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Twisted mass QCD for the pion electromagnetic form factor
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The pion form factor is computed using quenched twisted mass QCD and the GMRES-DR matrix
inverter. The momentum averaging procedure of Frezzotti and Rossi is used to remove leading lattice
spacing artifacts, and numerical results for the form factor show the expected improvement with respect to
the standard Wilson action. Although some matrix inverters are known to fail when applied to twisted
mass QCD, GMRES-DR is found to be a viable and powerful option. Results obtained for the pion form
factor are consistent with the published results from other O�a� improved actions and are also consistent
with the available experimental data.
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I. OVERVIEW AND DISCUSSION

The Wilson lattice action for fermions [1] does not have
exact chiral symmetry, and thus it provides no lower bound
for the norm of Dirac matrix eigenvalues. As a practical
consequence, numerical simulations encounter ‘‘excep-
tional configurations’’ (for which the Dirac matrix cannot
be inverted) with increasing regularity as the quark mass is
reduced. Symanzik improvement of the Wilson action by
adding the Sheikholeslami-Wohlert term with a properly
tuned coefficient [2] exacerbates the problem.

Fortunately, the addition of a twisted mass term provides
a lower bound for the eigenvalues thereby eliminating
exceptional configurations [3,4]. Furthermore, tuning of
the Sheikholeslami-Wohlert coefficient is no longer
needed for the removal of linear lattice spacing errors.
Instead, many quantities are automatically improved sim-
ply by adding the twisted mass term to the basic Wilson
action and setting the hopping parameter to its critical
value [i.e., � � �c in Eq. (14) below], while other quanti-
ties become improved by averaging over equal and oppo-
site momenta [4,5]. The present work provides an explicit
numerical verification of the averaging technique for im-
provement in twisted mass QCD (tmQCD).

Our discussion will focus on the pion electromagnetic
form factor. Due to the simple valence quark structure of
the pion and a firm theoretical knowledge of its form factor
in both the Q2 ! 0 and Q2 ! 1 limits, the pion form
factor is a preferred place to study the transition between
perturbative and nonperturbative QCD. Experimental stud-
ies are ongoing at Jefferson Lab, and theoretical modelling
is also continuing [6].

Initial studies of the pion form factor using lattice QCD
occurred some time ago [7,8], and new lattice initiatives
have arisen recently for Wilson, Sheikoleslami-Wohlert,
and domain wall actions [9–11]. Preliminary results from
our tmQCD study were presented in Ref. [12]. In contrast
to other form factors, the pion form factor receives no
contributions from the vector current attaching to a non-
valence quark (so-called ‘‘disconnected diagrams’’), and
this feature reduces the lattice QCD cost considerably [8].
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There could still be contributions from sea quarks that do
not interact directly with the external vector current, and
these have been considered in Ref. [13] where dynamical
configurations were used to obtain the pion form factor. All
other studies to date, including the present one, have used
the quenched approximation and thereby omitted all non-
valence quarks.

In the remainder of this article, we report on our use of
quenched tmQCD to compute the pion form factor. Two
quark masses corresponding to pion masses near 470 MeV
and 660 MeV, as well as a variety of momentum transfer
values satisfying 0 GeV2 <Q2 & 5 GeV2 have been con-
sidered, all at a lattice spacing of 0.10 fm. A comparison to
existing lattice results clearly shows the improvement ex-
pected for tmQCD, since the momentum-averaged tmQCD
data agree with results from other improved actions and
differ from unimproved Wilson results at this same lattice
spacing. Interestingly, even before momentum averaging
the tmQCD data are closer to improved action results than
to unimproved Wilson results for this particular observ-
able, despite the fact that the pion form factor technically
requires momentum averaging to exactly remove the linear
lattice spacing errors.

To determine the renormalization factors that appear in
the pion form factor correlation function, and to compare
with the predictions of vector meson dominance, we also
study two-point pseudoscalar and vector correlators with
nonzero momenta. The associated dispersion relations are
compared to continuum expectations as another means of
exploring lattice spacing artifacts.

One of the technical issues that arises in tmQCD simu-
lations is the failure of some standard matrix inversion
algorithms. Alternative algorithms are being used and
evaluated by various authors [14]. The present work makes
use of the GMRES-DR algorithm [15] and concludes that it
performs well for tmQCD. Some details are presented in
Sec. IV.

This initial exploration of the pion form factor with
tmQCD leads to optimism that future lattice tmQCD stud-
ies, perhaps with smeared operators and increased statistics
-1  2005 The American Physical Society
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on larger lattices, can reach smaller quark masses with
greater precision. Our present results are consistent with
vector meson dominance and with experiment. More
generally, the present work underscores the value of
lattice tmQCD itself as a practical tool for hadron
phenomenology.

II. CORRELATION FUNCTIONS

The electromagnetic form factor of a charged pion is
defined by

h��� ~pf�jj
�0�j��� ~pi�i � F�Q2��pi � pf�
; (1)
µj

quark

anti−quark

x

x

x
f

i

FIG. 1. Three-point correlator for the pion form factor.
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where j
�0� is a conserved vector current evaluated at the
spacetime origin, pi and pf are the initial and final pion
(Euclidean) 4-momenta, respectively, ~pi and ~pf are the
corresponding 3-momenta, and Q2 � �pf 
 pi�

2 is the 4-
momentum transfer. To compute this matrix element on a
spacetime lattice, one can use the three-point correlator
displayed in Fig. 1. A source with pion quantum numbers is
placed at xi, a sink at xf, and a vector current is inserted at
x. Given an interpolating field operator ��x� with the
quantum numbers of the pion, one can extract the form
factor from the following three-point correlator:
��
��ti; t; tf; ~pi; ~pf� �
X
~xi; ~xf

e
i� ~xf
 ~x�� ~pfe
i� ~x
 ~xi�� ~pih0j��xf�j
�x��y�xi�j0i: (2)
Note that we are working in units of lattice spacing
throughout this discussion. In this work we consider only
the charged pion and choose ��x� to be the local operator

��x� � �d�x��5u�x�; (3)

where u�x� and d�x� are the up and down quark fields,
respectively. Smeared operators could be of value in sub-
sequent studies, particularly for the exploration of the high
Q2 range. For the vector current j
�x� we use the con-
served current,

j
�x� �
1

2
� �x��1
 �
�U
�x�q �x� 
̂�



1

2
� �x� 
̂��1� �
�Uy


�x�q �x�; (4)

with

q �
2=3 0
0 
1=3

� �
;  �x� �

u�x�
d�x�

� �
; (5)

and we choose 
 � 4. In order to extract the matrix
element in Eq. (1) from the three-point correlator of
Eq. (2), one introduces two complete sets of states jn� ~k�i
with the same quantum numbers as ��x� in the three-point
correlator and gets

��
��ti; t; tf; ~pi; ~pf� �
X
n

X
m

h0j��x�jm� ~pf�i
e
�tf
t�Em� ~pf�

2Em� ~pf�


 hm� ~pf�jj
�x�jn� ~pi�i



e
�t
ti�En� ~pi�

2En� ~pi�
hn� ~pi�j�y�x�j0i:

(6)

This can be simplified further using

h0j��x�jm� ~p�i � Zm� ~p�eix�p; (7)

and for a local interpolating field operator, Zm� ~p� is inde-
pendent of ~p. The three-point correlator simplifies to

��
��ti; t; tf; ~pi; ~pf� �
X
n

X
m

Zm
e
�tf
t�Em� ~pf�

2Em� ~pf�


 hm� ~pf�jj
�0�jn� ~pi�i



e
�t
ti�En� ~pi�

2En� ~pi�
Z�
n: (8)

Similarly the two-point correlator, which will be needed to
get the energies, is given by

G���ti; t; ~p� �
X
~x

e
i� ~x
 ~xi�� ~ph0j��x��y�xi�j0i

�
X
n

ZnZ�
n
e
�t
ti�En� ~p�

2En� ~p�
: (9)

For periodic boundary conditions on a lattice of Nt time
slices, Eq. (9) will be modified to

G���ti; t; ~p� �
X
n

ZnZ
�
n

En� ~p�
e
�Nt=2�En� ~p� cosh

��
t
 ti



Nt
2

�
En� ~p�

�
: (10)
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The long time behavior of the two- and three-point correlators will be dominated by contributions from the lightest
pseudoscalar state, i.e., the pion. This asymptotic behavior is given by

��
��ti; t; tf; ~pi; ~pf� !
tf�t�ti

jZ�j
2 e


�t
ti�E�� ~pi�
�tf
t�E�� ~pf�

4E�� ~pi�E�� ~pf�
F�Q2��pi � pf�
; (11)

G���ti; t; ~p� !
jt
tij�0 jZ�j

2

E�� ~p�
e
�Nt=2�E�� ~p� cosh

��
t
 ti 


Nt
2

�
E�� ~p�

�
: (12)

To obtain a reliable result for the pion form factor, we will allow for contributions from excited states. For the conserved
current, the corresponding transition matrix elements are included as follows,

h�#� ~pf�jj
�0�j�$� ~pi�i � F$#�Q
2�

�
�pf � pi�
 


�p2f 
 p2i �

�pf 
 pi�2
�pf 
 pi�


�
: (13)
III. THE ACTION AND ITS PARAMETERS

Our simulations use the standard Wilson gauge action
with # � 6:0. An ensemble of 100 quenched configura-
tions of size 163 
 48 was created using a pseudoheatbath
algorithm, with 5000 sweeps omitted between saved con-
figurations. The lattice tmQCD fermion action is

SF� ; � ;U� �
X
x

� �x�
�
1� 2�
i�5&3

� �
X
'

�'�r' �r�
' 
r�

'r'�

�
 �x�; (14)

where the forward and backward lattice derivatives are
defined as usual,

r' �x� � U'�x� �x� '̂� 
  �x�; (15)

r�
' �x� �  �x� 
Uy

' �x
 '̂� �x
 '̂�; (16)

and  �x� denotes the doublet of up and down quarks. When

 � 0, SF becomes the standard Wilson action.
Throughout this work, we hold the hopping parameter
fixed at its critical value �c � 0:156 911 [16] leaving the
quark mass directly proportional to 
. Our pion form
factor studies are carried out with 
 � 0:030 and 
 �
0:015. We also choose the temporal separation of the
source and sink to be tf 
 ti � 15 time steps. The addi-
tional cases of
 � 0:007, 0.003, and 0.001 are used below
as insightful exercises for GMRES-DR. Periodic boundary
conditions are used in all directions.

Frezzotti and Rossi have shown that, when the hopping
parameter is set to its critical value (so-called ‘‘maximal
twist’’), masses and correlation functions with vanishing
spatial momenta are automatically O�a� improved in
tmQCD [5]. A generic matrix element with nonzero spatial
momenta can be improved by averaging over momenta of
equal magnitude but opposite sign as follows,

hf; ~kjBji; ~pi � )i;f;Bhf;
 ~kjBji;
 ~pi

� 2*Bhf; ~kjBji; ~pijcontinuum �O�a2�; (17)

where )i;f;B � �1 is an overall parity (see Ref. [5] for the
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precise definition of this parity) for the matrix element
between the initial state ji; ~pi, the final state jf; ~ki, and
the operator B. The renormalization coeffecient *B relates
the continuum and lattice operators. Since the energies
obtained from a two-point correlator depend only on j ~kj2,
these energies, like masses, are automatically improved
without momentum averaging.

IV. MATRIX INVERSION

Some of the standard matrix inverters used in lattice
QCD research, such as the stabilized biconjugate gradient,
fail when applied to tmQCD at maximal twist for suffi-
ciently light quarks [14]. Fortunately there are other inver-
sion algorithms that succeed for tmQCD inversions, such
as conjugate gradient, conjugate gradient squared, and
GMRES [14]. The present work made use of the
GMRES-DR algorithm [15], and the remainder of this
section contains some information about our experience
with this inverter.

The GMRES-DR inverter is built on the standard
GMRES (generalized minimal residual) matrix inverter
but extends it to incorporate deflation (D) of the smallest
eigenvalues even after subsequent restarts (R) of the basic
GMRES algorithm. Since GMRES-DR is a significant
improvement over standard GMRES, and since standard
GMRES can successfully invert tmQCD matrices, it is
interesting to explore the application of GMRES-DR to
tmQCD.

GMRES uses a Krylov vector space of some dimension-
ality (let us call it n) chosen by the user and GMRES-DR
identifies and retains the k-dimensional subspace spanned
by light eigenvectors, where k is also chosen by the user.
For the present work, n and k were chosen to minimize the
wall clock time needed to reach a residual of jrj< 10
6,
where r � b
Mx for Dirac matrix M and source vector
b. This optimization was done at � � �c and 
 � 0:030
and for our implementation of GMRES-DR(n; k) the result
was �n; k� � �40; 10�.

For our ensemble of 100 configurations, all GMRES-
DR(40,10) inversions were successful at
 � 0:030, 0.015,
-3
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FIG. 2. Pseudoscalar mass versus the twisted quark-mass pa-
rameter 
. The solid curve is a fit of the data at 
 � 0:030 and
0.015 to a straight line through the origin. Data points below

 � 0:007 were computed for the exploration of GMRES-DR,
not for phenomenological use.
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and 0.007. The pion form factor was not computed at 
 �
0:007 due to the onset of finite volume effects, but the
pseudoscalar two-point correlator was computed for 
 �
0:007 as a means of gaining some experience with
GMRES-DR. At 
 � 0:003, GMRES-DR(40,10) failed
to compute one column out of 1200 but increasing the
Krylov subspace to GMRES-DR(60,10) brought success.
At
 � 0:001, GMRES-DR(40,10) failed to compute three
columns out of 1200 but GMRES-DR(60,10) was again
completely successful. Recall that our choice of �n; k� �
�40; 10� arose from optimization at 
 � 0:030; we did not
optimize separately at these very small 
 values.

Table I displays the average number of matrix-vector
products that were computed to obtain one column of the
inverse to a residual of jrj< 10
6 using GMRES-
DR(40,10). Since this number of matrix-vector products
depends on our particular source (i.e., a point source with
specific color index and Dirac index) and also on our
particular initial value for the solution vector, it is more
useful to report the change in jrj relative to its initial (i.e.,
before any GMRES-DR iterations) value. In the present
case, the initial residual was jr0j � 40:62 so the data in
Table I represent the number of matrix-vector products
computed to reach jr=r0j< 2:5
 10
8. This is the quan-
tity that can be meaningfully compared to studies with
other source vectors [17].

Figure 2 shows the pseudoscalar mass squared as a
function of 
 as well as the result of fitting the two largest

 data points to a straight line through the origin. Working
as we are with � � �c, we recall that 
 is proportional to
the quark mass. Finite volume effects are apparent for
 �
0:007. To estimate the quark masses corresponding to these

 values, we use the leading order chiral perturbation
theory expression for a pseudoscalar meson mass squared
m2
P � B�mq1 �mq2� and its application to the physical

pion and kaon 2m2
K;phys 
m2

�;phys � 2Bms to arrive at an
expression for the quark mass in a quark-mass-degenerate
meson relative to the strange quark mass,

mq

ms
�

m2
P

2m2
K;phys 
m2

�;phys

: (18)

Using the pseudoscalar meson masses from Table II formP
TABLE I. The average number of matrix-vector products re-
quired to compute one column of the inverse to a residual of
jrj< �2:5
 10
8�jr0j using GMRES-DR(40,10), where r0 de-
notes the initial residual.


 average number of products

0.030 816
0.015 1175
0.007 1384
0.003 1450
0.001 1489
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leads to mq �ms for 
 � 0:030 and to mq �ms=2 for

 � 0:015.
V. RESULTS

We first analyze the pseudoscalar and vector two-point
correlators. Energies are obtained by fitting the pseudosca-
lar correlators to Eq. (10) and the vector correlators to the
analogous expression. Spatial components of nonzero mo-
menta are averaged over all spatial directions to improve
statistics; the three spatial components of the vector opera-
tor are also averaged.

Single state fits to the data show a convincing ground
state signal for j ~pj2 � 4p2min, where pmin � 2�=L and
L � 16 is the spatial size of our lattice. Multistate fits
were also performed and led to consistent results for the
ground state energies. These results can be compared to the
predictions of the continuum and lattice dispersion rela-
tions given by

�aEcont�
2 � �aM�2 � j ~pj2; (19)

sinh 2
�
aElatt
2

�
� sinh2

�
aM
2

�
�

X3
i�1

sin2
�
pi
2

�
; (20)

respectively. Figs. 3, 4, 5, and 6 show this comparison
where the mass parameters in Eqs. (19) and (20) were
TABLE II. Ground state pseudoscalar and vector meson
masses.


 0.015 0.030

am� 0.240(3) 0.334(2)
am2 0.439(27) 0.499(15)
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FIG. 5. Ground state and first excited state vector meson en-
ergies from three-state fits to tmQCD at 
 � 0:030, as compared
to the continuum and lattice dispersion relations.
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FIG. 3. Ground state and first excited state pseudoscalar meson
energies from three-state fits to tmQCD at 
 � 0:030, as com-
pared to the continuum and lattice dispersion relations.
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chosen to match the lattice data at ~p � ~0. Table II contains
the numerical values of the pion and 2 meson masses at
those two values of 
 for which the pion form factor is
calculated.

To extract the pion form factor, we performed a simul-
taneous fit over the pseudoscalar two-point correlator with
momentum ~pi, the pseudoscalar two-point correlator with
momentum ~pf, and the pseudoscalar ( ~pi)-vector-
pseudoscalar ( ~pf) three-point correlator. The fourth com-
ponent of the conserved vector current was used. To verify
the stability of the ground state, we have performed both a
single state fit over the large time ranges of the two-point
and three-point correlators where the ground state pion
dominates using Eqs. (11) and (12) and a three-state fit
over the entire time range (except the source time step)
where the ground state pion as well as first and second
0 1 2 3 4 5
p

2 
 in units of (π/8)

2

0

0.5

1

1.5

2
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1
st
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FIG. 4. Ground state and first excited state pseudoscalar meson
energies from three-state fits to tmQCD at 
 � 0:015, as com-
pared to the continuum and lattice dispersion relations.
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excited states are included. This latter method involves
32 � 9 form factors, F$#, from Eq. (13). For clarity, here
are the explicit forms of the correlators used for the three-
state fit:

Ginitial
�� �ti; t; ~pi� �

X3
n�1

ZinZi�n
En� ~pi�

e
�Nt=2�En� ~pi� cosh
��
t
 ti



Nt
2

�
En� ~pi�

�
; (21)

Gfinal
�� �ti; t; ~pf� �

X3
n�1

ZfnZ
f�
n

En� ~pf�
e
�Nt=2�En� ~pf� cosh

��
t
 ti



Nt
2

�
En� ~pf�

�
; (22)
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FIG. 6. Ground state and first excited state vector meson en-
ergies from three-state fits to tmQCD at 
 � 0:015, as compared
to the continuum and lattice dispersion relations.
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TABLE IV. Momentum components in units of 2�=L used to
extract the pion form factor at 
 � 0:015 from a single state fit.
O�a� improvement has been invoked by averaging over data with
n � 1 and n � 
1. Our notation is such that incoming momenta
are positive.

~pf [ 2�L ] ~q [ 2�L ] Q2 [GeV2] F�Q2�

(0,0,0) (0,0,0) 0 1:037� 0:046

(0,0,0) �0; 0;�1� 0:448� 0:063 0:669� 0:124

�0; 0; n� �0;�1;
n� 1:197� 0:011 0:401� 0:110

�0; 0; n� ��1;�1;
n� 1:713� 0:059 0:423� 0:127

�0; 0; n� �0; 0;
2n� 2:401� 0:005 0:200� 0:066

�0; 0; n� �0;�1;
2n� 2:916� 0:056 0:120� 0:083
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��
��ti; t; tf; ~pi; ~pf� �
X3
n�1

X3
m�1

Zfm
e
�tf
t�Em� ~pf�

2Em� ~pf�


 h�m� ~pf�jj
�0�j�n� ~pi�i



e
�t
ti�En� ~pi�

2En� ~pi�
Zi�n : (23)

As will be shown, the ground state is quite stable regardless
of whether the single state fit or three-state fit is used. The
intermediate case of fitting to a ground state plus one
excited state leads to similar results and will not be dis-
cussed further.

For the single state fit, the fitting parameters are the
energies E, the prefactors Z, and the form factor F�Q2�
from Eqs. (11) and (12). For the three-state fit, the fitting
parameters are the energies E and prefactors Z from
Eqs. (21)–(23), as well as the form factors F�Q2� and
F$# from Eqs. (1) and (13). A standard unconstrained 32

minimization fitting procedure was used. Results from a
single state fit to the large (Euclidean) time region were
found to be consistent with results from a three-state fit
beginning just one time step from the source.

It should be noted that unconstrained 32 minimization
can result in sizable systematic uncertainties for multi-
exponential fits. For precise studies of excited states, con-
strained curve fitting algorithms have been developed [18].
Our use of excited states in the present work is largely to
demonstrate that the ground state is stable, and we do find
this to be the case throughout our analysis.

Various choices for ~pi and ~pf correspond to comparable
momentum transfers, Q2, but the cleanest data come when
j ~pij and j ~pfj are minimal. It is therefore not desirable to

restrict oneself exclusively to ~pf � ~0. For 
 � 0:015 we

have computed with ~pf � �0; 0;�pmin� as well as ~pf � ~0.
For
 � 0:030we only computed with ~pf � �0; 0;�pmin�.
Each new value of ~pf required a new matrix inversion,
since the calculation was performed by combining the
propagator from xi to x with the sequential propagator
TABLE III. Momentum components in units of 2�=L used to
extract the pion form factor at 
 � 0:030 from a single state fit.
O�a� improvement has been invoked by averaging over data with
n � 1 and n � 
1. Our notation is such that incoming momenta
are positive.

~pf [ 2�L ] ~q [ 2�L ] Q2 [GeV2] F�Q2�

�0; 0; n� (0,0,0) 0 1:034� 0:100
�0; 0; n� �0; 0;
n� 0:484� 0:025 0:706� 0:056
�0; 0; n� �0;�1;
n� 1:198� 0:007 0:454� 0:052
�0; 0; n� ��1;�1;
n� 1:778� 0:045 0:370� 0:086
�0; 0; n� �0; 0;
2n� 2:402� 0 0:242� 0:034
�0; 0; n� �0;�1;
2n� 2:896� 0:1 0:229� 0:044
�0; 0; n� ��1;�1;
2n� 3:281� 0:323 0:327� 0:106
�0; 0; n� �0; 0;
3n� 5:242� 0:323 0:161� 0:065
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from xi to xf to x. (See Fig. 1.) All values of ~pi that
produce the same ~qwere averaged. Finally, the momentum
averaging procedure of Eq. (17) was employed to remove
O�a� errors.

In Tables III and IV we show the results for the pion
form factor obtained from one state fits at 
 � 0:030 and
0.015, respectively. These same data are displayed graphi-
cally in Figs. 7 and 8. The physical scale was set to a �
0:10 fm [19]. The data show agreement with the corre-
sponding vector meson dominance curves. Results from
three-state fitting are completely consistent with the one
state fits, as shown in Tables V and VI and Figs. 9 and 10.
Notice the advantage of using a conserved current: the
normalization of the form factor is F�0� � 1 without any
multiplicative renormalization factor ZV . It is to be noted
that with nonzero pion momentum at the sink, the order of
increasing Q2 does not necessarily mean increased pion
momentum at the source nor increased uncertainties. For
example, in Figs. 8 and 10 the point at Q2 � 2:4 GeV2

could be obtained with ~pi � �0; 0; 1� and ~pf � �0; 0; 1� and
0 1 2 3 4 5 6
Q

2
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2
]

0

0.5
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Q
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FIG. 7. The form factor at 
 � 0:030 obtained from single
state fitting as compared to vector meson dominance.
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FIG. 8. The form factor at 
 � 0:015 obtained from single
state fitting as compared to vector meson dominance.

TABLE VI. Momentum components in units of 2�=L used to
extract the pion form factor at 
 � 0:015 from a three-state fit.
O�a� improvement has been invoked by averaging over data with
n � 1 and n � 
1. Our notation is such that incoming momenta
are positive.

~pf [ 2�L ] ~q [ 2�L ] Q2 [GeV2] F�Q2�

(0,0,0) (0,0,0) 0 0:983� 0:026
(0,0,0) �0; 0;�1� 0:429� 0:055 0:563� 0:055
�0; 0; n� �0;�1;
n� 1:197� 0 0:332� 0:138
�0; 0;
1� ��1;�1;
n� 1:751� 0:171 0:44� 0:218
�0; 0;
1� �0; 0;
2n� 2:394� 0 0:212� 0:092
�0; 0;
1� �0;�1;
2n� 2:89� 0:141 0:115� 0:104
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FIG. 9. The form factor at 
 � 0:030 obtained from three-
state fitting as compared to vector meson dominance.
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has relatively smaller error bars than the point at Q2 �
1:8 GeV2 which was obtained with ~pi � �1; 1; 0� and ~pf �
�0; 0; 1�. Our notation is such that incoming momenta are
positive.

In Fig. 11, we compare our results at
 � 0:015 to other
quenched calculations of the pion form factor at similar
(but not identical) quark masses. Two vector meson domi-
nance (VMD) curves are also shown—one with the physi-
cal 2meson mass and the other with the vector meson mass
taken from our tmQCD simulation at 
 � 0:015. The
available experimental data are known to follow VMD
with the physical 2 meson mass. As evident from
Fig. 11, the Wilson results have a large systematic lattice
discretization error while the tmQCD results are consistent
with other improved action results and with VMD. Since
the quark mass in the Wilson simulation of Fig. 11 is
somewhat larger than the quark masses in the other simu-
lations, one would expect the Wilson form factor to be
slightly larger than the others. The plot clearly shows the
opposite effect, suggesting that the O�a� contributions are
TABLE V. Momentum components in units of 2�=L used to
extract the pion form factor at 
 � 0:030 from a three-state fit.
O�a� improvement has been invoked by averaging over data with
n � 1 and n � 
1. Our notation is such that incoming momenta
are positive.

~pf [ 2�L ] ~q [ 2�L ] Q2 [GeV2] F�Q2�

�0; 0; n� (0,0,0) 0 1:0� 0:091
�0; 0; n� �0; 0;
n� 0:436� 0:038 0:787� 0:059
�0; 0; n� �0;�1;
n� 1:197� 0 0:473� 0:077
�0; 0; n� ��1;�1;
n� 1:756� 0:063 0:401� 0:085
�0; 0; n� �0; 0;
2n� 2:394� 0 0:283� 0:041
�0; 0; n� �0;�1;
2n� 2:94� 0:042 0:258� 0:055
�0; 0; n� ��1;�1;
2n� 3:294� 0:235 0:37� 0:124
�0; 0; n� �0; 0;
3n� 5:0� 0:257 0:188� 0:134

014503
large. As discussed in Ref. [9] the apparent smallness of the
Wilson form factor is correlated with the smallness of the
Wilson vector meson mass [20]. For example, the Wilson
form factor would be consistent with VMD if the physical
scale (i.e., the lattice spacing needed to compute values of
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FIG. 10. The form factor at 
 � 0:015 obtained from three-
state fitting as compared to vector meson dominance.
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FIG. 11. Comparing the quenched tmQCD pion form factor
with other quenched lattice calculations (Wilson from Ref. [9],
clover from Ref. [10], domain wall from Ref. [11]) and with
vector meson dominance.
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FIG. 12. The pion form factor from tmQCD at 
 � 0:015 with
and without momentum averaging.
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Q2 for the horizontal axis in Fig. 11) were obtained from
the vector meson mass itself. The tmQCD action does not
have large lattice spacing errors for the vector meson mass
[16], and we find correspondingly small lattice spacing
errors for the pion form factor.

As discussed above, the tmQCD results are improved
through momentum averaging at maximal twist (� � �c).
Unimproved tmQCD results would be obtained simply by
omitting the momentum averaging step. Figure 12 shows
the tmQCD pion form factor results at
 � 0:015 obtained
from a one state fit with and without the averaging proce-
dure. Interestingly, the data are quite consistent within the
statistical uncertainties of our simulation. Perhaps this is a
014503
consequence of vector meson dominance. Since at maxi-
mal twist, m2 (like all masses) is improved without aver-
aging, and since the 2 meson dominates the pion form
factor, perhaps one should expect this form factor to have
comparatively small O�a� errors even before momentum
averaging.
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