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By assuming the existence of the sequential fourth generation to the minimal supersymmetric standard
model (MSSM), we study the possibility of a strongly first-order electroweak phase transition. We find
that there is a parameter region of the MSSM where the electroweak phase transition is strongly first order.
In that parameter region, the mass of the lighter scalar Higgs boson is calculated to be above the
experimental lower bound, and the scalar quarks of the third and the fourth generations are heavier than
the corresponding quarks.
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I. INTRODUCTION

As a mechanism to explain the baryon asymmetry of the
Universe, the electroweak baryogenesis is given wide at-
tention, since it can be tested in the future high energy
experiments [1]. Several decades ago Sakharov established
the three essential conditions for generating dynamically
the baryon asymmetry of the Universe from a baryon-
symmetric universe [2]. As is well known, the three con-
ditions are the presence of baryon number violation, the
violation of both C and CP, and a departure from thermal
equilibrium. The possibility of the electroweak phase tran-
sition has already been exhaustively studied, which can
provide the baryon number violation and the violation of
both C and CP. The remaining Sakharov condition, the
departure from thermal equilibrium, may be fulfilled at a
weak scale temperature if the nature of the electroweak
phase transition is first order. The difficulty of the standard
model (SM) is that the strength of the first-order electro-
weak phase transition, which must be strong enough for
preserving the generated baryon asymmetry at the electro-
weak scale, appears too weak for the experimentally al-
lowed mass of the SM scalar Higgs boson [3].

Thus, it seems that electroweak baryogenesis requires a
new physics beyond the SM at a weak scale [4]. The
minimal supersymmetric standard model (MSSM) has
been studied intensively within the context of electroweak
baryogenesis. It is observed that, if one of the scalar top
quark has a mass smaller than the top quark mass, the
MSSM may possess a parameter region where the electro-
weak phase transition is strong enough [5]. In this scenario
of a light scalar top quark, the requirement that the elec-
troweak phase transition should be strongly first order is
equivalent to the imposition of an upper bound of about
120 GeV on the lightest Higgs scalar boson mass of the
MSSM.

In any supersymmetric standard model, there are super-
partners to ordinary quarks and leptons. Experimentally, no
scalar quark or scalar lepton that is lighter than 5 GeV has
been discovered. Thus, the ordinary quarks and leptons, up
05=71(1)=015001(6)$23.00 015001
to the bottom quark, are lighter than their corresponding
superpartners. Possibly, the top quark might be an excep-
tion, if a scalar top quark is lighter than the top quark.

The idea that a scalar top quark might be lighter than a
top quark is not in accord with the behavior of lighter
fermions, but is allowed by present experiment and accom-
modated in the MSSM within the context of the electro-
weak phase transition. If the scalar top quarks are not
degenerate in mass, the 2 � 2 mass matrix for the scalar
top quarks yields a lighter scalar top quark and a heavier
one in the MSSM. In order for the electroweak phase
transition to be strongly first order, the mass of the scalar
top quark should be either smaller than 170 GeV or larger
than 1 TeV. Thus, the lighter scalar top quark should have a
mass smaller than 170 GeV. The heavier scalar top quark
may have a mass comparable to the supersymmetric
(SUSY) breaking scale, say, between 1 and 2 TeV. A light
scalar top quark suggested in the MSSM scenario, which
depends strongly on chargino and neutralino masses, might
soon face experimental examination at Tevatron.

The possibility of a scalar top quark heavier than a top
quark has been considered in scenarios other than the
MSSM. For example, in the next-to-minimal supersym-
metric standard model, the strongly first-order electroweak
phase transition takes place where the top quark mass is
smaller than the mass of the scalar top quark. Within the
framework of the MSSM, we need to enlarge the model
somehow to accommodate a scalar top quark heavier than a
top quark. We examine the possibility for the strongly first-
order electroweak phase transition in the MSSM by intro-
ducing an extra generation of fermions.

In this paper, we study the effect of the fourth generation
of quarks on the strength of the first-order electroweak
phase transition in the MSSM. We find that introducing
an extra generation of fermions might also lead to a scalar
top quark heavier than a top quark. Although the number of
the SM neutrino species has already been fixed experimen-
tally as three, one may find a lot of articles in the literature
that mention about the fourth generation and study on the
-1  2005 The American Physical Society
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assumption of its existence [6,7]. In principle, the SM, as
well as the MSSM, can accommodate any number of
generations. In various contexts, the MSSM with four
generations has been studied [8–10].

Our study shows that the fourth generation is found to
enhance the strength of the first-order electroweak phase
transition, while the scalar Higgs boson mass is calculated
to be larger than the experimental lower bound, and the
scalar quarks of the third generations are comparable to the
supersymmetry breaking scale (MSUSY � 1 TeV), in a rea-
sonably wide region of parameter space in the MSSM. In
our scenario, a light scalar quark is not necessarily required
to ensure the first-order electroweak phase transition be
strong; the scalar quarks of the third and the fourth gen-
erations may be heavier than the corresponding quarks; and
the scalar Higgs boson mass lies above the experimental
lower bound.
II. HIGGS POTENTIAL IN DECOUPLING LIMIT
WITHOUT MIXING

Let us study a particular, yet reasonable as well as
plausible, form of the Higgs potential in the MSSM with
four generations of quarks for the electroweak phase tran-
sition. We consider only the third and the fourth genera-
tions, and assume that there is no mixing between them.
The fourth generation appears simply in a repetitive man-
ner. As is well known, there are two Higgs doublets in the
Higgs sector of the MSSM, namely, HT1 � �H0

1 ; H
�
1 � and

HT2 � �H�
2 ; H

0
2�. After electroweak symmetry breaking

five physical Higgs bosons emerge: two neutral scalar
Higgs bosons (h;H), one neutral pseudoscalar Higgs bo-
sons (A), and a pair of charged Higgs bosons (H�). We
assume that the mass of h is lighter than that of H. At the
tree level, the Higgs sector of the MSSM depends on only
two free parameters. We take them to be the ratio tan
 �
v2=v1 of the two real vacuum expectation values (VEVs)
v1 ofH0

1 and v2 ofH0
2 andmA, the mass of A. In this paper,

we assume that CP is conserved in the Higgs sector by
choosing all parameters in the effective Higgs potential to
be real.

In the decoupling limit, where mA � mZ, with fixed
tan
, only one linear combination of the two neutral scalar
Higgs bosons,

� �
���
2

p
cos
Re�H0

1� �
���
2

p
sin
Re�H0

2�; (1)

remains light at the electroweak scale [11]. In this limit, the
tree-level Higgs potential at zero temperature can be ex-
pressed in terms of � as

V0��; 0� � �m2
0�

2 �
�
4
�4: (2)

Since all quartic terms have gauge coupling coefficients in
the MSSM, the quartic Higgs self-coupling � is given as
� � �g2

1 � g
2
2�=4. Note that there is an upper bound on the

mass of h as mh 
 mZj cos2
j at the tree level in the
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MSSM. In this limit, the couplings of h to gauge bosons
and fermions are identical to the couplings of the SM
Higgs boson, which implies that one cannot distinguish
phenomenologically the SM scalar Higgs boson from h
[12]. Thus, one might expect that mh has the same experi-
mental lower bound as the SM scalar Higgs boson in the
decoupling limit [13]. The current experimental lower
bound on the mass of the SM scalar Higgs boson is about
114.5 GeV.

Now, at the one-loop level at zero temperature, the
effective Higgs potential is given by

V��; 0� � V0��; 0� � V1��; 0�; (3)

where the one-loop contribution V1��; 0� at zero tempera-
ture is obtained via the effective potential method as [14]

V1��; 0� �
X
l

nlm
4
l ���

64�2

�
log

�
m2
l ���

�2

�
�

3

2

�
; (4)

where l stands for various participating particles: the gauge
bosonsW, Z, the third generation quarks and scalar quarks
t, b, ~t1, ~t2, ~b1, and ~b2, as well as the fourth generation
quarks and scalar quarks t0, b0, ~t01, ~t02, ~b01, and ~b02. The
renormalization scale in the above one-loop effective po-
tential is set as � � mZ. The degrees of freedom for each
particle are nW � 6, nZ � 3, nt � nb � �12, n~ti � n~bi

�

6 (i � 1; 2), nt0 � nb0 � �12, and n~t0i
� n~b0i

� 6 (i �
1; 2). Their field-dependent masses are given by m2

W��� �
g2

2�
2=4, m2

Z��� � �g2
1 � g

2
2��

2=4, m2
t ��� � h2

t sin
2�
�2=2, m2

b��� � h2
b cos
2�2=2, m2

t0 ��� � h2
t0 sin
2�2=2,

m2
b0 ��� � h2

b0 cos
2�2=2, and

m2
~q1 ~q2

��� �
m2

~qL
��� �m2

~qR
���

2




�����������������������������������������������������������������������m2
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��� �m2

~qR
���

2

�
2
� ~A2

qm
2
q���

s
; (5)

with q � t, b, t0, and b0. In the above expression for the
scalar quark masses [15], we have

m2
~tL
��� � m2

Q �m2
t ��� � �12 �

2
3sin2�W� cos2
m2

Z���;

m2
~tR
��� � m2

U �m2
t ��� �

2
3sin2�W cos2
m2

Z���;

m2
~bL
��� � m2

Q �m2
b��� � ��1

2 �
1
3sin2�W� cos2
m2

Z���;

m2
~bR
��� � m2

D �m2
b��� �

1
3sin2�W cos2
m2

Z���;

(6)

and similarly for the fourth generation by substituting with
primed quantities, where sin�W is the weak mixing angle.

The parameters ~At, ~Ab, ~At0 , and ~Ab0 in the above expres-
sions for the scalar quark masses are given as ~At � At �
! cot
, and ~Ab � Ab �! tan
, and similarly for the
fourth generation. Note that ~At � 0 ( ~Ab � 0) does not
necessarily imply that the right-handed and the left-handed
scalar top (bottom) quarks are degenerate in mass, since
there isD-term contributions. Only ifD-term contributions
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to the scalar top (bottom) quark masses are neglected, ~At �
0 ( ~Ab � 0) would yield degenerate right-handed and left-
handed scalar top (bottom) quarks.

However, we remark that the parameters ~At, ~Ab, ~At0 , and
~Ab0 control the mixings between the scalar top or scalar
bottom masses in each generation. If these parameters are
zero, there would be no mixing between right-handed and
left-handed scalar quarks of each generation. In this paper,
we assume that there is no mixing, taking ~At � ~Ab � ~At0 �
~Ab0 � 0 in the expressions for the scalar quark masses.
Therefore, we study the MSSM Higgs potential in the
decoupling limit without mixing.

The decoupling limit without mixing is an optimal situ-
ation for electroweak phase transition to be strongly first
015001
order. The case without mixing is more favorable for the
first-order electroweak phase transition to be strong than
the case with mixing, as the strength of the electroweak
phase transition is found to decrease when the mixings
between scalar quarks are taken into account [15]. Also,
one can notice, for example, in Fig. 2 of Ref. [16], that the
strength of the electroweak phase transition increases as
mA increases in the MSSM with three generations. Thus,
we study the MSSM Higgs potential in circumstances that
enhance the first-order electroweak phase transition.

Now, the renormalized parameter m2
0 in the Higgs po-

tential can be eliminated by the minimum condition. By
calculating the first derivative of V��; 0� with respect to�,
m2

0 is expressed as
m2
0 �

1

2
m2
Zcos22
�

3m4
W

8�2v2
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log
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�
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; (7)
where a � ~t1, ~t2, ~b1, ~b2, and a0 � ~t01, ~t02, ~b01, ~b02, and v �
246 GeV. The mass of h at the one-loop level in the
decoupling limit without mixing at zero temperature is
obtained by calculating the second derivative of V��; 0�
with respect to � as

m2
h � m2
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where a � ~t1, ~t2, ~b1, ~b2, and a0 � ~t01, ~t02, ~b01, ~b02.
Now, we study the effect of finite temperature. The one-

loop contribution at finite temperature is given by [17]

V1��; T� �
X
l

nlT4

2�2

Z 1

0
dxx2

� log
	
1 � exp

�
�

��������������������������������
x2 �m2

l ���=T
2

q ��
; (9)

where l � W, Z, t, b, ~t1, ~t2, ~b1 and ~b2, t0, b0, ~t01, ~t02, ~b01, and
~b02, and the negative sign is for bosons and the positive sign
for fermions. The full one-loop effective potential at finite
temperature that we are considering can now be expressed
as

V��; T� � V0��; 0� � V1��; 0� � V1��; T�: (10)

We perform the exact integration in V��; T� instead of
employing the high-temperature approximation.
III. NUMERICAL ANALYSIS

At the tree level, we have only one free parameter tan

in the decoupling limit where mA � mZ. At the one-loop
level, the number of free parameters increases as mt, mb,
mt0 , mb0 , and mQ, mQ0 are introduced to the one-loop
contributions. To be concrete, we set mt � 175 GeV and
mb � 4:5 GeV, and we take for simplicity the soft SUSY
breaking parameters as m2

Q � m2
U � m2

D, and similarly for
the fourth generation. Since we assume no mixing in the
scalar quark sector, we set ~At � ~Ab � ~At0 � ~Ab0 � 0. For
the masses of the fourth generation quarks, there are some
experimental constraints. Some years ago, Tevatron data
have set mb0 > 119 GeV, and recently, from the search for
long-lived charged massive particles at Tevatron come
more stringent experimental lower bounds of mb0 >
180 GeV and mt0 > 230 GeV [18]. With these constraints
in mind, we take mt0 � 250 GeV and mb0 � 200 GeV.
Finally, we take 1 TeV for the value of mQ from the
SUSY breaking scale MSUSY � 1 TeV. Thus, our numeri-
cal analysis involves two free parameters: tan
 and mQ0 .
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In Fig. 1, we show a typical behavior of V��; T� as a
function of �, at a critical temperature T � Tc �
84:225 GeV, where we take tan
 � 20 and mQ0 �

100 GeV. As one can see in the figure, we obtain the
critical VEV as vc � 149 GeV, and the ratio as vc=Tc �
1:769. One can notice that the potential in Fig. 1 allows a
strongly first-order electroweak phase transition. The sca-
lar quark masses are obtained as m~t1 � 1013 GeV, m~t2 �

1014 GeV, m~b1
� 1000 GeV, m~b2

� 1001 GeV, m~t01
�

263 GeV, m~t02
� 266 GeV, m~b01

� 225 GeV, and m~b02
�

231 GeV.
For the mass of h, we obtain mh � 129 GeV with the

parameter values of Fig. 1. This number is a little larger
than the experimental lower bound on the SM Higgs boson
mass, 115 GeV. In the decoupling limit of mA � mZ, the
behavior of h is identical to that of the SM Higgs boson.
The search for a light Higgs boson in the MSSM by the
DELPHI Collaboration without mixing, where only three
generations of quarks are taken into account, suggests that
mh is about 115 GeV, for tan
> 15 [19]. Comparing this
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FIG. 1. The plot of V��; T� as a function of �, for the critical
temperature Tc � 84:225 GeV. The relevant parameter values
are set as follows: tan
 � 20, mQ � 1 TeV, mt0 � 250 GeV,
mb0 � 200 GeV, and mQ0 � 100 GeV. One can see that the
electroweak phase transition is first order. The critical VEV is
obtained as vc � 149 GeV. Thus, vc=Tc � 1:769, and the first-
order electroweak phase transition is strong. The potential in this
figure yields mh � 129 GeV, m~t1 � 1013 GeV, m~t2 �

1014 GeV, m~b1
� 1000 GeV, m~b2

� 1001 GeV, m~t01
�

263 GeV, m~t02
� 266 GeV, m~b01

� 225 GeV, and m~b02
�

231 GeV.
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number with our result of 129 GeV in Fig. 1, we may well
deduce that the difference is due to the contribution by the
fourth generation of quarks. The contribution by the fourth
generation of quarks also enables the electroweak phase
transition to be strongly first order. Our value is compatible
with the result of Ref. [8] where the upper bound on the
lightest Higgs boson mass is obtained as 152 GeV for small
tan
 and 96 
 mt0 ; mb0 
 125 GeV in the MSSM with
four generations of quarks. If the mass difference between
t0 and b0 is small, they may have smaller masses [9].

Now, let us study other regions of the parameter space.
We vary mQ0 while fixing tan
 � 20. The masses of the
third generation of scalar quarks are then the same as
Fig. 1: m~t1 � 1013 GeV, m~t2 � 1014 GeV, m~b1

�

1000 GeV, and m~b2
� 1001 GeV. The masses of the

fourth generation of scalar quarks, as well as other relevant
quantities, are shown in Table I. The second row of Table I
for mQ0 � 100 GeV corresponds to the numerical result of
Fig. 1. One can see that the strength of the first-order
electroweak phase transition decreases as mQ0 increases
until mQ0 reaches 140 GeV, beyond which vc=Tc becomes
less than 1. Thus, the electroweak phase transition remains
strongly first order for mQ0 
 140 GeV.

We need to explore the boundary of the parameter space
beyond which the electroweak phase transition is no longer
strongly first order. In Table I, one can see that vc=Tc � 1
for tan
 � 20 and mQ0 � 140 GeV. From this point, we
examine several points of (mQ0 , tan
) which yield vc=Tc �
1, by adjusting Tc. For each value of tan
, we find the
upper bound value of mQ0 , beyond which vc=Tc becomes
less than 1. The result is shown in Table II. The fourth row
of Table II is corresponds to the fourth row of Table I. The
numbers in Table II indicate that the electroweak phase
transition can be strongly first order for 2 
 tan
 
 40 if
mQ0 
 140 GeV.

In Fig. 2, we plot the numerical results of Table II on the
(mQ0 ; tan
)-plane. The dashed curves denote the contours
of mh. The solid curve denotes the contour of vc=Tc � 1.
On the left-hand side of the solid curve we have vc=Tc �
1; that is, the electroweak phase transition is strongly first
TABLE I. Some values of mQ0 for which the first-order elec-
troweak phase transition is strong (vc=Tc > 1:0). The critical
temperatures Tc are obtained for which the finite temperature
effective potential has two degenerate vacua. The relevant pa-
rameter values are the same as Fig. 1; that is, tan
 � 20, mQ �

1 TeV, mt0 � 250 GeV, and mb0 � 200 GeV.

mQ0 m~t01
m~t02

m~b01
m~b02

mh Tc vc vc=Tc

50 249 252 207 214 122 76.090 185 2.431
100 263 266 225 231 129 84.225 149 1.769
130 276 279 239 245 134 90.180 113 1.253
140 281 284 245 251 136 92.268 93 1.007
150 286 289 251 256 138 94.384 76 0.805
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TABLE II. Some values of (mQ0 ; tan
) beyond which the first-
order electroweak phase transition is strong (vc=Tc � 1:0). The
relevant parameters values are the same as Table I. The masses of
the scalar quarks of the fourth generation are calculated as about
m~t01

� 282 GeV, m~t02
� 285 GeV, m~b01

� 246 GeV, and m~b02
�

251 GeV.

tan
 mQ0 mh Tc vc vc=Tc

2 147 120 87.163 88 1.009
5 142 133 91.256 92 1.008

10 140 135 91.965 92 1.000
20 140 136 92.268 93 1.007
30 140 137 92.326 93 1.007
40 140 140 92.346 93 1.007
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order in the region to the left of the solid curve.
Consequently, we find a region in the parameter space of
the MSSM with four generations of quarks where a
strongly first-order electroweak phase transition is allowed.
The parameter values of the allowed region are within the
experimental constraints, and yield mh consistent with the
experimental lower bound.
FIG. 2. Plots of the lightest scalar Higgs boson mass and the
criterion of the strongly first-order electroweak phase transition
in the (mQ0 ; tan
)-plane. The remaining relevant parameters are
set as mQ � 1 TeV, mt0 � 250 GeV, and mb0 � 200 GeV. The
solid curve is the contour of vc=Tc � 1, and the dashed curves
are the contours of mh � 115, 120, 125, 130, 135, and 140 GeV.
The masses of the scalar quarks of the third generation are
calculated the same as Fig. 1; that is, m~t1 � 1013 GeV, m~t2 �

1014 GeV,m~b1
� 1000 GeV, andm~b2

� 1001 GeV. The region
to the left-hand side of the solid curve and above the dashed
curve of mh � 115 GeV is where the first-order electroweak
phase transition is strong (vc=Tc � 1) and mh is consistent with
the experimental lower bound.
IV. CONCLUSIONS

Up to now, we study the possibility of a strongly first-
order electroweak phase transition in the MSSM with
sequential four generations of quarks. We assume that
mA � mZ and ~Al � 0 �l � t; b; t0; b0�; that is, we work in
the decoupling limit and in the case of no mixing between
scalar quarks. We choose the relevant parameter values to
be mt � 175 GeV, mb � 4:5 GeV, mt0 � 250 GeV,
mb0 � 200 GeV, and mQ � 1 TeV. We take m2

Q � m2
U �

m2
D, and similarly for the fourth generation. These numbers

are consistent with experimental constraints.
We search the parameter space of the (mQ0 ; tan
)-plane

to examine if the electroweak phase transition is strongly
first order. We find that there are regions in the (mQ0 ; tan
)-
plane that satisfy our criterion of vc=Tc � 1. For 2 

tan
 
 40, the electroweak phase transition is strongly
first order in the region where mQ0 
 140 GeV. The scalar
quark masses of the fourth generation are controlled
mainly by the soft SUSY breaking parameter mQ0 . In the
region where the electroweak phase transition is strongly
015001
first order, the scalar quark masses of the fourth generation
are obtained to be larger than the quark masses of the
fourth generation.
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