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Static tetraquark and pentaquark potentials
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We evaluate the static qq �q �q and qqqq �q potentials in the quenched theory at � � 5:8 and � � 6:0 on a
lattice of size 163 � 32. We compare the static potentials to the sum of two meson potentials for the
tetraquark system and to the sum of the baryonic and mesonic potentials for the pentaquark state, as well
as, with the confining potential obtained in the strong coupling expansion.
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FIG. 1. The Wilson loop for the qq �q �q system.
I. INTRODUCTION

A large amount of effort has been devoted recently to
experimental searches [1] for the identification of the 	�,
an exotic baryon state with an unusually narrow width,
which was predicted theoretically in the chiral soliton
model [2]. Several studies in lattice QCD have looked for
such a state in order to determine its mass and parity but no
consensus has been reached yet with some groups report-
ing a bound state with mass close to the experimental value
[3,4] and others the KN scattering state [5]. The possible
existence of such a state has raised interesting questions
about its structure in connection to its narrow width. A
number of phenomenological models have been put for-
ward to explain its stability such as special flux tube
configurations [6,7] and diquark formation [8]. Another
exotic that might exist and has been proposed in the past
[9] is a bound state of two quarks and two antiquarks. In
this work we calculate the static qq �q �q and qqqq �q poten-
tials. The study of the pentaquark potential is particularly
important for our understanding of the underlying structure
of the pentaquark bound states that have been detected in
various experiments [1,10].

To evaluate the static tetraquark and pentaquark poten-
tials we construct the Wilson loops for the qq �q �q and
qqqq �q systems. In the strong coupling approximation
minimization of the energy of a system of two quarks
and two antiquarks requires that the two quarks and the
two antiquarks are connected by the minimal length flux
tube. The flux tubes from each of the quarks and the
antiquarks can meet at one or at two points. For the
geometries considered in this work the length of the flux
tube with two Steiner points is always smaller than the
configuration with the flux tubes meeting at a point and
therefore it corresponds to the minimal flux tube length. If
the minimal flux tube length is denoted by Lmin then the
confining potential in the strong coupling approximation is
�Lmin where for � we take the string tension extracted
from the quark-antiquark potential. Besides comparing the
static tetraquark potential to the one extracted in the strong
coupling approximation we also compare it to the sum of
two meson potentials. Similarly the pentaquark potential is
compared to the potential extracted in the strong coupling
expansion and to the sum of the baryonic and mesonic
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potentials. Minimization of the energy of a pentaquark
system with the condition that the flux tubes connecting
the quarks meet at three points gives, as minimal length,
the flux tube configuration where the three flux tube junc-
tions are Steiner points. We do not consider here geome-
tries resulting in the diamond flux tube arrangement [7] for
which the flux tubes from the four quarks meet at a single
point where the antiquark is located. Obtaining results for
both the tetraquark and pentaquark potentials enables us to
look for differences in their behavior which can reflect
different structures in the tetraquark and pentaquark sys-
tems. Such information may lead to important insight in
our understanding of the structure of the 	�.
II. WILSON LOOPS

The SU�3� Wilson loop for the tetraquark system is
constructed by creating a gauge invariant four quark state
at time t � 0, which is annihilated at a later time t as shown
in Fig. 1. The two quarks are combined into a color �3 and
the two antiquarks into a color 3 representation of SU(3).
The expression for the tetraquark Wilson loop is given by
[4]
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W4q � 1
12	

abc	def	a
0b0c0	d

0e0f0U�x;x0;1�aa
0
U�x;x0;2�bb

0

�UG�x;y�cfU�y0;y;3�d
0dU�y0;y;4�e

0eUG0 �y0;x0�f
0c0 ;
(1)

where the two quark lines are created at x and the two
antiquark lines at y at time t � 0 and annihilated at x0 and
y0 at time t, respectively. The staplesU�x;x0; k� involved in
the definition of the Wilson loop are given by

U�x;x0; k� � P exp
�
ig
Z
�k

dz�A��z�
�
; (2)

where P is the path ordered operator and �k denotes the
path from x to x0 for quark line k as shown in Fig. 1. The
baryonic junction at x is joined to the antibaryonic junction
at y by

UG�x; y� � P exp
�
ig
Z
G
dz:A�z�

�
(3)

at t � 0. UG0 �y0;x0� is the corresponding arrow joining the
antibaryonic and baryonic junctions at time t.

The tetraquark potential is then extracted in the standard
way from the long time behavior of the Wilson loop:

V4q � �lim
t!1

1

t
lnhW4qi: (4)

The pentaquark Wilson loop is constructed in a similar
way: The gauge invariant state evolves now two baryonic
and one antibaryonic junction. The four quarks are grouped
into two diquarks each in a color �3 representation of SU(3)
and the two diquarks are then combined into a color singlet
with the remaining antiquark. The Wilson loop is shown in
Fig. 2 and it is given by [4]
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FIG. 2. The Wilson loop for the qqqq �q system.
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� �	def	d
0e0f0U�z; z0; 3�dd

0
U�z; z0; 4�ee

0
U�y0; y; 5�j

0j

� 	ghj	g
0h0j0UG1

�x; y�cgUG2
�z; y�fhUG0

1
�y0;x0�g

0c0

�UG0
2
�y0; z0�h

0f0 (5)

using the same notation as that of Eq. (1).
III. LATTICE TECHNIQUES

A number of improvements are needed in order to
reduce the noise in the measurement of the Wilson loops.
Since the tetraquark and pentaquark potentials are larger
than the baryonic potential they are harder to compute and
noise reduction methods are essential. We describe briefly
the techniques that we use in order to reduce noise and
extract reliably the ground state:
(1) W
-2
e use the multihit procedure [11] replacing the
temporal links by their average value

U4�x� ! �U4�x� �

R
dUU4�n�e

�S4�U�R
dUe�S4�U�

(6)

with S4�U� �
1
N Tr�U4�n�Fy�n� and F�n� the staple

attached to the time link that is being integrated
over. The integration over the links in Eq. (6) is
carried out analytically [12]. It has been shown in
SU(2) [13] that replacing the time links by their
average value in this fashion reduces the error on
large Wilson loops of the order of 10. The factor
found in Ref. [13] is x2t � 0:8892t where t is the
time extent of the Wilson loop. For the tetraquark
and pentaquark Wilson loops the reduction factor
will be x4t and x5t, respectively, giving an even
larger noise reduction for the large loops.
(2) T
o maximize the overlap of the trial state with the
four or five quark ground state we use APE smearing
of the spatial links [14]. Each spatial link is replaced
by a fat link by acting on it with the smearing
operator S defined by

SUj�x� � P

�
Uj�x� � "

X
k�j

�Uk�x�Uj�x� ak̂�

�Uy
k �x� aĵ��

�
; (7)

where P denotes projection onto SU(3). This is
iterated n times. We consider M different levels of
smearing and construct an M�M correlation ma-
trix of Wilson loops. We take " � 1=2, M � 3 and
successive number of smearings n1 � 0; n2 � 15
and n3 � 30.
The correlation matrices C�t� for the various Wilson
loops are analyzed using a variational method [15]. We
analyze the results in two different ways:



TABLE I. The parameters of the static q �q potential in lattice
units at � � 5:8 and � � 6:0.

� aV0 " a2�

6.0 0.637(5) 0.255(5) 0.050(1)
5.8 0.636(11) 0.248(11) 0.105(2)
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In the first variant, which we refer to as variational
method 1, we solve the generalized eigenvalue problem

C�t�vk�t� � &k�t�C�t0�vk�t� k � 1; :::; M; (8)

taking t0=a � 1 and extract the potential levels via

aVk � lim
t!1

�

�
ln
�
&k�t�

&k�t� 1�

��
(9)

by fitting to a constant in the range where aVk becomes
time independent (plateau region).

In the second variant that we call variational method 2
we first solve the eigenvalue equation

C�t0�vk�t0� � &k�t0�vk�t0� (10)

and project the Wilson correlation matrices to the space
corresponding to the N largest eigenvalues

CNij�t� � �vi�t0�; C�t�vj�t0�� (11)

with N � M. We then solve the generalized eigenvalue
equation

CN�t�vk�t� � &k�t�C
N�t0�vk�t� (12)

in the truncated space.
In addition the potential is extracted by considering the

Wilson loop with the largest number of smearings and fit to
the ratio

V � lim
t!1

� ln�W�t�=W�t� 1� (13)

in the plateau region.
The noise reduction techniques described above were

shown to yield accurate enough results for the baryonic
potential for interquark distances of O�1:5� fm [16].
IV. RESULTS

All the computations were carried out on a lattice of size
163 � 32 at � values 5:8 and 6:0 using 200 and 220
configurations, respectively, available at the NERSC ar-
chive [17].

We compute the static q �q potential on the same configu-
rations used for the evaluation of the tetraquark and penta-
quark potentials. Fitting the q �q potential to the Cornell
Ansatz

Vq �q�r� � V0 �
"
r
� �r (14)

we extract the parameters V0, " and string tension �. We
give the values obtained in Table I. Using the value of a2�
given in Table I and the physical value of

����
�

p
� 440 MeV

known from Regge theory enables us to fix the lattice
spacing a. We obtain a � 0:10 fm at � � 6:0 and a �
0:15 fm at � � 5:8. Since in this work we compare the
tetraquark potential to the sum of two meson potentials and
the pentaquark potential to the sum of the corresponding
mesonic and baryonic potentials we need to compute all
014504
the potentials with the quarks at the same locations. For the
mesonic potential needed in the comparison of the tetra-
quark system we use lattice data avoiding any parametri-
zations. For the baryonic potential needed in the
comparison of the pentaquark potential we do not have
lattice data and therefore we need a parametrization. Two
possible Ansätze have been discussed in the literature for
the baryonic potential, the Y-Ansatz [18] and the sum of
two-body potentials or �-Ansatz. The latter was derived
using center vortices [19] but with an erroneous assump-
tion, which after correction was shown to support the Y-
Ansatz [20]. Nevertheless, within lattice QCD one can
check the two Ansätze and determine whether the confin-
ing potential is closer to a sum of two-body potentials or to
the Y-Ansatz as a function of the distance between the
quarks. The results of the two Ansätze differ at the most by
15% and have been compared to lattice results in
Refs. [16,21–25]. The general consensus from these stud-
ies is that at large distances the baryonic potential ap-
proaches the Y-Ansatz. Therefore here it suffices to use
the Y-Ansatz to parametrize the baryonic potential. As in
Ref. [16] we use the values for V0, " and � extracted from
fitting the q �q potential via Eq. (14) and given in Table I.
This means that there are no adjustable parameters in the
comparison of the pentaquark potential to the sum of the
mesonic and baryonic potential. In addition both the tetra-
quark and pentaquark potentials are compared to the po-
tential derived in the strong coupling expansion. We use
the parametrization given by 
V4q
min

V5q
min

!
�

 
2

5=2

!
V0 � nq

X
i>j

"
jri � rjj

� �

 
L4q
min

L5q
min

!
; (15)

where again for V0; " and � we use the values given in
Table I. The factor nq in front of the Coulomb term is one
when a quark interacts with an antiquark and one half when
the interaction is between quarks or between antiquarks as
obtained from the one-gluon exchange approximation.

For a general tetraquark configuration the minimal
length having two Steiner points is shown in Fig. 3 and,
in general, is nonplanar. For the planar geometry consid-
ered in this work the minimal length can be easily com-
puted and it is given by

L4q
min � min�R1 �

���
3

p
R2; R2 �

���
3

p
R1�; (16)

where the distances R1 and R2 are defined in Fig. 4. For a
general pentaquark configuration the minimal length with
three junctions is nonplanar and has the geometry shown in
-3
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FIG. 5. The pentaquark minimal length. The angles at the
junctions are all 120�.
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FIG. 3. The tetraquark minimal length. The angles at the
junctions are 120�.
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Fig. 5 with the three junctions being Steiner points. We
compute these three Steiner points numerically as follows:
We start by an initial guess for the Steiner point S3. Having
an initial guess for S3 enables us to evaluate the two other
Steiner points analytically in terms of S3 following
Ref. [18]:

jri � rS1 j �
C2 � r2jk
B

�i; j; k cyclic�

C2 �
1

2
+�

�
1

3
,�

1

12
+2
�
1=2

B2 � 3C2 � +

+ � r212 � r223 � r231

, � r212r
2
23 � r223r

2
31 � r231r

2
12;

(17)

where r12 � jr1 � r2j; r23 � jr2 � rS3 j, and r31 � jrS3 �
r1j. The minimal length joining the three points r1, r2 and
rS3 is equal to B. If any interior angle of the triangle r1r2rS3
1

2
yxR R 2

q

qq

q

R

FIG. 4. The geometry used for the computation of the tetra-
quark static potential where we have taken the baryonic junction
at the origin and the antibaryonic junction at y � �R1; 0; 0�. The
quarks are located at positions r1 � �0; R2=2; 0�; r2 �
�0;�R2=2; 0� and the antiquarks at r3 � �R1; R2=2; 0� and r4 �
�R1;�R2=2; 0�.
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is greater than 120� then the minimal length is given by
r12 � r23 � r31 �max�r12; r23; r31�. This is taken into ac-
count in our analytic determination of the Steiner points.
An analogous expression holds for S2. Having a value for
S1 and S2 and knowing r5 we can evaluate analytically the
new value for S3. This procedure is iterated until conver-
gence is reached after a small number (of order 10) of
iterations. We use this method to compute L5q

min for the
geometry studied in this work. This approach can also be
applied to find the minimal length for a general tetraquark
geometry.

We discuss first the results obtained for the tetraquark
system. As already mentioned the geometry that we use for
the computation of the tetraquark potential is planar and is
shown in Fig. 4. When R2 is small this configuration allows
diquark formation. We take the distance between the two
quarks and the two antiquarks, R2, to be equal. We will
refer to R2 as the internal diquark distance. The potential is
computed as a function of the distance between the two
diquarks, R1, and the internal diquark distance R2. In Fig. 6
we show the plateaus for representative values of the
distances R1 and R2. On these figures we display the values
extracted using the two variational methods as well as the
one extracted from the ratio of Wilson loops with the
largest number of APE smearings as given in Eq. (13).
As can be seen from these figures the two variational
methods yield consistent results of similar quality. The
ratio of the Wilson loops, on the other hand, yields better
plateaus. This is true for all the distances that we have
performed this analysis and we will therefore use this
method to extract the potential. We have always checked
that the variational analysis gave results consistent with
those extracted using Eq. (13). The errors shown on all our
figures are jackknife errors.

We check scaling by comparing results at � � 5:8 and
� � 6:0. In Fig. 7 we show the static tetraquark potential
-4



FIG. 7 (color online). The tetraquark static potential at � �
6:0 (crosses) and � � 5:8 (filled triangles) for R2 � 0:6 fm as a
function of the minimal length in physical units. We have
applied a constant shift to the data at � � 5:8. The jackknife
errors are smaller than the size of the symbols.

FIG. 6 (color online). Plateau values for the tetraquark poten-
tial. Top for the case where R1=a � 2 and R2=a � 8; middle for
R1=a � 4 and R2=a � 4; bottom for R1=a � 8 and R2=a � 2.
The data obtained using variational method 1 are denoted by the
circles, using variational method 2 by the filled triangles and
using Eq. (13) by the crosses. The circles and filled triangles are
shifted horizontally for clarity.
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for the same physical internal diquark distance R2 as a
function of the minimal length. We apply a constant shift to
the data at � � 5:8 given by twice the difference in the
constants V0 at the two� values. As can be seen the results,
to a good approximation, fall on a universal line showing
reasonable scaling behavior. As in all our figures the errors
shown on this figure are the statistical errors obtained by
jackknife analysis. To understand why the statistical
errors are small even at the larger distances we plot in
Fig. 8, for two representative cases, the ratio Veff�t� �
� log�W�t�=W�t� 1�, which for large t gives the ground
state potential V4q we are interested in. The two cases that
we consider are those that have the smallest and largest
values of Lmin in Fig. 7. The first corresponds to R1 �
0:2 fm at � � 6:0 and the second to R1 � 1:2 fm at � �
5:8 with R2 � 0:6 fm in both cases. To fit to a constant we
must search for a plateau of Veff�t� and make sure that
changing the initial fitting range does not produce a value
FIG. 8 (color online). The ratio � log�W�t�=W�t� 1� for the
tetraquark static potential versus time in lattice units. Upper
graph for R1 � 0:2 fm and R2 � 0:6 fm at � � 6:0. Lower
graph for R1 � 1:2 fm and R2=a � 0:6 fm at � � 5:8.
Horizontal lines show the value obtained from fitting the lattice
data to a constant with the solid line showing the value that we
choose. The initial time used in the fit is shown by the position
where the line begins. The dotted curve shows the result of fitting
to Eq. (18).
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outside the statistical errors. In our analysis we take the
plateau value that gives, for the earliest initial time range,
~-2 � -2=d:o:f: & 1 since this criterion ensures a good fit
and gives a result with the smallest statistical error. When
R1 � 0:2 fm the results are very accurate and clearly show
contributions from excited states with Veff�t� showing a
plateau only for t=a > 7. Fitting within the plateau range
we extract the values given in Table II where we check
consistency by changing the initial fit range. Using our
criterion we choose the plateau value with ~-2 � 0:8 de-
noted by an asterisk in Table II. At these small distances the
accuracy of the data allows, in addition, a fit that includes
the first excited state. This enables us to extend the time
range of the fit and check that including the first excited
state reproduces the plateau value obtained for the ground
state from fitting to a constant at larger times. In this case
the time dependence of Veff�t� is given by

Veff�t� � V4q � log
�

1� ce�dVt

1� ce�dV�t�1�

�
; (18)

where dV is the gap between the ground state and the first
excited state. Fitting from ti=a � 3 we obtain aV4q �

1:195�1�, which agrees with the value extracted by fitting
to a constant within the range of the plateau. When we
consider the second case at the largest value of Lmin in
TABLE II. Determination of plateau values for the tetraquark pote
and for each of the internal diquark distances, R2, we give, the initial
of the potential and ~-2 � -2=d:o:f. We denote with an asterisk the

R1=a R2=a � 2 R2=a � 4
ti=a tf=a aV4q ~-2 ti=a tf=a aV4q ~-2

8 12 1:195�1� 13 8 12 1:219�1� 32
2 10 12 1:190�1�� 1:2 10 12 1:203�2�� 0:6

11 12 1:190�2� 0:6 11 12 1:200�3� 0:1

5 12 1:318�1� 1:2 7 12 1:450�2� 3:7
3 6 12 1:318�1�� 0:8 8 12 1:441�4�� 1:2

8 12 1:317�1� 0:9 9 12 1:430�7� 0:1

4 12 1:390�1�� 1:2 4 12 1:584�1� 5:2
4 7 12 1:390�1� 1:6 6 12 1:577�2�� 0:8

10 12 1:386�6� 2:6 9 12 1:567�20� 0:1

4 12 1:450�1�� 0:6 5 10 1:651�2�� 1:1
5 7 12 1:451�2� 0:5 6 10 1:648�3� 0:7

10 12 1:447�11� 0:8 7 10 1:642�6� 0:4

3 12 1:508�1�� 0:8 4 12 1:716�2�� 0:6
6 7 12 1:507�3� 0:1 7 12 1:717�10� 0:6

10 12 1:503�21� 0:1 9 12 1:656�64� 0:2

4 12 1:560�2�� 0:5 3 7 1:773�2� 4:0
7 7 12 1:560�4� 0:7 5 7 1:766�3�� 0:7

10 12 1:563�36� 1:4 5 9 1:765�3� 5:7

4 12 1:612�2�� 0:4 6 12 1:804�7�� 1:1
8 7 12 1:612�6� 0:6 7 12 1:778�19� 0:9

10 12 1:574�67� 0:4 9 12 1:813�144� 0:8
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Fig. 7 we see from Fig. 8 that Veff�t� has very large errors
when t=a > 5. This means that the first accurate points
used in the fit will determine the value and error of the
extracted constant and that checking for excited state con-
tributions is no longer possible. In this particular example
fitting to a constant from ti=a � 3 gives ~-2 < 1:0 with an
error on the extracted value which is small since it is
basically determined from the two first accurate points.
Changing the initial fit range to ti=a � 5 lowers the plateau
value as shown in the figure but carries an error similar to
that of the data point at t=a � 5 making it consistent with
the value extracted from the fit that used ti=a � 3. Within
our fit criterion we choose the value obtained from the fit
with ti=a � 3, which carries a small error explaining the
small error of the data point at the largest value Lmin in
Fig. 7. We note that for these large interquark distances
changing the final time range will not affect the value and
error of the extracted potentials since the Wilson loops
become very noisy at the larger times. In this particular
example whether we take the upper fit range to be tf=a � 7
or tf=a � 12 does not affect the value and error resulting
from the fit. As can be seen from Table II in general we
choose the larger available value of tf=a but for the large
distances we reduce the upper fit range when the data
points become too noisy. Since our accurate data points
ntial at � � 6:0. The first column gives the diquark distance, R1,
and final time ti=a and tf=a used in fitting the plateau, the value
value that we choose. All quantities are given in lattice units.

R2=a � 6 R2=a � 8
ti=a tf=a aV4q ~-2 ti=a tf=a aV4q ~-2

8 12 1:201�1� 5:7 7 12 1:200�1� 5:4
9 12 1:196�1�� 0:8 8 12 1:197�1�� 1:4

11 12 1:191�4� 0:5 9 12 1:195�2� 1:6

6 12 1:473�2� 16 7 12 1:428�4� 2:4
8 12 1:435�6�� 0:8 8 12 1:409�7�� 0:2

10 12 1:435�24� 0:4 9 12 1:407�15� 0:3

6 12 1:646�3� 2:8 6 12 1:645�6� 3:4
8 12 1:605�16�� 1:4 6 10 1:646�6�� 0:7

10 12 1:560�99� 0:7 7 10 1:629�13� 0:3

5 12 1:780�3� 1:4 5 12 1:861�6� 2:4
6 12 1:767�7�� 0:5 6 12 1:823�15�� 0:2
8 12 1:725�42� 0:2 7 12 1:826�41� 0:2

4 12 1:881�2� 7:4 4 11 2:010�4� 4:3
6 12 1:846�10�� 1:4 6 11 1:948�25�� 0:8

10 12 1:278�808� 0:1 7 11 2:043�86� 0:7

4 9 1:933�4� 2:2 4 12 2:088�6� 2:0
6 9 1:918�14�� 0:6 6 12 2:015�36�� 0:5
7 9 1:909�41� 0:9 7 12 1:906�107� 0:4

4 10 1:987�4� 1:7 6 12 2:080�53� 1:9
6 10 1:963�19�� 0:2 6 8 2:097�54�� 0:9
8 10 1:941�20� 0:3 7 8 1:916�109� 0:1
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FIG. 10 (color online). The tetraquark static potential versus
R1 for R2 � 0:2 fm (crosses), 0:4 fm (filled triangles), 0:6 fm
(filled squares) and 0.8 fm (filled circles). The solid line is twice
the q �q potential.
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are limited to smaller times the plateau values that we
extract may have excited state contributions, which cannot
be estimated since small shifts in the data points are not
visible due to their large errors. However, the fact that the
data at the larger values of Lmin fall on the same curve as
the better determined points is an indication that this error
is reasonably small. In Table II we give the dependence of
the plateau values on the fitting range and our choice of the
value plotted in the figures. The table is done for � � 6:0
since this is the case that we discuss in more detail in the
manuscript. The analysis at � � 5:8 is carried out in the
same way.

In Fig. 9 we show the results for the tetraquark potential
at � � 6:0 as a function of the minimal length. As can be
seen we have four different sets of curves for each internal
diquark separation R2 � 0:2, 0.4, 0.6 and 0.8 fm. When the
distance between the diquarks becomes greater than the
internal diquark distance the four sets of curves converge to
the same line. This means that for R1 >R2 the tetraquark
potential becomes approximately only a function of L4q

min.
On the other hand when R1 � R2 and for R1 & 0:4 fm the
potential is independent of R2. This behavior is better seen
in Fig. 10 where we show the tetraquark potential as a
function of R1 for the four different values of the internal
diquark distance R2: When R1 � 0:2 fm the potentials
coincide for all four different values of R2. When R1 �
0:3 fm and, to a good approximation, also when R1 �
0:4 fm the potentials coincide only for R2 �
0:4; 0:6; 0:8 fm. In fact, for R1 � 0:2 fm and 0:3 fm and
R2 � R1, the tetraquark potential is given by the sum of the
two meson potentials as can be seen by the agreement of
these results with the line on the figure showing 2Vq �q�R1�.
This means that for these geometries we have a system of
two mesons rather than a genuine four quark bound state.
FIG. 9 (color online). The tetraquark static potential at � �
6:0 versus the minimal length. Data obtained for R2 � 0:2, 0.4,
0.6 and 0.8 fm are denoted with crosses, filled triangles, filled
squares and filled circles, respectively.
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On the other hand when the distance between the diquarks
is larger than their internal diquark distance the potential is
lower than the sum of the two q �q potentials. In Fig. 11 we
show lattice data for � � 5:8 for the smallest internal
diquark separation, namely, for R2 � 0:3 fm, and compare
them with V4q

min and 2Vq �q�R1�. We have chosen � � 5:8 in
order to reach larger diquark separations. The tetraquark
potential starts as a sum of the two meson potentials and
then crosses over to approach V4q

min. Although V4q
min has a

larger slope as compared to the slope of the tetraquark
confining potential it approximates best the lattice data for
values of R1 in the range of about 0.5 to 1 fm. In Fig. 12 we
perform the same comparison but for internal diquark
distance equal to 0.8 fm. In this case the tetraquark poten-
FIG. 11 (color online). The tetraquark static potential at � �

5:8 for R2 � 0:3 fm compared with V4q
min (solid line) and with

2Vq �q�R1� (dashed line).
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FIG. 12 (color online). The tetraquark static potential at � �

6:0 for R2 � 0:8 fm compared with V4q
min (solid line) and with

2Vq �q�R1� (dashed line).
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tial becomes larger than the sum of the two meson poten-
tials approaching V4q

min from below. For the two largest
distances the data become too noisy and better statistics
are required to determine more accurately the long distance
behavior.

We perform a similar analysis for the pentaquark sys-
tem. The geometry used for the pentaquark potential is
shown in Fig. 13: We place the antiquark on the z-axis
distance R1 from the origin. The two pairs of quarks are
placed at distances �R1; 0;�R2=2� and �0; R1;�R2=2� so
R1

R1 R22R

q

q q

q

1R

q

zx

y

FIG. 13. The geometry used for the computation of the penta-
quark static potential where we have taken the baryonic junc-
tions at x � �R1; 0; 0� and at z � �0; R1; 0� and the antibaryonic
junction at y � �0; 0; 0�. The quarks are located at positions r1 �
�R1; 0; R2=2�; r2 � �R1; 0;�R2=2�, r3 � �0; R1; R2=2� and r4 �
�0; R1;�R2=2� and the antiquark at r5 � �0; 0; R1�.
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that when R2 � 0 this configuration reduces to the geome-
try that we used for the baryonic potential [16]. The quality
of the plateaus is seen in Fig. 14 for representative values of
R1 and R2. Again the ratio of Wilson loops with the largest
number of APE smearings produces the best plateaus.

In Fig. 15 we compare the results for the pentaquark
potential at � � 5:8 and 6:0 for the same physical internal
diquark separation R2. The data at � � 5:8 are shifted by
5=2 the difference in the values of V0 at the two � values.
As in the case of the tetraquark potential, the results for the
pentaquark potential approximately fall on the same curve
indicating good scaling. The comments made for the errors
on the results obtained at � � 5:8 at the larger distances
when discussing the scaling of the tetraquark potential
apply also here. Table III gives details of our fitting pro-
cedure at � � 6:0 and provides an indication of the sys-
tematic errors involved in changing the fitting range.

In Fig. 16 we plot the pentaquark potential evaluated at
� � 6:0 versus L5q

min. Although not as clearly seen as in the
case of the tetraquark system there are four sets of curves
corresponding to the four different values of R2. For large
values of R1 they converge to the same curve which again
suggests that the potential asymptotically depends only on
the minimal length at least to a first approximation. The
FIG. 14 (color online). Plateau values for the pentaquark po-
tential. Top for the case where R1=a � 1 and R2=a � 8; middle
for R1=a � 4 and R2=a � 2; bottom for R1=a � 8 and R2=a �
2. The rest of the notation is as in Fig. 6.
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TABLE III. Determination of plateau values for the pentaquark potential at � � 6:0. The notation is the same as that of Table II.

R1=a R2=a � 2 R2=a � 4 R2=a � 6 R2=a � 8
ti=a tf=a aV5q ~-2 ti=a tf=a aV5q ~-2 ti=a tf=a aV5q ~-2 ti=a tf=a aV5q ~-2

11 12 1:369�1� 2:8 7 11 1:616�1� 8:5 5 12 1:885�2� 2:9 3 12 2:111�2� 7:5
1 3 12 1:358�1��a 0:2 9 11 1:607�3�� 0:4 6 12 1:878�3�� 1:0 5 12 2:093�4�� 0:2

5 12 1.358(2)a 0:2 10 11 1:609�5� 0:5 9 12 1:880�23� 0:9 7 12 2:090�19� 0:2

6 11 1:620�1� 8:6 6 11 1:760�1� 6:3 6 12 1:926�3� 3:4 5 12 2:122�4�� 1:0
2 9 11 1:611�2�� 0:1 8 11 1:748�4�� 0:9 8 12 1:881�13�� 0:6 6 12 2:112�7� 0:7

10 11 1:611�4� 0:2 9 11 1:742�7� 0:8 9 12 1:862�32� 0:7 8 12 2:091�60� 0:7

5 12 1:789�1�� 0:9 4 11 1:960�1� 13 5 12 2:068�3� 2:7 4 10 2:228�3� 9:0
3 8 12 1:786�4� 0:2 7 11 1:936�5�� 0:1 6 12 2:053�5�� 0:3 5 10 2:205�5�� 1:0

10 12 1:781�20� 0:4 9 11 1:928�37� 0:1 7 12 2:043�11� 0:2 6 10 2:187�11� 0:4

5 12 1:928�2�� 0:5 5 8 2:105�3� 1:3 3 11 2:258�3� 18 3 8 2:399�3� 25
4 8 12 1:926�12� 0:4 6 8 2:097�5�� 0:2 5 11 2:227�3�� 1:1 5 8 2:348�7�� 0:5

10 12 1:888�78� 0:2 7 8 2:105�15� 0:1 7 11 2:222�37� 1:3 7 8 2:249�96� 0:1

5 11 2:063�3�� 0:5 3 9 2:271�3� 5:7 4 9 2:403�4� 1:6 4 7 2:534�6� 4:0
5 7 11 2:068�11� 0:4 4 9 2:261�3�� 0:6 4 7 2:403�4�� 1:0 5 7 2:496�14�� 0:5

8 11 2:069�36� 0:3 7 9 2:277�40� 0:5 5 7 2:391�8� 0:1 6 7 2:462�62� 0:8

3 10 2:215�3� 5:6 4 8 2:405�5�� 1:0 4 10 2:556�6�� 1:0 3 9 2:737�6� 3:9
6 5 10 2:196�6�� 0:5 5 8 2:395�8� 0:6 6 10 2:497�55� 0:4 5 9 2:725�32�� 1:7

7 10 2:192�29� 0:2 7 8 2:322�98� 0:3 7 10 2:492�306� 0:5 6 9 2:590�174� 0:2

4 8 2:345�6�� 1:0 3 7 2:572�5� 2:6 4 9 2:722�9�� 0:4 3 8 2:904�7� 1:9
7 5 8 2:333�10� 0:4 4 7 2:558�6�� 1:0 5 9 2:694�29� 0:2 5 8 2:807�72�� 1:2

6 8 2:315�24� 0:3 5 7 2:553�16� 0:1 7 9 2:609�148� 0:1 6 8 2:290�279� 0:1

3 7 2:513�5� 5:7 3 9 2:724�6� 3:1 5 8 2:807�66�� 1:8 5 6 2:968�165�� 1:1
8 5 7 2:448�18�� 0:5 5 9 2:648�28�� 1:1 6 8 2:266�245� 0:2

6 7 2:411�55� 0:5 6 9 2:450�116� 0:1 7 8 2:079�767� 0:4

aThis value was extracted using Eq. (18).

FIG. 16 (color online). The pentaquark static potential at � �
6:0 versus the minimal length. The notation is the same as that
used in Fig. 9.

FIG. 15 (color online). The pentaquark static potential at � �
6:0 (crosses) and � � 5:8 (filled triangles) for R2 � 0:6 fm as a
function of the minimal length. The data at � � 5:8 are shifted
by a constant.
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FIG. 18 (color online). The pentaquark static potential at � �

5:8 for R2 � 0:3 fm compared with V5q
min (solid line) and with the

sum of the baryonic and mesonic potentials (dashed line).
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four sets of curves are more clearly seen in Fig. 17 where
the pentaquark potential is plotted as a function of the
diquark separation R1 for the four values of the internal
diquark distance R2 � 0:2; 0:4; 0:6 and 0:8 fm. On the
same figure we also display our lattice results for the
baryonic potential shifted by a constant showing that the
linear dependence of the pentaquark potential for small
separations R2 is approximately the same as that of the
baryonic potential. It should be noted that, for the geometry
used in the evaluation of the pentaquark potential, the sum
of the baryonic and mesonic potentials depends on both R1

and R2 and therefore we can no longer draw a universal
curve for all separations R2 as we did for the case of the
tetraquark potential. Instead we compare the pentaquark
potential to V5q

min and the sum of the baryonic and mesonic
potentials in Figs. 18 and 19 for two extreme cases: In
Fig. 18 we show results for the smallest possible internal
diquark distance, namely, for R2 � 0:3 fm, and consider
� � 5:8 so that we can reach larger physical distances in
R1. In this case the potential approaches V5q

min for R1 >
0:4 fm. This means that when R1 becomes larger than the
internal diquark distance the qqqq �q system is well de-
scribed by the minimal flux connecting the quarks. This
genuine pentaquark state has static energy which is lower
than the sum of the baryonic plus the mesonic potential. In
Fig. 19 we show results for the largest possible internal
diquark separation, namely, for R2 � 0:8 fm, and consider
� � 6:0 since the results for � � 5:8 become too noisy to
extract any useful information. For this geometry the
quarks in the diquarks are always a distance larger or equal
to R1. In this case the results are well described by the sum
of the baryonic and mesonic potentials and only for dis-
tances larger than 0.6 fm they begin to approach V5q

min from
below. More statistics are required to reduce the errors in
FIG. 17 (color online). The pentaquark static potential versus
R1 for R2 � 0:2 fm (crosses), 0:4 fm (filled triangles), 0:6 fm
(filled squares) and 0:8 fm (filled circles). The baryonic potential
shifted by a constant is shown by the open squares.
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order to draw a definite conclusion for the large distance
behavior in this case.

V. CONCLUSIONS

We have calculated the static tetraquark and pentaquark
potentials selecting geometries that are motivated by the
diquark picture. Using multihit for the time links and APE
smearing for the spatial links we obtain results for inter-
quark distances of the order of 1 fm. Comparing the results
obtained at � � 5:8 and 6:0 we show that the potentials
have reasonable scaling properties.

The main conclusions regarding the tetraquark potential
are: (1) When the two diquarks are closer than �0:5 fm
and with internal diquark distances larger than their sepa-
ration (R2 >R1) then the qq �q �q system breaks, as ex-
FIG. 19 (color online). The pentaquark static potential at � �

6:0 for R2 � 0:8 fm compared with V5q
min (solid line) and with the

sum of the baryonic and mesonic potentials (dashed line).
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pected, into two mesons and its static potential is approxi-
mately given by the sum of the two meson potentials. The
geometry used for the tetraquark potential makes it easy to
see when the ground state is a two meson state since then
the static potential becomes independent of the internal
diquark distance R2. (2) For distances between diquarks
larger than the internal diquark distance the static potential
is approximately described by V4q

min, which has a confining
part proportional to the minimal length flux tube joining
the quarks. In the parametrization of V4q

min we used values
for V0; " and � extracted from the static q �q potential and
therefore there are no adjustable parameters. The linear
dependence of the tetraquark potential would require a
smaller value of � as compared to that extracted from
the q �q potential. For internal diquark separations between
about 0.5 and 1 fm the potential is larger than the sum of
the two meson potentials and approaches V4q

min from below.
The pentaquark potential shows similar behavior: For

diquark separations R1 small as compared to R2 the poten-
tial is well approximated by the sum of the mesonic and
baryonic potentials. For values of R1 larger than R2 it
approaches V5q

min. However, in this case V5q
min provides a

better description to the data than it did for the tetraquark
case. For our geometry we were able to confirm this
behavior for internal diquark distances R2 & 0:5 fm. For
014504
larger values of R2 the data indicate that the pentaquark
potential also approaches V5q

min albeit with large statistical
errors that need to be reduced before one can make a
definite statement. When R2 & 0:5 fm the pentaquark po-
tential approaches V5q

min from above. When R2 * 0:5 fm

the pentaquark potential approaches V5q
min from below at

least for distances R1 up to �1 fm studied in this work.
Although the exact values for the distances R1 and R2

where this behavior is observed may depend on the ge-
ometry, the general behavior should not be affected.

In summary, these observations suggest that, when the
separation between diquarks is larger than the internal
diquark distances with the latter obtaining values up to
�0:5 fm, the tetraquark and pentaquark systems behave as
multiquark bound states rather than break into mesons or
baryons. Although this behavior is determined using a
particular geometry it should hold for general geometries
that allow diquark formation.
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