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New fat Higgs: Increasing the MSSM Higgs mass with natural gauge unification
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In this paper we increase the minimal supersymmetric standard model tree level Higgs mass bound to a
value that is naturally larger than the LEP-II search constraint by adding to the superpotential a �SHuHd
term, as in the next to minimal supersymmetric standard model, and UV completing with new strong
dynamics before � becomes nonperturbative. Unlike other models of this type, the Higgs fields remain
elementary, alleviating the supersymmetric fine-tuning problem while maintaining unification in a natural
way.
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I. INTRODUCTION

Finding a satisfactory explanation for the large differ-
ence between the weak scale and the Planck scale, known
as the hierarchy problem, is an issue that has concerned
particle physicists for more than two decades, and is the
reason why the standard model Higgs sector is widely held
to be incomplete. Supersymmetry (SUSY) provides argu-
ably the most attractive solution for this hierarchy, since it
comes with gauge coupling unification as an automatic
consequence. However, its simplest implementation, the
minimal supersymmetric standard model (MSSM), is look-
ing increasingly fine-tuned as recent results from LEP-II
have pushed it to regions of parameter space where a light
Higgs seems unnatural.1 This is problematic for the MSSM
since SUSY relates the quartic coupling of the Higgs to the
electroweak gauge couplings, which at tree level bounds
the mass of the lightest Higgs to be less than that of the Z.
Radiative corrections can help increase this bound, with
the largest contribution coming from the top yukawa, giv-
ing
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for large tan� [3]. Since this effect is only logarithmic in
the stop mass, however, consistency with the LEP-II mass
bound requires the stops to be pushed up to at least
500 GeV. At the same time radiative corrections to m2

Hu

are quadratic in the stop mass
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There is therefore a conflict between our expectation that
the stop is heavy enough to significantly increase the Higgs
mass through radiative corrections and yet light enough to
cut off the quadratic divergence in a natural way.2
[1,2] for further discussion.
paper [4] attempted to resolve this conflict by
he size of radiative corrections to m2

Hu
from the
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Requiring consistency with LEP-II results therefore forces
us to live with a fine-tuning of a few percent.

One way to resolve this issue is to generate a larger tree
level quartic coupling for the Higgses. This can be accom-
plished through new F-terms as in the next to minimal
supersymmetric standard model (NMSSM) [5,6]; new D-
terms by charging the Higgs under a new gauge symmetry
[7]; or by using ‘‘hard’’ SUSY breaking at low scales [8].
We will choose to focus on the NMSSM, where the addi-
tion of a gauge singlet S allows for the following term in
the superpotential,

W � �SHuHd; (3)

and results in an additional quartic coupling for the
Higgses of the form j�j2jHuHdj

2. Unfortunately, the re-
quirement of perturbativity up to the GUT scale limits the
size of � at the electroweak scale [9] giving a maximum
Higgs mass bound of about 150 GeV. This constraint was
recently evaded in the fat Higgs model [10] by allowing the
coupling to become nonperturbative at an energy lower
than the GUT scale, where S, Hu, and Hd were seen to be
composites of new strong dynamics. All couplings were
asymptotically free above this point and the Higgs mass
bound could be pushed up to 500 GeV. On the other hand,
the composite nature of the Higgs doublets gave rise to a
different problem—gauge coupling unification was not
manifest and some ad hoc matter content had to be added
to the theory to preserve it. In addition, elementary Higgs
fields needed to be reintroduced in order to generate the
usual standard model yukawas at low energies.

In this paper, we will argue that UV completion of the
NMSSM does not require us to sacrifice the desirable
properties of weak-scale SUSY. We will keep the Higgs
fields elementary, making unification manifest while per-
mitting the usual standard model yukawas to be written
down. Like the fat Higgs, we use a composite S but instead
we replace the � coupling above the compositeness scale
by asymptotically free yukawas. Since we will no longer
have to run �, which grows in the UV, all the way to the
GUT scale, we can afford to start at a larger value at the
electroweak scale. Unfortunately, our scheme will require
-1  2005 The American Physical Society
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us to compromise slightly on how heavy we can make the
Higgs, but this seems a small price to pay for natural gauge
coupling unification.

The outline of the rest of the paper is as follows: In
Sec. II, we discuss the philosophy of this mechanism and
detail a specific model; in Sec. III we discuss the bounds on
the � coupling, and the issues of fine-tuning, gauge cou-
pling unification, and the model’s phenomenology. We
conclude in Sec. IV.
II. CONSTRUCTING A MODEL

In SUSY models gauge contributions to anomalous
dimensions are negative, tending to make yukawa cou-
plings asymptotically free. The yukawas themselves, on
the other hand, contribute positive anomalous dimensions.
These competing effects, which are evident in the renor-
malization group equation (RGE) for the NMSSM � cou-
pling,
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result in an asymptotically free � only when the gauge
couplings involved are larger than � itself. Even when they
do not dominate the running, maximizing the negative
contributions from the gauge sector by adding as many
SU(5) 5� �5 multiplets as are allowed by perturbative
unification gives an upper bound on the low energy �
coupling [9]. The benefit is small here, however, since
the electroweak gauge couplings remain quite weak for
the majority of the running and g3 only affects ht at one
loop. This makes it difficult to significantly increase the
low energy value of �.

One way to improve the situation is to introduce new
gauge dynamics through the following superpotential:

W� � �1�XHu � �2�
cXcHd �MXXX

c �M ~X
~X ~Xc: (5)

We have added the fields �;�c; X; Xc; ~X; ~Xc, which are
charged under a new strong gauge symmetry, with the X’s
also charged under the standard model as seen in Table I.
We choose SU�n� to be our strong group as this permits our
scheme to be most easily implemented. Since the strong
gauge coupling (gs) can now dominate the running, the �1;2

yukawas can be asymptotically free for larger initial values
TABLE I. Preliminary charge assignments for the new parti-
cles.

SU�3� 	 SU�2�L 	 U�1�Y SU�n�s

� �1; 1; 0� n
�c �1; 1; 0� �n
X �1; 2;� 1

2� �n
Xc �1; 2; 1

2� n
~X ��3; 1; 1

3� �n
~Xc �3; 1;� 1

3� n
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and the resulting gain in � will be more substantial. The
two X fields have been given a supersymmetric mass, MX,
and are completed into �5;n� � ��5; �n� multiplets of
SU�5� 	 SU�n�s by the ~X’s and thus maintain gauge cou-
pling unification. Note that this does not require any
MSSM particles to be gauged under SU�n�s. The fields
that are gauged under both the standard model and the new
group have large supersymmetric mass terms and thus
decouple from low energy physics.

Below the scale MX and M ~X, integrating out the X’s and
~X’s generates the nonrenormalizable operator:
Weff � �
�1�2

MX
��cHuHd: (6)
There are two ways in which the NMSSM � coupling can
be obtained from this operator. One is to break SU�n�s by
giving a vacuum expectation value (vev) to �; as long as
this breaking takes place close to the MX scale, � can be
satisfactorily large. A simpler approach, which we adopt in
this paper, is to use the fact that below MX;M ~X there are
five fewer flavors of the strong group, making the gauge
coupling get strong at low energies, forcing the � fields to
confine into an NMSSM singlet which we will call S.

Building a realistic theory from this philosophy is sim-
ply a matter of deciding what nwill be. We use the fact that
there is a restriction on the number of SU(5) flavors that
can be added to the standard model for gauge couplings to
perturbatively unify given that the added SU(5) fundamen-
tals do not decouple until the TeV scale.3 This requires four
flavors or less and, hence, n 
 4. Another important con-
straint is on the number of flavors of SU�n�s that remain
after the five flavors in X and ~X have been integrated out.
We want to avoid nf < n where there is an Affleck-Dine-
Seiberg vacuum instability [12] and will ignore the poten-
tially interesting case nf � n, where the quantum modified
moduli space constraint might shed some light on the �
problem. Instead we will choose to start with n� 6 flavors
of SU�n�s, where integrating out the five flavors gives nf �
n� 1, making the theory s-confine. Now combining the
requirement for asymptotic freedom (n� 6< 3n) with the
perturbative unitarity constraint (n 
 4) discussed earlier
uniquely fixes n � 4.4
3The possibility of a model with accelerated unification [11]
and a lowered unification scale will not be considered here.

4The case of SU(3) with nine flavors might also be useful for
our purpose. This model has been argued to have a linear family
of conformal fixed points in ��i; g� space [13] and would there-
fore be convenient when we discuss the possibility of having a
new superconformal fixed point in Sec. II B. Alternatively, if the
~X’s required for unification were not also charged under the
strong group, satisfying the resulting constraints would be easier
since we would have more room to maneuver. However, this
theory is not naturally unified, and so will not be pursued here.
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A. Details of the model

We now summarize the content and interactions of the
model. There is a strong SU�4�s gauge group, with the
particle content shown in Table II. The superpotential
contains

W � W� �WS �Wd; (7)

where

WS � m��c (8)

Wd � y�Ti� ci � Tci i�c � Tij i cj � �
y0

M2
GUT

	�#ijklTBi � j k l � #ijklTB
c

i �
c cj 

c
k 

c
l �; (9)

where we have introduced some singlets denoted by T.
After confinement, WS gives a linear term in S as in the fat
Higgs [10] while Wd decouples the extra mesons by giving
them mass terms with the singlets Ti; Tci; Tij. Note that in
the second line of Wd there is a nonrenormalizable mass
term for the baryons with the TB’s which is suppressed by
the GUT scale MGUT and thus gives rise to light baryon
states. The constraints imposed by these light states will be
discussed in Sec. III C. Note that there is a nonanomalous
U�1�R symmetry [under which  i;  

c
i are neutral and all

other SU�4�s flavors have charge 1] that makes the given
superpotential natural.

B. Conformality and confinement

At high energies the strong group has ten flavors and is
within the conformal window ( 3

2n < 10< 3n) implying,
in the absence of �1;2, that the theory flows to an interacting
fixed point in the IR [12]. As discussed previously, the
strong gauge coupling gives large negative contributions to
the beta functions of the �1;2 couplings making them
asymptotically free for gs � �1;2. Ignoring electroweak
couplings and the top yukawa, near Seiberg’s fixed point
we have the RGE:

d�1;2

dt
�

7�3
1;2

16	2 � (�1;2 � � � � : (10)

The first term is the usual one loop term due to the yukawa
TABLE II. Final charge assignments for new particles.

SU�3� 	 SU�2�L 	 U�1�Y SU�4�s

� �1; 1; 0� 4
�c �1; 1; 0� �4
 i for i � 1; . . . ; 4 �1; 1; 0� 4
 ci for i � 1; . . . ; 4 �1; 1; 0� �4
X �1; 2;� 1

2�
�4

Xc �1; 2; 1
2� 4

~X ��3; 1; 1
3�

�4
~Xc �3; 1;� 1

3� 4
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couplings while the second term contains contributions
from all orders in the fixed point gauge coupling g. If
the theory is at the fixed point, then we have very precise
information on the value of ( in the weak limit, since this
is related to the U�1�R charges of the fields by the super-
conformal algebra. Within the conformal window, for ex-
ample, �1< ( < 0 which indicates that the �1;2

couplings are relevant; they grow in the IR. Our limited
understanding of strongly coupled theories prevents us
from proceeding in full generality, so from now on we
will restrict ourselves to two plausible types of behavior.

The first possibility is the emergence of a new super-
conformal phase where both the new yukawas and gauge
couplings hit fixed points in the IR; in this case it is hard to
be quantitative about possible values of the NMSSM �
coupling. At best, we can specify a range of fixed point
values of �1;2 which give interesting � couplings, without
being able to justify if those values can be obtained. Still,
the insensitivity of this scenario to UV initial conditions is
very attractive.

In the second possibility, the yukawa couplings get
strong and disrupt the conformality, pushing the theory
away from the fixed point. In this case a reasonable bound
on the sizes of �1;2 can be given using their apparent fixed
point values from Eq. (10). We will refer to this as the weak
limit bound. It is nontrivial that this bound on � will be
large enough to be of interest to us. In fact, the naive
estimate will be in the right range but, as we will see in
Sec. III A, there are many unknown order one factors that
can change its size. An undesirable aspect of this case is
that the UV boundary conditions for �1;2 have to be tuned
to small values in order for these couplings to be just below
their one loop fixed points at low energies which saturates
the weak limit bound. This tuning could be improved
somewhat if the gauge coupling hits its fixed point at
some intermediate scale. It is also worth noting that this
weak limit bound could give us a rough estimate of the
fixed point values of �1;2 in the first scenario.

At energies around the mass of the X’s and their colored
partners ~X, these five flavors are integrated out of the
theory. The terms in the RGEs for the supersymmetric
masses typically give an ordering m<MX <M ~X. Thus,
the colored partners are integrated out first which leaves
seven flavors of SU�4�s; this is still within the conformal
window and, in the electric description, has a stronger fixed
point than the UV theory. This would take j(j from 1=5 to
5=7 and also increase the weak limit bound on �1;2 at the
scale MX. For the coupling to approach this fixed point, the
ratio MX=M ~X must be small. As discussed in Sec. III B,
there are no constraints on the size of this parameter from
unification as long as MX � M ~X at the GUT scale.

Below MX, X and Xc are integrated out and the theory
becomes a SU�4�s gauge theory with five flavors �I �
��; i�;�

c
I � ��c;  ci � for I � 0; . . . ; 4. There is a dynami-

cally generated superpotential,
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FIG. 1. The low energy values of the � coupling after running
from the compositeness scale  down to the scale �.
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Wdyn �
1

7 �MIJBIBcJ � detM�; (11)

written in terms of gauge invariant mesons (MIJ � �I�
c
J)

and baryons (BI � #IJKLM�J � � ��M). At the scale  &

MX, this theory confines and the superpotential should be
written in terms of the canonically normalized meson and
baryon fields. Since the gauge coupling is strong, the sizes
of the interactions after matching are in principle unknown.
However, estimating their sizes by naive dimensional
analysis (NDA) [14] gives

W � Weff �WS �Wd �Wdyn; (12)

where

Weff !

� ���
n

p �1�2

4	


MX

�
SHuHd; (13)

WS !
m

4	
S; (14)

Wd !
y
4	

�TiM0i � TciMi0 � TijMij�

�
y03

4	M2
GUT

�TBi B
i � TB

c

i B
ci�; (15)

Wdyn !

�
�4	�MIJBIBcJ �

�4	�3

2 detM
�
; (16)

and we have defined M00 to be S. The first two terms give
us an NMSSM-like model at energy scales below . In the
Weff term we have done not only the normal NDA analysis,
but also the large n counting—notice that this partly
compensates for the 4	 NDA suppression. Up to an un-
known O�1� constant, this results in a value for � at the
confinement scale of

� �
���
n

p �1�2

4	


MX
: (17)

WS contains a term linear in S that favors electroweak
symmetry breaking and explicitly breaks the Peccei-
Quinn symmetry that would give rise to an undesirable
light axion. Wd marries up the superfluous baryons and
mesons with singlet T partners as desired. In addition,
integrating out the heavy mesons will decouple their inter-
actions in Wdyn. It is also possible to add interactions that
will give rise to the standard NMSSM S3 coupling to
eliminate the new � problem arising from the supersym-
metric parameter m but we will not address this or the �
problems of MX and M ~X here.

III. DISCUSSION

A. � and the Higgs mass bound

So far we have shown how our model approximately
reduces to the NMSSM below the confinement scale.
015003
Before analyzing this further, it is important to determine
what range of � will be most useful for our purposes. The
value of the Higgs quartic can be found by running the �
coupling from the compositeness scale down to the elec-
troweak scale (�). We can solve for � in Eq. (4) by
ignoring all except the �3 term to obtain

����2 �
�

1

���2
�

1

2	2 ln


�

�
�1
: (18)

We summarize the resulting running in Fig. 1, in which the
low energy value ���� is plotted as a function of the initial
value ���, for =� of different orders of magnitude.
Notice that the value of � at low energies is largely
insensitive to its value at the confinement scale for ��� *

3; it is this crucial feature that allows this model to compare
favorably with the fat Higgs. Unlike the fat Higgs, how-
ever, we do not have to start in the limit of strong coupling
to get ���� parametrically higher than the NMSSM bound
of 0.8 [9]. In the analysis that follows, we will arbitrarily
choose as our region of interest ���� * 1:5, which trans-
lates to ��� * �1:8; 2:2; 3:3� for running over one, two,
and three decades, respectively.

Returning to the first scenario in which there is a new
superconformal fixed point, we can now relate the above
values of � to the fixed point values of �1;2. Using Eq. (17)
and assuming comparable fixed points for the two yuka-
was, we see that we need �1;2 * �3:4; 3:7; 4:5� at MX.
Unfortunately, we cannot say whether the actual fixed
points satisfy this condition, although these values are at
least feasible since the flatness of the RGE running of ����
means that � does not have to equal 4	 at the confinement
scale. It would be interesting to do a more detailed study to
determine whether this occurs.

It is possible to be more quantitative than this in the
second case by relying on our knowledge of the model in
the weak limit. Using Eq. (10) we see that

����
���
4

p �1�2

4	


MX
&�



2	MX

16	2

7
(�

8	
7
(�3:6(:

(19)
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If we start with all ten flavors of SU�4�s, we have ( �
�1=5 and ��� & 0:7 which is too low to be of interest.
However, integrating out the ~X’s leaves us with seven
flavors, which at the fixed point gives ( � �5=7 and
��� & 2:6. We saw that this gives rise to a � that is in
the interesting range for almost three decades of running
between the confinement scale and the electroweak scale,
suggesting that there are regions of parameter space where
the low energy � coupling is large enough to be of interest.

We can calculate the tree level bound on the Higgs mass
by assuming that we are somewhere in the region 1:5 &

���� & 2 and using the NMSSM equation,

m2
h 
 m2

Zcos22�� �2v2sin22�=2; (20)

to obtain

mh & 260–350 GeV; (21)

which is a substantial improvement over the MSSM bound
of 90 GeV. Taking the largest ���� in Fig. 1 pushes this
bound up to 490 GeV, but this is probably less generic in
the parameter space. Radiative corrections from the top
sector can increase this further although these are no longer
necessary to satisfy the LEP-II bound.

We emphasize that it is rather surprising to obtain inter-
esting results in the weak limit bound in spite of the NDA
suppression factor of 4	. This is a direct consequence of �
not having to start off at 4	; moderately large coupling is
sufficient. However, the robustness of our conclusions in
the weak limit depends on a number of O�1� unknowns
which we ignored in the above analysis. These are listed
below and discussed in turn.
(i) t
he value of the factor =MX

(ii) t
he running of the nonrenormalizable operator in

Eq. (6) due to gauge coupling contributions in the
region  
 E 
 MX
(iii) t
he coefficient in the NDA matching that was used
in Eq. (17)
(iv) l
oop-level corrections from g to the coefficient of
�3

1;2 in Eq. (10)

(v) r
estrictions due to the large top yukawa
5It could be argued that the top-down approach is still prob-
lematic since starting with universal scalar and gaugino masses
(m0 and m1=2) at the unification scale, for example, force the top
squarks to be heavy given observational lower bounds on char-
gino and slepton masses. This is a property of current SUSY
breaking scenarios, however, and it is possible to imagine alter-
natives with more random boundary conditions at the GUT scale
that result in realistic particle spectra with light top squarks.
The first tends to suppress the value of � at low energies.
The strong dynamics after flavor decoupling suggests that
this factor is close to 1, but it cannot be determined exactly
since we do not have detailed information on the fixed
point value and exact running of gs below MX. It might,
however, be compensated by the effect of the second which
enhances �; hence, we might be able to make a case for
neglecting them both, especially since this allows us to
make a quantitative prediction. The O(1) coefficient in the
third item parametrizes our ignorance of the physics of
strong coupling and unfortunately cannot be eliminated.
The fourth point is that we ignored higher order gauge
corrections to the �3

1;2 term in Eq. (10) at the gauge
coupling fixed point. If the coefficient of this term de-
creases, the upper bound on the � coupling increases and
015003
vice versa. Notice, however, that higher loop �1;2 correc-
tions to the RGE are suppressed and have been rightfully
ignored since the loop suppression factor �2

1;2=�16	2� &

�(=7 
 1=7 � 1. Finally, the fact that the top yukawa is
not negligible at low energies places some constraints on
how large we can make �1 without losing perturbativity for
both these couplings to the GUT scale. Doing a simple one
loop analysis, for tan� near 1 (where the gain in the tree
level bound is greatest), the �1 fixed point is about half of
the value in the above analysis which in turn halves the size
of ���. In general, we expect that there is some O(1)
suppression from this effect, but there is no comparable
suppression in �2 due to the smallness of the bottom
yukawa. Although it is unfortunate that these factors can-
not be evaluated to determine a more specific bound, that
the naive answer is in the interesting range suggests that the
actual value of � can be similarly large.

Since we were motivated to explore this model by con-
cerns of naturalness, we will now discuss how this scenario
helps the fine-tuning. First of all, the Higgs mass bound has
increased so it is no longer necessary for the top squarks to
be made heavy to evade the LEP-II bound. In fact, it is now
possible for all the MSSM scalars including the Higgs to
have masses that are of the same order. Thus, from a
bottom-up perspective, there are no unnatural hierarchies
in these masses.5 On the other hand, there is new fine-
tuning introduced in the weak limit (the second scenario),
since the UV initial conditions have to be precisely tuned to
avoid breaking conformality. However, these parameters
are at least technically natural and so could still have the
right size. There is no such fine-tuning in the new super-
conformal phase since the attractive IR fixed points reduce
the sensitivity to UV initial conditions. For further discus-
sion of how a larger Higgs quartic coupling helps the fine-
tuning issue, see [15] and Casas et al. in [8].

B. Gauge coupling unification

In both the fat Higgs and the new fat Higgs, SUSY
guarantees that running the SM gauge couplings through
the strong coupling regions does not give corrections larger
than typical threshold effects. We will recount the argu-
ment here for completeness. Matching holomorphic cou-
plings of a high energy theory containing a massive field
with those of a low energy theory, with the field integrated
out, is constrained by holomorphy. In particular, the match-
ing depends only on the bare mass of the field and thus is
not affected by strong dynamics [16]. For instance, taking
-5
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MX � M ~X � M at the cutoff MGUT, the high and low
energy SM gauge couplings (with and without the X; ~X,
respectively) are matched at the bare mass M:

gsm;le�M� � gsm;he�M�; (22)

where the high energy gauge couplings have their unified
value at MGUT. At other energies these holomorphic cou-
plings are determined by their one loop running (with beta
functions bi;le � bi;MSSM and bi;he � bi;le � 4). However,
during this running the coefficients of the matter kinetic
terms (Z) can change. Thus, to reach a more ‘‘physical’’
coupling, one should go to canonical normalization for the
matter fields. This rescaling is anomalous and relates the
couplings by

8	2

g2
le;phys

�
8	2

g2
le

�
X
i

Ti lnZi; (23)

where i only runs over the matter fields in the low energy
theory and the Ti’s are their Dynkin indices. All potential
strong coupling effects are contained within the Zi’s of the
low energy fields. As a matter of fact, there is actually no
effect due to the RGE splitting MX <M ~X, since the match-
ing in Eq. (22) of the low energy couplings occurs at M,
giving no restriction on the ratio of these masses from
unification. An order one lnZi gives a contribution of the
order of a typical theshold correction; thus it takes expo-
nentially large Zi to adversely affect unification. In this
model, such large Zi can occur only for the Higgses when
the �1;2 couplings are strong for an exponentially large
region. Thus, the weak limit case is generically safe,
whereas in the new superconformal phase the conformal
region for �1;2 cannot be exponentially large without af-
fecting unification. Note that a similar constraint applies to
the conformal region in the fat Higgs model.

Aside from this potential constraint, gauge coupling
unification occurs naturally in this theory since the addi-
tional matter is charged under the SM in complete SU(5)
multiplets and because the Higgses are elementary [hence,
the beta functions of the SM couplings are equivalent to
those of the MSSM up to SU(5) symmetric terms as de-
tailed earlier]. In comparison, the fat Higgs model had
elementary preons which correctly reproduced the running
of the Higgs doublets above the compositeness scale, but
also contained additional fields which were put into both
split GUT and non-GUT multiplets in order to restore
unification. In that model, explaining why unification is
natural requires a setup that generates the additional matter
content as well as the required mass spectrum.

C. Phenomenology

Much of the phenomenology in this model is similar to
the fat Higgs. In both theories the physics at the TeV scale
is NMSSM-like with a linear term in S but no cubic. The
low energy � coupling is large and gets strong before the
015003
GUT scale, but some asymptotically free dynamics takes
over to UV complete the theory. They both have similar
Higgs spectra which are in concordance with precision
electroweak constraints. Also, the analysis in [17] which
concludes that UV insensitive anomaly mediation works in
the fat Higgs should also apply to this model.

One notable difference between the two models is the
additional baryon physics in our model. The B0 and Bc0 in
this theory get a large supersymmetric mass from the S vev
and are not problematic. However, we also have light
baryon states, the four Bi’s and Bci’s that are married to
the TBi ’s and TB

c

i ’s, with supersymmetric masses of order

MB �
3

4	M2
GUT

� 10�13–10�7 eV; (24)

for  � 5–500 TeV. The scalar components of these chiral
superfields get TeV sized soft masses from SUSY breaking
and it is possible to determine these from the masses of the
elementary fields using the techniques in [18]. The fermi-
onic components are more worrying since they remain
light and thus give rise to some stringent cosmological
constraints. For instance, they decouple at a Tdec �
10 GeV, requiring Treheat & Tdec in order to be consistent
with big bang nucleosynthesis. It is also unclear whether
the lightest supersymmetric particle (LSP) in this theory is
a good dark matter candidate, given that it is never pro-
duced with thermal abundance, or whether baryogenesis
can be made to work given such a low reheat temperature.

This constraint on the reheat temperature can be relaxed
by adding small mass terms for the fundamental fields of
the form W � mIJ�I�

c
J which become tadpoles for the

mesons after confinement. The tadpoles induce meson vevs
which give masses to the light baryonic states through
Wdyn.6 These mass terms break the U�1�R symmetry men-
tioned in Sec. II A; however, even very small masses
(mIJ �MB * 1 MeV) ensure that big bang nucleosynthe-
sis can proceed as normal, while the newly added masses
are small enough for the symmetry breaking effects to be
under control.

It is also possible to circumvent this issue by using the
scenario with the quantum modified moduli space men-
tioned in Sec. II or by making models without baryons, for
instance with an Sp�2� � SO�5� theory, starting with 18
fundamentals of the Sp�2�. Integrating out the X; ~X will
reduce to the s-confining case with eight fundamentals. At
high energies, this has a vanishing one loop beta function
but is not asymptotically free at two loops. With all 18
fundamentals and their yukawas, the analysis in [13] sug-
gests that there is a superconformal fixed point for the
yukawa and gauge couplings. Specifically, there is a linear
family of fixed points which run through the free fixed
point �g � 0; �i � 0� (see footnote 4) and it needs to be
-6
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determined whether the fixed point values of �1;2 are large
enough to be in the interesting range. We can also work in a
limit analogous to our weak limit of the previous section,
integrating out the ~X’s first; this leaves the group in the
conformal window with 12 fundamentals. Thus, ifMX=M ~X
is small enough, the theory can run to Seiberg’s strong
conformal fixed point before the X’s are integrated out. In
this case, the weak limit bound gives ��� & 1:8, so we
would need MX near the weak-scale or some help from the
unknown order one contributions detailed above. However,
since there are no baryons in Sp�n� theories, we only have
to decouple the extra mesons. From this reasoning we see
that the physics associated with the baryons does not
appear generic to all implementations of our mechanism
and thus cannot be used to rule out all models of this type.

IV. CONCLUSION

Supersymmetry does extremely well in solving the hier-
archy problem but, as more precise measurements have
told us, the minimal implementation of weak-scale super-
symmetry (the MSSM) is becoming fine-tuned at about the
percent level. Approaches that attempt to alleviate this
problem have been many and varied, all of which have
their own advantages and disadvantages. Led by the posi-
tive aspects of the MSSM, we analyzed a UV complete
NMSSM model which justifies the presence of a large � at
low energies, resulting in a similarly large Higgs quartic
coupling. We did this by splitting the � coupling into two
asymptotically free yukawa couplings, allowing the theory
to be continued above the apparent strong coupling scale.
The simple model pursued in this paper is similar in spirit
to the fat Higgs model: We start at the electroweak scale
with a large � coupling which grows with increasing
energy scale. Rather than waiting for it to hit 4	 before
UV completing, we do this at a lower scale, leaving a
theory with a composite S only (see Fig. 2). There is no
need for a dynamically generated superpotential because
the induced � coupling never becomes nonperturbative;
instead moderately strong coupling is sufficient to achieve
1 2 3 4
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12

log Λ/µ

λ

CompositeS
New Fat Higgs:

Elementary H du, H

Fat Higgs:
Composite S,
H , Hu d

FIG. 2. A comparison of UV completion scales in the fat Higgs
and the new fat Higgs.
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a large tree level Higgs mass bound without making the
Higgs fields composite. This results in a Higgs that is not as
fat as in the fat Higgs, but gauge coupling unification,
arguably the best evidence for weak-scale SUSY, is natu-
rally maintained.

We did not study in depth the potentially interesting
scenario where the theory hit a superconformal fixed point,
since it was tricky to make any definitive statements about
the fixed point values of �1;2. The strong coupling dynam-
ics also made it difficult to give exact results in the second
case we considered, but we were able to set a reasonable
upper bound on � at low energies, up to some unknown
order one coefficients, using the properties of Seiberg’s
fixed point and superconformality in the weak limit. That
this bound turned out to give large enough � is comforting,
since it suggests the possibility of realizing our mechanism
for a generic parameter space with similar results.
However, to say any more requires a detailed understand-
ing of both the RGE equations at strong coupling and
matching at the confinement scale.

Finally, we discussed some of the implications of our
model. We saw that the fine-tuning issue was indeed ame-
liorated, at least from a bottom-up perspective, and that
unification was not affected by the strong coupling. We
also discussed the equivalence of the phenomenology to
that of the fat Higgs Model in that there was little differ-
ence in their Higgs spectra or compatibility with precision
electroweak constraints. One notable difference was the
presence of light fermionic baryons in our theory. It would
be interesting to analyze the new baryon physics in more
detail, especially since they give rise to an interesting
cosmological constraint. As discussed, this can be relaxed
by adding mass terms that weakly break the nonanomalous
U�1�R. Furthermore, the existence of models which do not
have baryons suggests that light states are not generic to
this framework. In such models we expect the dark matter
abundance and baryogenesis analysis to proceed along the
lines of [19].

In a few years, the LHC will start to explore the possible
presence of weak-scale supersymmetry, and it is important
to continue to study SUSY models so as to compare data
with experiment. Using naturalness as a guideline, it al-
ready seems that the simplest SUSY models are fine-tuned,
which motivates us to attempt to generalize them. With this
intuition we have analyzed a theory which improves the
naturalness of weak-scale SUSY in a simple way without
losing the natural unification of the MSSM. However, only
experiment can ultimately determine the accuracy of our
guesses for what comes beyond the standard model.

ACKNOWLEDGMENTS

We thank Zackaria Chacko, Markus Luty, and Matt
Schwartz for many useful discussions. We would also
like to thank Hitoshi Murayama for his talk on the fat
Higgs at Harvard which inspired this project. Most impor-
-7



SPENCER CHANG, CAN KILIC, AND RAKHI MAHBUBANI PHYSICAL REVIEW D 71, 015003 (2005)
tantly, we want to thank Nima Arkani-Hamed for many
enlightening discussions and comments [21]. The work of
S. C. is supported by a NSF Graduate Student Fellowship.

Note added.—As this paper was being finished, a paper
appeared that analyzed a very similar model [20].
However, they did not notice the mechanism we have
015003
described for generating the NMSSM � coupling and had
too few flavors of SU�4�s to avoid the Affleck-Dine-
Seiberg vacuum instability after integrating out the X
fields. Also, their results on the suppression of the � and
mHu

corrections are not as crucial when the tree level upper
bound on the Higgs mass is increased.
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