures
05=71(1)=015006(11)$23.00 015006
of elementary and composite fields) arising at low ener-
gies. In this case the couplings of the singlet field in the
NMSSM, for example, can become nonperturbative at a
scale much below �GUT, significantly weakening the upper
bound of the lightest Higgs boson mass. The crucial point
is that the low-energy nonperturbative dynamics in the
Higgs sector does not necessarily mean that the entire
theory enters into a nonperturbative regime below �GUT.
In fact, it is perfectly possible that the MSSM quark, lepton
and gauge sectors stay perturbative up to the scale �GUT,
allowing a perturbative treatment for gauge coupling evo-
lution, even if the Higgs sector becomes strongly interact-
ing at low energies. Then, as long as the strong dynamics in
the Higgs sector respect an approximate global SU(5)
symmetry at energies above the TeV scale, the predicted
values for the low-energy gauge couplings are the same as
those in the MSSM.

How do we explicitly realize the scenario described
above? An attractive way of dealing with strong dynamics
is to consider higher dimensional theories. Through the
Anti-de Sitter/conformal-field-theory (AdS/CFT) duality
[6], as applied to the truncated AdS space [7], the above
scenario is related to supersymmetric theories in five-
dimensional warped space bounded by two branes [8].
The strongly interacting Higgs sector, then, corresponds
to the Higgs (and singlet) fields localized to the infrared
brane, or the TeV brane, while the perturbative sector
corresponds to quarks and leptons (and a part of the
Higgs) localized towards the ultraviolet brane, or the
Planck brane, with the standard model gauge fields propa-
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gating in the bulk. This setup is very attractive because
supersymmetry can be broken on the infrared brane, allow-
ing us to naturally understand the hierarchically small
supersymmetry-breaking scale through the AdS warp fac-
tor [9–14] (see also [15–18]). As shown in [10], this class
of theories leaves many of the most attractive features of
conventional unification intact; in particular, the successful
MSSM prediction for gauge coupling unification is pre-
served, provided that the 5D bulk possesses an SU(5)
gauge symmetry which is broken at the Planck brane and
that matter and two Higgs doublets are localized towards
the Planck brane or have conformally-flat wave functions.
(The successful prediction was anticipated earlier in [19],
and techniques for calculating gauge coupling evolution in
warped space were developed in [20–25].) These theories
also have several nice features if the SU(5) breaking at the
Planck brane is caused by boundary conditions. The mod-
els we present in this paper preserve the aforementioned
attractive features, including the MSSM prediction for
gauge coupling unification. Alternative approaches to rais-
ing the upper bound on the mass of the lightest super-
symmetric Higgs boson have been proposed recently in
[26–29]. Earlier work on raising the Higgs mass bound can
be found, for example, in Refs. [30,31]. We will comment
on the relation of some of these papers to our work in later
sections.

A large value for the physical Higgs boson mass has the
virtue that it potentially reduces the fine-tuning needed to
break the electroweak symmetry at the correct scale in
supersymmetric models. It is known that in the MSSM
we need a relatively large top-squark mass of m~t *

500 GeV in order to obtain an experimentally allowed
physical Higgs boson mass of mHiggs * 114 GeV in ge-
neric parameter regions. This large top-squark mass then
leads to a large soft Higgs mass-squared parameter through
radiative corrections given by m2

h ’ ��3y2
t =4�2�m2

~t �

ln�Mmess=m~t�, where Mmess is the scale at which supersym-
metry breaking is mediated to the MSSM sector. This
generically leads to fine-tuning of electroweak symmetry
breaking asm2

h is typically larger than m2
Higgs by an order of

magnitude or larger, especially when ln�Mmess=m~t� is large.
Because mHiggs can be as large as 200 � 300 GeV in our
theory, this tuning could potentially be reduced by a large
amount. Moreover, in warped supersymmetric models
ln�Mmess=m~t� is generically small (see [12]),1 so that our
theory allows relatively large superpartner masses for a
given value of m2

h, which can be as large as m2
h ’

m2
Higgs=2 ’ �150 � 200 GeV�2 without any fine-tuning. In

some of the explicit realizations of our theory, the virtue of
these properties is somewhat reduced by the fact that there
can be large tree-level Higgs soft masses, but we believe it
1For alternative ideas to reduce the fine-tuning, see, e.g., [32–
34].
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is significant that we can construct simple models accom-
modating these features.

The organization of the paper is as follows: In the next
section we analyze the NMSSM Higgs sector with the
cutoff lowered to � � �GUT and see that it can push up
the bound on the lightest Higgs boson mass to be as large as
about 300 GeV. In Sec. III we construct a theory allowing a
lowered cutoff for the Higgs sector while preserving the
successful MSSM prediction for gauge coupling unifica-
tion. The theory is formulated in a 5D supersymmetric
warped space, and we also briefly discuss phenomenologi-
cal consequences of the theory. We can obtain the mass of
the lightest Higgs boson as large as about 200 GeV in this
theory. In Sec. IV we present an alternative model possess-
ing similar properties but having a different configuration
of fields in the warped extra dimension. This model allows
the lightest Higgs boson mass as large as 300 GeV,
although the model requires an imposition of additional
symmetries to be fully realistic. Conclusions are given in
Sec. V. Some preliminary results of this paper were pre-
sented by one of the authors in [35].
II. LOWERING THE CUTOFF OF THE NMSSM
HIGGS SECTOR

The tree-level Higgs boson mass bound in the MSSM is
limited by the Z-boson mass mZ. However, the one-loop
corrections from top quarks and squarks are sizable, lead-
ing to the upper limit of about 130 GeV. This situation is
ameliorated only slightly by going to the NMSSM, which
includes an extra gauge singlet S that couples to the Higgs
fields through the superpotential:

WNMSSM � �SHuHd �
�
3
S3 	 Yukawa couplings: (1)

Including the singlet couplings in the one-loop Higgs mass
bound results in

m2
h;1�loop 
 m2

Zcos22�	 �2v2sin22�

	
3

4�2 y
4
t v

2sin4� ln
�m~t1m~t2

m2
t

�
; (2)

wherem~t1 andm~t2 are the masses of the two top squarks,mt

is the top-quark mass, yt is the top Yukawa coupling,
tan� � hHui=hHdi, and v � �hHui

2 	 hHdi
2�1=2. Here we

have set the mixing between the left- and right-handed top
squarks to be zero for simplicity and neglected a one-loop
correction arising from the coupling �. At first sight,
Eq. (2) appears to be a significant relaxation of the upper
bound on the Higgs boson mass. However, the value of � at
the weak scale is generally suppressed if we require � and
� to remain perturbative up to the scale of gauge coupling
unification, �GUT ’ 2 � 1016 GeV. Once this requirement
is imposed, one finds that the inclusion of the singlet field
and its coupling to the Higgs fields increases the upper
-2



RELAXING THE UPPER BOUND ON THE MASS OF THE . . . PHYSICAL REVIEW D 71, 015006 (2005)
limit on the lightest Higgs mass by only about 10 GeV
compared with the MSSM [36].

Now we ask what happens if we do not require pertur-
bativity of the couplings in Eq. (1) up to the unification
scale. One can see from the renormalization group equa-
tions (RGEs) for � and � that the value of � always
decreases when it is run down from a high scale:

d�
d ln�

�
�

16�2 �4�
2 	 2�2 	 3y2

t 	 3y2
b 	 y2

� � 3g2 � g02�;

(3)

d�
d ln�

�
6�

16�2 ��
2 	 �2�; (4)

where yb and y� are the bottom and tau Yukawa couplings,
and g and g0 are the SU�2�L and U�1�Y gauge couplings.
For instance, if we assume that � becomes nonperturbative
at a scale � above the weak scale but below �GUT, i.e.,
���� � 2�, then a lower value of � results in a higher
value of � when it is run down to the weak scale. This,
therefore, results in a higher upper limit on the mass of the
lightest Higgs boson. We have illustrated this in Fig. 1,
where we have taken ���� � 0 and ���� � 2�, which
maximizes the Higgs boson mass, and chosen the value of
tan� such that the largest Higgs mass is obtained for each
value of �. A similar analysis was performed earlier in
[37]. The improvement gained by lowering the scale at
which the Higgs-singlet sector becomes nonperturbative is
clear. A scale of � � 104 GeV, for example, results in an
upper Higgs mass bound of approximately 340 GeV, and
lower values of � give even larger Higgs boson masses.
Although there are many uncertainties in the Higgs mass
values obtained in this way, for example, those arising from
effects of nonzero values for �, one-loop effects involving
�, higher-order effects and so on, we expect that we can
FIG. 1. Theoretical upper limits on the lightest Higgs boson
mass as a function of the cutoff scale � of the NMSSM Higgs
sector.
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still obtain the lightest Higgs boson mass as large as about
300 GeV, especially for smaller values of �. Note that this
result applies to more general superpotentials of the form

WNMSSM � �SHuHd 	 f�S� 	 Yukawa couplings; (5)

where f�S� is a general function of S: f�S� � ��2
SS�

�MS=2�S2 � ��=3�S3 	 � � � . Here �S and MS are mass
parameters of order the weak scale. The NMSSM is clearly
a special case of this.

In deriving the bound on the Higgs boson mass in Fig. 1,
we required the top Yukawa coupling to be perturbative
(yt & �) only up to the scale � and did not require this
coupling to be perturbative up to the unification scale of
�GUT ’ 2 � 1016 GeV. However, we have required all the
other sectors of the theory, in particular, the gauge cou-
plings, to remain perturbative up to the unification scale.
Our next task is to construct explicit models that realize
this type of behavior while preserving the successful
MSSM prediction for gauge coupling unification. In the
next section, we present a model that shares certain fea-
tures with the low cutoff NMSSM discussed here, although
the resulting upper limits on the Higgs boson mass are
tighter than the naive values obtained here. A model that
actually realizes the upper limits as high as those given in
Fig. 1 will be constructed in Sec. IV.
III. SUPERSYMMETRIC THEORY WITH A HEAVY
HIGGS BOSON

A. Basic scheme

In this section we construct a supersymmetric model
allowing a relatively heavy (200 GeV or so) Higgs boson
while preserving the successful MSSM gauge coupling
prediction. We have just seen that a simple way around
the tight upper bound on the lightest Higgs boson mass is to
allow the Higgs sector to become nonperturbative at a scale
below the gauge unification scale �GUT. To preserve the
perturbative prediction for gauge coupling unification, this
must be done in a way such that the sector relevant for the
gauge coupling prediction remains perturbative up to
�GUT. As outlined in the introduction, this can be done
by formulating the theory in 5D warped space truncated by
two branes.

In a warped extra dimension, the effective cutoff scale of
the theory changes with position in the fifth coordinate. We
denote this extra dimension by y, where 0 
 y 
 �R. This
can be thought of as arising from compactification on the
orbifold S1=Z2. Two branes exist in this setup: an infrared
brane at y � �R and an ultraviolet brane at y � 0. The
brane tension causes a warping of the extra dimension into
a slice of AdS space. The AdS space describing the extra
dimension is defined by the metric:

ds2 � e�2kjyj�� dx�dx 	 dy2; (6)

where k denotes the curvature of the AdS space. The four-
-3
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dimensional Planck scale M4 is then related to the 5D
Planck scale M5 by M2

4 ’ M3
5=2k (for �kR * 1). Here

we take k�M5 �M4, but with k a factor of a few smaller
than M5=� so that the 5D theory is under theoretical
control. Identifying M5 with the cutoff of the 5D theory,
the effective y-dependent cutoff, i.e., the cutoff scale mea-
sured in terms of the 4D metric �� , is given by

�cutoff � M5e�kjyj: (7)

In particular, the effective cutoff on the IR brane is just
�IR � M5e

��kR, while the cutoff on the UV brane is just
the 5D Planck scale, �UV � M5. The characteristic scale
for the Kaluza-Klein (KK) excitations, which we call the
compactification scale, is given by Mc � �ke��kR. Since
we assume M5 >�k, the IR cutoff scale is larger than the
masses of the first few KK states: �IR >Mc.

Since the warped extra dimension gives a different
effective cutoff at each point in y, fields located in different
positions in the extra dimension see different cutoff scales.
Since we need our Higgs sector to have a low cutoff scale,
we place a part of the Higgs sector, consisting of three
chiral superfields S, H�b�

u , and H�b�
d and the superpotential

of Eq. (5) with Hu and Hd replaced by H�b�
u and H�b�

d , on the
IR brane (the reason for the superscripts on the Higgs fields
will become clear later). The cutoff for the Higgs sector is
then given by �IR, which is thus identified with the � of
the previous section. The matter fields are localized on the
UV brane so that the cutoff for these fields is around the 4D
Planck scale. This suppresses potentially dangerous proton
decay and flavor-changing processes. An important point is
that, although the Higgs sector becomes nonperturbative at
a low-energy scale of �IR, it does not affect the physics of
the rest of the model. In particular, the evolution of the
gauge couplings is not affected by this nonperturbativity of
the Higgs sector. This is because physics above the scale
Mc measured by a Planck brane observer is not affected by
physics on the IR brane [21,38]. For example, a momentum
mode p will only feel physics on the IR brane with a
strength proportional to e��p=Mc . Since �IR >Mc, any
nonperturbative physics at �IR in the Higgs sector will
have decoupled from physics described by momenta p >
Mc on the Planck brane. This is the key feature of AdS
space that allows IR physics to become nonperturbative
without affecting physics on the UV brane above the scale
Mc. Any running of gauge couplings aboveMc will not feel
any (possibly nonperturbative) physics on the IR brane.

There remain two issues for model-building. How can
we transmit the electroweak symmetry breaking caused by
the vacuum expectation values (VEVs) of H�b�

u and H�b�
d on

the TeV brane to the quarks and leptons localized on the
Planck brane? And how can we maintain the MSSM
prediction for gauge coupling unification? Both of these
issues are simultaneously resolved if we introduce two
additional Higgs doublets H�B�

u and H�B�
d in the bulk.
015006
These fields can interact both with the Planck and TeV
branes and can transmit electroweak symmetry breaking.
Further, the addition of these fields is sufficient to preserve
the MSSM prediction for gauge coupling unification, as we
will see later.

B. Model

We now construct our model. While most of our con-
struction applies to general values of �IR, we concentrate
on the case where �IR � TeV, i.e., kR� 10, in what
follows because it gives the largest upper bound on the
Higgs boson mass and allows a simple implementation of
supersymmetry breaking. We take the gauge group in the
bulk to be SU(5), which is broken by boundary conditions
at the Planck brane [10]. Specifically, the 5D gauge super-
multiplet, which can be decomposed into a 4D N � 1
vector superfield V and a 4D N � 1 chiral superfield #,
obeys the following set of boundary conditions:

V

#

 !
�x�;�y� �

PVP�1

�P#P�1

 !
�x�; y�;

V

#

 !
�x�;�y0� �

P0VP0�1

�P0#P0�1

 !
�x�; y0�;

(8)

where y0 � y� �R. Here, V and # are both in the adjoint
of SU(5), and P and P0 are 5 � 5 matrices acting on gauge
space taken here as P � diag�	;	;	;�;�� and P0 �
diag�	;	;	;	;	�. This reduces the gauge symmetry at
low energies to be SU�3�C � SU�2�L � U�1�Y (321): only
the 321 component of V has a zero mode. The character-
istic scale for the KK tower isMc, which is a factor of a few
smaller than the IR cutoff scale �IR.

We also introduce two bulk hypermultiplets fH;Hcg and
f %H; %Hcg in the fundamental representation of SU(5). Here,
we have decomposed a hypermultiplet into two 4D N � 1
chiral superfields, where H�5�, Hc�5��, %H�5��, %Hc�5� are
4D chiral superfields with the numbers in parentheses
representing their transformation properties under SU(5).
The boundary conditions are given by

H

Hc

 !
�x�;�y� �

�PH

PHc

 !
�x�; y�;

H

Hc

 !
�x�;�y0� �

P0H

�P0Hc

 !
�x�; y0�;

(9)

for fH;Hcg, and similarly for f %H; %Hcg. The zero modes then
arise only from the SU�2�L-doublet components of H and
%H, which we call H�B�

u � H and H�B�
d � %H. In general, a

bulk hypermultiplet f&;&cg can have a mass term in the
bulk, which is written as

S �
Z
d4x

Z �R

0
dy

"
e�3kjyj

Z
d2*c&k&&c 	 H:c:

#
;

(10)
-4
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in the basis where the kinetic term is given by
Skin �

R
d4x

R
dy�e�2kjyj

R
d4*�&y&	&c&cy�	fe�3kjyj �R

d2*�&c@y&�&@y&c�=2	H:c:g� [39]. The parameter
c& controls the wave function profile of the zero mode—
for c& > 1=2 ( < 1=2) the wave function of a zero mode
arising from & is localized to the Planck (TeV) brane; for
c& � 1=2 it is conformally flat. For H and %H fields, we
choose cH and c %H to be 1=2 (or slightly larger than 1=2):

cH ’ c %H ’
1

2
; (11)

so that the zero modes of H�B�
u and H�B�

d have (almost)
conformally-flat wave functions. These fields then play a
role of transmitting electroweak symmetry breaking in the
TeV-brane Higgs sector, which will be introduced later, to
the matter sector (H�B�

u and H�B�
d are not completely iden-

tified with the Higgs doublets in the MSSM, as we will see
below). The matter fields, Q, U, D, L, and E for each
generation, are introduced on the Planck brane with the
Yukawa couplings to H�B�

u and H�B�
d :

S �
Z
d4x

Z �R

0
dy21�y�

"Z
d2*�yuQUH

�B�
u 	 ydQDH

�B�
d

	 yeLEH
�B�
d � 	 H:c:

#
: (12)

(Alternatively, matter could be introduced in the bulk with
the appropriate boundary conditions and wave functions
localized towards the Planck brane by having c � 1=2. All
our analyses apply to both the brane and bulk matter cases.)
With the above configuration of fields, the prediction for
the low-energy gauge couplings are the same as in the
MSSM at the leading order and proton decay rates are
adequately suppressed [10]. Small neutrino masses are
also naturally obtained through the see-saw mechanism
by introducing right-handed neutrinos N on the Planck
brane or in the bulk [10].

We now introduce the Higgs sector on the TeV brane,
which could become strongly coupled at the IR cutoff scale
�IR � TeV. We introduce three chiral superfields S�1�,
H0�5�, and %H0�5�� on the TeV brane with the numbers in
parentheses representing the transformation properties
under SU(5) [the active gauge group on the TeV brane is
SU(5) so that any multiplet on this brane must be in a
representation of SU(5)]. We introduce the superpotential
of the following form on the brane:

S �
Z
d4x

Z �R

0
dy21�y� �R�

"
e�3�kR

Z
d2*��SH0 %H0

	 f�S��	 H:c:

#
; (13)

where, as explained earlier, f�S� is a function of S with the
general form given by f�S� � ��2

SS� �MS=2�S2 �
015006
��=3�S3 	 � � � . Now, however, �S and MS are mass pa-
rameters of the order of M5, or somewhat smaller, in the
original 5D metric. Since the sector living on the IR/TeV
brane only needs to stay perturbative up to �IR, we only
need to require ���IR�; ���IR� & 2�. This gives a large
quartic coupling for the doublet components of H0 and %H0,
which we call H�b�

u � H0 and H�b�
d � %H0 (these fields con-

sist of parts of the MSSM Higgs doublets, as we will see
shortly). Once supersymmetry is broken, H�b�

u and H�b�
d

(and S) will obtain VEVs, breaking the electroweak sym-
metry. An important point is that, due to the properties of
AdS space, the introduction of TeV-brane fields and/or
superpotentials does not modify the physics at higher en-
ergies, including the evolution of the gauge couplings.
Therefore, the prediction for gauge coupling unification
is still the same as that in the MSSM.

To complete the construction of the model, we have to
connect the two sets of Higgs doublets, H�B�

u ; H�B�
d and

H�b�
u ;H�b�

d . This can be done by introducing mixing terms
between these fields on the TeV brane:

S �
Z
d4x

Z �R

0
dy21�y� �R�

"
e�3�kR

Z
d2*�M1=2

ud H %H0

	M1=2
du

%HH0� 	 H:c:

#
; (14)

where Mud and Mdu are parameters having the mass di-
mension of 1 and of order M5. Note that the doublet
components of H, %H, H0, and %H0 are H�B�

u , H�B�
d , H�b�

u ,
and H�b�

d , respectively. In the KK-decomposed 4D theory,
interactions of Eqs. (13) and (14) give the following super-
symmetric masses for the Higgs doublets

W � �H�B�
u H�b�

u �
0 e��kR

							
Mud
�R

q
e��kR

							
Mdu
�R

q
�hSi

0B@
1CA H�B�

d

H�b�
d

 !
;

(15)

where (and below) H�B�
u and H�B�

d stand for the zero modes
for these fields, and S is canonically normalized in 4D.
Here, we have assumed that Mud and Mdu are of order M5

or smaller and taken into account the volume-suppression
factor arising from wave functions of H�B�

u and H�B�
d . We

have also left out the potential coupling of the singlet to the
bulk Higgs fields which is more volume suppressed than
the other terms and therefore negligible. This gives the
desired mixing between H�B�

u and H�b�
u , and H�B�

d and H�b�
d .

After supersymmetry is broken, a certain parameter region
of the model leads to VEVs for one set of the Higgs
doublets Hu and Hd parameterized by

Hu � cos*uH
�b�
u 	 sin*uH

�B�
u ; (16)

Hd � cos*dH
�b�
d 	 sin*dH

�B�
d ; (17)
-5



FIG. 2. Upper limits on the lightest Higgs boson mass as a
function of the IR cutoff scale � for various values of the up-
type Higgs mixing angle *u: cos*u � 0:1; 0:2; 0:4; 0:6, and 0:8.
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which we assume to be the case. These fields Hu and Hd,
therefore, are the Higgs doublets responsible for electro-
weak symmetry breaking. Assuming that S does not have
a large supersymmetric mass, they have a large quartic
term arising from the superpotential coupling W �
� cos*u cos*dSHuHd:

VH � �2cos2*ucos2*djHuHdj
2: (18)

Furthermore, these doublets also couple to the quarks and
leptons through the Yukawa couplings of Eq. (12):

W � y0u sin*uQUHu 	 y0d sin*dQDHd 	 y0e sin*dLEHd;

(19)

giving the quark and lepton masses, where y0u;d;e �
yu;d;e=��R�

1=2 are dimensionless coupling parameters.
Therefore, for reasonable O�1� values for the mixing an-
gles, interactions in Eqs. (18) and (19) can give the re-
quired quark-lepton masses and a large quartic term for the
Higgs fields.

What if the IR scale �IR is much larger than the TeV
scale? In this case Mud and Mdu [and �S and MS in the
function f�S�] must be chosen such that their values mea-
sured in terms of the 4D metric are of order TeV, i.e.,
e��kRMud � e��kRMdu � TeV. Alternatively, for the
NMSSM, one could introduce an additional set of Higgs
fields H00 and %H00 on the TeV brane with the superpotential
term 1�y� �R�fM̂1=2

ud H
00�a %H 	 b %H0� 	 M̂1=2

du
%H00�cH	

dH0�g, in which case M̂ud and M̂du could be as large as M5.
In Fig. 2 we have plotted the upper limit on the physical

Higgs boson mass as a function of �. In the figure, we have
set the mixing angle for the down-type Higgs to be zero,
*d � 0, for simplicity, and plotted the limits for various
different values of the mixing angle for the up-type Higgs
*u. The bound plotted is maximized by setting ���� � 2�
and ���� � 0, where � � �IR, and by using the model
with additional Higgs doublets H00 and %H00 described in the
previous paragraph for higher values of �. In the figure, we
have applied the condition of tan�> 2, because the values
of tan� much smaller than 2 require very small cos*u to
obtain a large enough top-quark mass and thus lead to a
small physical Higgs boson mass (the maximum Higgs
boson mass may actually be obtained at tan� somewhat
smaller than 2, but the bound does not change much even in
that case). We have also assumed that the mixing of the two
sets of Higgs doublets, Eqs. (16) and (17), occurs at the
scale �. This maximizes a Higgs boson mass obtained for a
given value of � and *u. In a realistic situation, however,
the scale at which the Higgs mixing occurs will most likely
be a factor of a few smaller than �. This could give a
reduction of the Higgs boson mass as large as about �30 �
50� GeV for � � TeV depending on details of the physics
at ��, since the coupling � is then very large between �
and the scale of the Higgs mixing, which could give large
negative corrections to the low-energy values of � and the
015006
top Yukawa coupling. The reduction is smaller for larger
values of �.

The value of cos*u is bounded from above by requiring
that a large enough top-quark mass is obtained through the
Yukawa coupling of Eq. (19). For example, if one neglects
the effect of the running of yu (but not the volume-
suppression effect), one finds that the upper bound on
cos*u is about 0.6 for � ’ 10 TeV and tan� * 2. The
running effect between � and the electroweak scale could
somewhat reduce this value, e.g., to cos*u & 0:55, but we
still see from Fig. 2 that our theory allows the Higgs boson
mass as high as 200 GeV, even after considering the
potential reduction of the Higgs mass coming from physics
at the scale �. To complete the discussion, we must also
consider the running of the top Yukawa coupling yu above
the scale �. We will, however, see at the end of this section
that the Higgs mass bound obtained here is not much
changed by this effect. Because our theory admits a large
physical Higgs boson mass, it potentially allows a signifi-
cant reduction (or an elimination) of the fine-tuning.

Let us here consider an example of the parameter region
leading to a large Higgs boson mass. We here concentrate
on the case with �IR � O�10 TeV� and the region where
the elements of the Higgs mass matrix in Eq. (15) are
smaller than Mc. In this parameter region mixings between
the light Higgs states and higher KK states are negligible,
so that we can neglect the effect of the KK states in
analyzing electroweak symmetry breaking (note also that
the precision electroweak constraints from the KK
states are very weak with matter localized on the Planck

brane [40]). For M0
du & M0

ud ’ �hSi, where M0
xy �

e��kR
																		
Mxy=�R

q
with x; y � u; d, we obtain *u � O�1�

and *d & 1. This leads to somewhat suppressed Yukawa
couplings for the down-type quarks and charged leptons
-6
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through Eq. (19), but not for the up-type quarks (especially
the top quark). The tree-level Higgs-quartic couplings are
given by Eq. (18) plus the contribution from the SU�2�L �
U�1�Y D terms. The masses for two sets of Higgs doublets
are of order M1 � M0

udM
0
du=�hSi and M2 � �hSi, where

M1 & M2 (the mass of the Higgs triplets arising from H0

and %H0 is of order M2). Supersymmetry breaking is caused
on the TeV brane by a nonzero VEV of a chiral superfield
Z: FZ � h@*2Zi � 0, which gives masses for the gauginos
through the operator 1�y� �R�

R
d2*ZW 5W 5 and for

the squarks and sleptons through finite loop contributions.2

Then, if supersymmetry-breaking masses for the Higgs
fields, arising from operators of the form 1�y�
�R�

P
i;j

R
d4*ZyZ�Hi

%Hj 	Hy
i Hj 	 %Hy

i
%Hj� where Hi �

H;H0 and %Hi � %H; %H0 are of order M1, correct electroweak
symmetry breaking can be induced. Supersymmetry break-
ing should also trigger a nonzero VEV for S, and we
assume that the supersymmetric mass for S—e.g., �hSi
in the case with MS � 0—is of order M1. Such a VEV, for
example, may arise if the soft supersymmetry-breaking
Lagrangian (and thus the superpotential) contains a linear
term in S, Lsoft � �CS�

2
SS	 H:c:� 	 � � � , in which case

the VEV of S is given by hSi ’ CS�
2
S=m

2
S in certain pa-

rameter region, where m2
S is the soft supersymmetry-

breaking mass squared for S. This allows relatively small
values of hSi even with large values of m2

S. The spectrum
contains an extra pair of Higgs doublets and a pair of Higgs
triplets with the masses of order M2, in addition to the
states in the NMSSM. In fact, the presence of an extra pair
of Higgs fields with the quantum numbers of 5	 5�

under SU(5) is a generic prediction of the model with
�IR � TeV.

Finally, we consider the issue of evolution of the top
Yukawa coupling above �IR: yu in Eq. (12) for the third
generation. In the present model the evolution of the
Yukawa coupling receives additional contribution from
the bulk, which could potentially alter the existence and
location of a Landau pole for the top Yukawa coupling (and
for the other couplings). While we do not make a full
analysis of these coupling evolutions, we can make a rough
estimate of this effect in the following way. We first rescale
the 5D Higgs field H�B�

u as H�B�
u !

					
M

p
Ĥu, so that Ĥu has a

mass dimension of 1. Then the top Yukawa coupling of
Eq. (12) is written as 21�y�

R
d2*yu

					
M

p
QUĤu 	 H:c:

(note that yu has mass dimensions of �1=2). Suppose
that the fields Q, U, and Ĥu have brane-localized kinetic
2An alternative possibility is to break supersymmetry on the
Planck brane with an intermediate scale VEV for FZ, so that the
321 gauginos receive weak scale masses on the Planck brane. In
this case, the Higgs fields H0 and %H0 do not obtain tree-level
supersymmetry-breaking masses (and the supersymmetry-
breaking masses for H�B�

u and H�B�
d are volume suppressed).

The squark and slepton masses, however, are generated at tree-
level through the couplings to Z, which must be assumed to be
flavor universal.
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terms of 21�y�
R
d4*�Z0;QQyQ	 Z0;UUyU	 Z0;HĤ

yĤ�

at tree level. In the dual 4D picture, this implies that the
wave function renormalizations for the fields Q, U, and Ĥ,
defined as ZQ���, ZU���, and ZH���, take the values Z0;Q,
Z0;U, and Z0;H at the scale k:

ZQ�k� � Z0;Q; ZU�k� � Z0;U; ZH�k� � Z0;H;

(20)

where � is the renormalization scale. When we evolve the
RGEs to low energies, ZQ, ZU, and ZH receive quantum
corrections (but yu

					
M

p
does not receive such corrections

due to the nonrenormalization theorem). In particular,
ZH�� � ke��kR� receives a contribution from the bulk,
which we interpret as the running effect: 1ZH;bulk �
�RM � �M=k� ln�k=��. Then, if we simply add the bulk
contribution to the MSSM running, we obtain RGEs for the
wave functions:

d lnZQ
d ln�

� �
1

8�2

�
y2
uM

ZQZUZH
�

8

3
g2

3

�
; (21)

d lnZU
d ln�

� �
1

8�2

�
2

y2
uM

ZQZUZH
�

8

3
g2

3

�
; (22)

d lnZH
d ln�

� �
1

8�2

�
3

y2
uM

ZQZUZH

�
�

M
kZH

: (23)

The low-energy top Yukawa coupling y0t, which couples Q
and U with the zero mode of H�B�

u [the 33 element of y0u in
Eq. (19)], is then obtained as

y0t���2 �
y2
uM

ZQ���ZU���ZH���
: (24)

Note that ZH��� [ZQ��� and ZU���] is proportional to M
[M0] so that the coupling y0t does not depend on the
spurious parameter M. Using these RGEs, we can obtain
the low-energy value of y0t. Note that the SU�3�C gauge
coupling g3 obeys the RGE with the bulk contribution
added. Assuming that the Planck brane-localized kinetic
term at tree level is small, the RGE takes the form
d�1=g2

3�=d ln� � ��b=8�2� with b � bMSSM 	 bbulk ’
1:8, where bbulk represents the SU(5)-invariant bulk con-
tribution, which makes g3 nonperturbative at the scale k.
For natural sizes for the coefficients in 5D, i.e., Z0;Q �

Z0;U � 1, Z0;H �M=M�, and yu � 4�=
							
M�

p
, where M� is

the 5D cutoff scale, we obtain y0t��� TeV� & �1:3 � 1:4�
for �IR � TeV. Although this estimate is somewhat un-
certain, we expect that we can obtain a large enough top-
quark mass mt � y0t sin*uhHui, where hHui � v sin�, for
sin*u not much smaller than 1, e.g., sin*u * 0:8 for
tan� * 2. This in turn gives the upper limit on the lightest
Higgs boson mass larger than 200 GeV for small values of
�IR, since cos*u as large as 0.6 is allowed (see Fig. 2).
Although a more careful analysis may be needed to be
-7
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really conclusive about the issue of the top-quark mass, we
expect that a Higgs boson mass as large as 200 GeV can be
obtained in this model.3
IV. MODEL WITH MATTER ON THE IR BRANE

In this section we construct an alternative model. This
model differs from that of the previous section in the
location of fields. In particular, we locate the quark and
lepton fields on the IR brane so that there is no issue of
nonstandard evolution of the Yukawa couplings (the evo-
lution of the Yukawa couplings is the standard one in 4D
below �IR). Because the Yukawa couplings are located on
the IR brane, they can become nonperturbative at the scale
�IR, giving the observed top-quark mass quite easily. We
again concentrate on the case with �IR � TeV below, since
it gives the largest bound on the Higgs boson mass and the
simplest realization of gauge coupling unification.4

The model uses a bulk SU(5) gauge symmetry, but it is
now broken at both the Planck and the TeV branes, i.e., the
5D gauge multiplet obeys the boundary conditions of
Eq. (8) with P � P0 � diag�	;	;	;�;�� [13]. The
bulk Higgs fields are introduced as two hypermultiplets
in the fundamental representation of SU(5), fH;Hcg, and
f %H; %Hcg, with the boundary conditions given by Eq. (9) and
P � P0 � diag�	;	;	;�;��. These boundary condi-
tions yield zero modes that are not the MSSM states, the
SU�5�=�SU�3�C � SU�2�L � U�1�Y� component of #, in
addition to the MSSM gauge fields, the 321 component
of V. However, these unwanted states can be made heavy
(with masses of order TeV) through supersymmetry-
breaking effects on the TeV brane, and the prediction for
the low-energy gauge couplings is still that of the MSSM,
as long as the bulk mass parameters for the Higgs fields, cH
3It is possible to construct models in which the running of the
top Yukawa coupling is the standard 4D running. An example of
such models is the following: We have TeV-brane Higgs fields S,
H0, and %H0 together with the superpotential of Eq. (13). We
further introduce a Higgs field H00

u on the Planck brane and a
Higgs hypermultiplet f %H; %Hcg in the bulk, whose zero mode is
denoted as H�B�

d . These fields are coupled to matter fields
localized on the Planck brane as Eq. (12), but with H�B�

u replaced
by H00

u . Then, introducing the Higgs mixing terms of the form
1�y�

R
d2*H00

uH
�B�
d 	 1�y� �R�

R
d2*H�b�

u H�B�
d , we obtain the

top Yukawa and Higgs-quartic couplings at low energies. To
get the 4D running for the top Yukawa coupling, however, we
must arrange the coefficients of the two Higgs mixing terms such
that they both have sizes around �IR when measured in terms of
the 4D metric �� . Simple generalizations of this idea also lead
to realistic down-type Yukawa couplings, while preserving the
prediction for gauge coupling unification.

4The Higgs boson mass bound in warped supersymmetric
theories with matter fields on the TeV brane was also considered
in [31]. The model discussed there, however, does not accom-
modate the MSSM prediction for gauge coupling unification,
and the bound on the Higgs mass is relaxed only for low values
of � of order TeV, as it uses operators suppressed by powers of
�.
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and c %H, satisfy cH; c %H � 1=2 [13]. In this ‘‘321-321
model,’’ the gauge groups effective at the Planck brane
and the TeV brane are both SU�3�C � SU�2�L � U�1�Y .
Therefore, we can locate the MSSM matter fields Q, U,
D, L, and E on the TeV brane without introducing proton
decay mediated by the SU(5) gauge bosons. Potentially
dangerous tree-level proton decay operators can also be
forbidden by imposing a symmetry, say baryon number, on
the model.5

We now take a closer look at the Higgs sector. For the
boundary conditions described above, the Higgs fields do
not possess zero modes. However, if the bulk mass parame-
ters for the Higgs fields are much larger than k=2, i.e.,
cH; c %H � 1=2, four doublet states from H, Hc, %H, and %Hc

become exponentially lighter than Mc, which we assume to
be the case (see footnote 2 of [13]). Among these states, the
modes arising from H and %H, which we call H0

u and H0
d,

respectively, are (strongly) localized towards the Planck
brane, while those arising from Hc and %Hc, which we call
Hd and Hu, respectively, are (strongly) localized towards
the TeV brane. Now, we can introduce superpotential
interactions between the Hu and Hd fields and the fields
located on the TeV brane. Specifically, we introduce
Yukawa couplings between the Hu and Hd fields and the
quarks and leptons:

S �
Z
d4x

Z �R

0
dy21�y� �R�

"
e�3�kR

Z
d2*�y0uQUHu

	 y0dQDHd 	 y0eLEHd� 	 H:c:

#
: (25)

In addition, we introduce a singlet chiral superfield S on the
TeV brane together with the superpotential couplings

S �
Z
d4x

Z �R

0
dy21�y� �R�

"
e�3�kR

Z
d2*��0SHuHd

	 f�S��	 H:c:

#
; (26)

where f�S� is as before. Since the lightHu andHd fields are
strongly localized towards the TeV brane, the couplings in
Eqs. (25), (26) do not receive a volume-suppression factor
when reduced to the low-energy 4D theory. This allows
large couplings for the low-energy superpotential
5We comment here that it is straightforward to use the 321-321
model to construct a theory of the type discussed in Sec. III, i.e.,
the model with the quarks and leptons on the Planck brane. The
simplest of such models has �IR � TeV, with the boundary
conditions for the gauge multiplet given by Eq. (8) with P �
P0 � diag�	;	;	;�;�� and those for the bulk Higgs hyper-
multiplets given by Eq. (9) with P � �P0 �
diag�	;	;	;�;��. The TeV-brane Higgs sector consists of
S, H�b�

u , and H�b�
d with the superpotential interactions of the form

1�y� �R�
R
d2*f�SH�b�

u H�b�
d 	 f�S�g. The rest of the construc-

tions of the model is analogous to those of Sec. III.
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W � �SHuHd 	 f�S� 	 yuQUHu 	 ydQDHd

	 yeLEHd; (27)

where yu;d;e � y0u;d;e
			
k

p
and � � �0

			
k

p
. Since � in Eq. (27)

can be large of order � at low energies of E ’ Mc, a large
physical Higgs boson mass can be obtained. The upper
limits on the Higgs boson mass are essentially given by
Fig. 1 because there is no issue in obtaining a large enough
top-quark mass. Because of the bound on the masses of the
KK states [40], we expect that �IR * 100 TeV in the
present model. However, this still allows a Higgs boson
mass as large as about 300 GeV.

There are several issues in the present model. First,
small neutrino masses can be generated by introducing
right-handed neutrino hypermultiplets fN;Ncg in the bulk
with the �	;	� and ��;�� boundary conditions for N and
Nc, respectively, and coupling them to the lepton doublets
on the TeV brane through the operators of the form 1�y�
�R�

R
d2*LNHu. Then, if the bulk masses for right-

handed neutrinos are large, i.e., cN � 1=2, we can natu-
rally obtain small (Dirac) neutrino masses [41]. Potentially
large neutrino masses from the TeV-brane operators 1�y�
�R�

R
d2*�LHu�

2 can be forbidden if we impose lepton
number with charges L�1�; N��1� on the model. Second,
the H0

u and H0
d states, which are localized towards the

Planck brane, must obtain a mass of order �IR through
the superpotential term 1�y�

R
d2*H0

uH0
d to evade phe-

nomenological constraints and to preserve the MSSM pre-
diction for gauge coupling unification. The required mass
term can naturally be generated by shining the scale from
the TeV to Planck brane through a bulk singlet field with
c ’ 1=2, as discussed in [10]. Alternatively, for �IR �
TeV, the mass of the H0

u and H0
d states of order �IR can

be generated through supersymmetry breaking by
introducing a singlet field X on the Planck brane with
the superpotential interaction of the form 1�y� �R
d2*�XH0

uH
0
d 	 X3�, as in the NMSSM. Finally, super-

symmetry breaking on the TeV brane will give masses at
tree level not only to the gauginos but also to the squarks
and sleptons through the operators of the form 1�y�
�R�

R
d4*ZyZ�QyQ	UyU	DyD	LyL	EyE�. This

in general leads to the supersymmetric flavor problem,
which we somehow have to avoid. This may be accom-
plished, for example, by imposing a flavor symmetry such
as U�2�F acting on the first two generations to these inter-
actions. Such a symmetry should be broken to generate
realistic quark and lepton mass matrices, which in turn
gives a small nonuniversality in the squark and slepton
mass matrices. Although it is not obvious that the super-
symmetric flavor problem is naturally solved along this
line, here we do not attempt to make detailed studies on
this issue and simply assume that it can be done in a
phenomenologically successful manner (if not, we have
to make an assumption for the interactions between the Z
field and the quarks and leptons, which is not explained in
015006
our effective field theory). Since supersymmetry-breaking
masses for the gauginos, sfermions, and Higgs fields can
naturally be of the same order, electroweak symmetry
breaking can be obtained quite naturally in this model.
V. CONCLUSIONS

In the MSSM the upper bound on the mass of the lightest
neutral Higgs boson is about 130 GeV. We have con-
structed simple, realistic supersymmetric models which
allow the mass of this particle to significantly exceed
130 GeV while maintaining the MSSM prediction for
gauge coupling unification. These models are based on
warped 5D versions of the NMSSM (or related theories).
The point is that by localizing the NMSSM singlet on the
IR brane it is possible for the couplings of this field to
become large at the IR cutoff without affecting the pre-
diction of gauge coupling unification. These can give a
large contribution to the quartic coupling of the Higgs field,
thereby raising the bound on the mass of the lightest
neutral Higgs boson.

Several versions of these models are possible, differing
primarily in the location of the quark and lepton fields and
in the pattern of breaking of the unified gauge symmetry.
The exact bound on the Higgs boson mass is somewhat
different in each of these models. In this paper we have
concentrated primarily on two particularly simple cases. In
the first, the quark and lepton fields are localized on the UV
brane, where the unified symmetry is broken. There are (at
least) two sets of Higgs doublets—one localized on the IR
brane receiving a large quartic coupling from the NMSSM
potential on the IR brane, the other propagating the bulk
having the Yukawa couplings to the quarks and leptons.
The Higgs doublets responsible for electroweak symmetry
breaking are linear combinations of these two sets, thus
having both the Yukawa couplings and a large quartic
coupling. The running of the top Yukawa coupling, how-
ever, is nonstandard above the IR scale and it limits the
maximum value of the bound we can obtain in this model.
In the second model, the quark and lepton fields are local-
ized on the IR brane, while the unified symmetry is broken
both on the UV and IR branes. In this case there is no issue
of the nonstandard running of the top Yukawa coupling so
that we can obtain the maximal value of the bound on the
Higgs mass, which can be as large as 300 GeV.

Through the AdS/CFT correspondence, our theory is
related to purely 4D theories in which some (or all) of
the Higgs fields are composites of some strong interaction,
which is nearly conformal above the scale of the IR cutoff.
In this sense our theory shares certain features with the
model considered in [28]. In our model, however, the
prediction of gauge coupling unification is ‘‘automati-
cally’’ the same as the MSSM, which is not the case in
the model of [28]. The issues of raising the Higgs mass
bound and the prediction of the gauge couplings are also
considered in [29]. In that model, however, in contrast to
-9
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ours, the Higgs doublets are mainly elementary while the
singlet is composite.
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