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Penguin diagrams for improved staggered fermions
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We calculate, at the one-loop level, penguin diagrams for improved staggered fermion operators
constructed using various fat links. The main result is that diagonal mixing coefficients with penguin
operators are identical between the unimproved operators and the improved operators using such fat links
as Fat7, Fat7 + Lepage, Fat7, HYP (I) and HYP (II). In addition, it turns out that the off-diagonal mixing
vanishes for those constructed using fat links of Fat7, Fat7 and HYP (II). This is a consequence of the fact
that the improvement by various fat links changes only the mixing with higher dimension operators and
off-diagonal operators. The results of this paper, combined with those for current-current diagrams,
provide complete matching at the one-loop level with all corrections of @(g?) included.
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I. INTRODUCTION

Decoupling of heavy particles in the standard model
leads to the low-energy effective Hamiltonian through
OPE (operator product expansion) which achieves a facto-
rization of short- and long-distance contributions. The
effective Hamiltonian of our interest consists of AS =1
four-fermion operators which contain information at low-
energy and the corresponding Wilson coefficients includ-
ing the short-distance physics at high energy. The low-
energy effects of the electroweak and strong interactions
can be expressed as matrix elements of the four-fermion
operators between hadron states. Since the matrix elements
involve nonperturbative QCD physics at low-energy, lat-
tice QCD is well suited for their calculation. The main
advantage of using lattice QCD is that it provide a first
principle, nonperturbative estimate. Different fermion dis-
cretizations such as Wilson, staggered, domain-wall and
overlap have been used to study the matrix elements and to
control their statistical and systematic errors.

In this work, we adopt staggered fermions to explore the
renormalization property of the operators relevant to cal-
culating the weak matrix elements. Staggered fermions are
an attractive choice for the calculation of weak matrix
elements. They are computationally efficient and so simu-
lations with three dynamical flavors are already possible
with relatively light quark masses using the AsqTad stag-
gered fermions [1]. They preserve enough chiral symmetry
to protect operators of physical interest from mixing with
others of wrong chirality. By construction they retain four
tastes of doublers for each lattice field, which in itself is not
a problem. Their main drawback is that the tastes symme-
try is broken at nonzero lattice spacing and is restored in
the continuum limit. At nonzero lattice spacing, quark-
gluon interactions violate the taste symmetry. This has
two consequences: first, there are large O(a?) discretiza-
tion errors in hadron spectrum and weak matrix elements
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and second, some one-loop corrections are so large that
matching factors differ significantly from their tree-level
value of unity.

Both problems are manifestly alleviated by improving
staggered fermions using “‘fat’’ links [2,3]. Taste symmetry
violations in the pion multiplet are substantially reduced
[4,5] and one-loop corrections to the matching factors for
four-fermion operators are reduced from as large as 100%
down to ~10% [6]. Based upon the analysis of Refs. [7,8],
we figured out that the perturbative corrections is smallest
for a particular type of fattening, “HYP” and ‘Fat7”
smeared links. Hence, we choose the “HYP/Fat7” im-
provement scheme for our numerical study on the weak
matrix elements [9].

Recently, there have been elaborate efforts to do the
higher loop calculation for highly improved staggered
fermions using the Luscher and Weisz method [10]. They
automated the generation of the Feynman rules for essen-
tially arbitrary complicated lattice actions such as the
AsqTad type [11] and some even developed an algorithm
which generates Feynman diagrams automatically [12].

An essential step for using lattice QCD is to obtain the
relationship between the continuum and lattice four-
fermion operators. There are two classes of Feynman dia-
grams at the one-loop level: (1) current-current diagrams
and (2) penguin diagrams [13,14]. At the one-loop level,
the contribution from the current-current diagrams and the
penguin diagrams can be treated separately. In the case of
the current-current diagrams, the matching coefficients for
the operators constructed using improved staggered fermi-
ons (HYP/Fat7) were presented in [6].

Here, we focus on penguin diagrams in which one of the
quarks in the four-fermion operator is contracted with one
of the antiquarks to form a closed loop. The main goal of
this paper is to calculate the penguin diagrams for im-
proved staggered fermion operators constructed using vari-
ous fat links and to present the matching formula between
the continuum and lattice operators at the one-loop level.
The results are compared with those for the unimproved
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staggered fermions given in [14]. The role of improvement
is reviewed from the standpoint of operator mixing. The
main results of this paper, combined with those of current-
current diagrams given in Ref. [6], provide a complete set
of matching formula for €'/ € at the one-loop level with all
the g2 corrections included.

This paper is organized as follows. In Sec. II, we de-
scribe our notation for the improved staggered fermion
operators and various fat links. We also explain the
Feynman rules. In Sec. III, we explicitly calculate penguin
diagrams step by step and the main results are summarized
in a theorem. We close with some conclusions in Sec. IV.

A preliminary result of this paper appeared in [15].

II. NOTATION AND FEYNMAN RULES

Basically, the improved staggered fermion action has the
same form as for the unimproved staggered fermions [16],
except in that the original thin links U, are replaced by fat
links V,,.

$ = a3 S W)V + )
" w

— ¥+ QI x(n) + mx<n>x<n>} (1)

where n = (n, ny, n3, ny) is the lattice coordinate and
N, (n) = (=1)m* -1 Here, the fat link V,, represents
collectively Fat7 [17], Fat7 + Lepage [18], HYP links [5]
and SU(3) projected Fat7 (Fat7) links [8]. The detailed
definitions of various fat links are given in the original
references and so we do not repeat them here. In addition,
MILC and HPQCD Collaboration developed and have
used the AsqTad staggered action [2—4,17], whose gauge
action is a one-loop Symanzik improved action and whose
fermion action contains a Naik term in order to remove the
O(a?) discretization errors. Out of various choices, HYP
and Fat7 suppress, in particular, the taste-changing gluon
interactions efficiently and reduce the taste symmetry
breaking in the pion spectrum significantly [5], compared
with others. In addition, it turns out that the one-loop
corrections are smallest for HYP and Fat7 compared with
others [7] and that they possess several nice properties in
renormalization which are explained in [8]. If the goal of
the improvement were to minimize the O(a?) discretiza-
tion error and to achieve a better scaling behavior through
the Symanzik improvement program, it would be natural to
choose the action of the AsqTad type and improve the
operators correspondingly. However, our improvement
goal is to minimize the perturbative correction as much
as possible (if possible, down to less than 10% at the one-
loop level), which, in fact, turned out to be the same as to
minimize the taste symmetry breaking effect [19]. Hence,
we have chosen HYP/Fat7 improvement scheme for our
numerical study on €'/e mainly because it serves better to
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our purpose of improvement. In this paper, we adopt the
same notation for fat links as in [6-8].

In order to construct the four spin component Dirac field,
we adopt the coordinate space method suggested in [20]. In
this method, we interpret 16 staggered fermion fields (y) of
each hypercube as four Dirac spin and four flavor ( =
taste) components. The continuum limit of the staggered
fermion action on the lattice corresponds to QCD with four
degenerate flavors (N; = 4) [16]. There are numerous
choices to transcribe the lattice operator for a given con-
tinuum operator [21-23]. We adopt the same convention
and notation as in [24] except for the gauge links. We
denote the gauge-invariant bilinear operators as

[5 % F] = Nifz[m/o(iys & 2050008V (0, v5),
AB

2

where S and F represent spin and flavor ( = taste), respec-
tively, and correspond to one of the following; S (scalar),
V., (vector), T, (tensor), A, (axial), and P (pseudoscalar).
Here, V(y4, yp) is a product of gauge links that makes the
bilinear operator gauge invariant. The link matrices
V(y4 yg) are constructed by averaging over all of the
shortest paths between y, and yp, such that the operator
[vs X &F]is as symmetric as possible:

1
V (4 y8) = EZV(}’A, ya+ Ap) o Viya + Apy
e

+ Apy + Aps, yp), (3
where P is an element of the permutation group (1234) and
A,=(B,—A)h. “)

For the four-fermion operators, we use the same notation as
the bilinears but need to distinguish between color one
trace and color two trace operators.

[S X FIS X Fl = S [20)(7s ® Enax(v)]
f AB,CD

X ys ® Ep)epx(yp)]
“Vayp) Ve yp) &)

[S X FIS' X F'ly = % D> [x0a)(vs ® ERasx(vs)]
fABCD

xGc)ys ® Ep)epx(yp)]
“V(ya y8) V(e yp)- (6)

Here, note that the subindices /, 1] represent the color one
trace and color two trace operators, respectively. There are
two completely independent methods to construct opera-
tors on the lattice using a Fierz transformation: one spin
trace formalism and two spin trace formalism [21]. In this
paper, we choose two spin trace formalism to construct the
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lattice operators and it is also adopted for our numerical
study on €'/e.

The Feynman rules for the unimproved staggered fermi-
ons are standard and presented in [14,21,24—28]. Here, we
use the same notation for Feynman rules as in [21,24] and
we do not repeat them. By introducing fat links, we need to
change the Feynman rules. These changes in the Feynman
rules originating from fat links are given in [6,7]. Here we
adopt the same notation and Feynman rules as in [6,7]. We
explain only the essential ingredients for a one-loop
calculation.

We define the gauge fields of the thin link and fat links as

, 1

U,(x) = exp|:zaAM<x +3 “ﬂ )
, I

V,(x) = exp[zaBM(x + 5,&)} (8)

Here, note that V,, corresponds to various fat links. We call
B, a “fat gauge field” and A, a “thin gauge field.” This
fat gauge field can be expressed in terms of thin gauge
fields as follows:

— 1 2
B, = B\ =B + Bl + 04,
n=1

Here, Bﬁf) represents a term of order A”. Theorems 1 and 2
of [8] say that the linear term is invariant under SU(3)
projection and that since the quadratic term is antisymmet-
ric in thin gauge fields, its contribution vanishes at the one-
loop level [29]. Hence, at one-loop level, the renormaliza-
tion of the gauge-invariant staggered composite operators
constructed using fat links of HYP type can be done by
simply replacing the propagator of A, by that of Bi}). This
simplicity is extensively used to calculate the one-loop
correction to the improved staggered operators [6,7].

The linear term B! can be expressed in momentum
space as

B () = 3 1, (A, (k).

The details of the blocking transformation for the fat links
are contained in A w(k)’ which is given in [6,7] for various
fat links.

h,ul/(k) = S'U,VD,LL(k) + (1 - S'MV)G/_LV(k)?
D,(k)=1-d, Z 52 +d, Z 5252 — d3525252 — d, Z 5

1z V,Vp<¢pﬂ, vEQ
GMV(k) = _/LEVGV,/L(k)) (9)
~ 2 + 2 232
Goull)=d, — dy (5, . S0) 4 dy Sp;" +dy2. (10)

Here, the coefficients d; distinguish the different choices of
fat links
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(1) Unimproved (naive):

dl = 0, d2 = 0, d3 = 0, d4 = 0. (11)
(2) Fat7 links:
di=1 dy=1 dy=1 4d,=0. (12

(3) HYP (I) links:
dy = (2/3)a;(1 + ay(1 + a3)),
dy, = (4/3)ajay(1 + 2a3),
d4 = O

d3 = 8a1a2a3,
(13)

We consider two choices for the «;. The first was
determined in [5] using a nonperturbative optimiza-
tion procedure: a; = 0.75, a, = 0.6 a3 = 0.3 [we
call this choice “HYP (I)”’]. This gives
d; = 0.89, d, = 0.96,
(14)
d3 = 108, d4 = 0

(4) HYP (II) links: The second is chosen so as to
remove O(a”) flavor-symmetry breaking couplings
at tree-level. This choice, a; = 7/8, a, = 4/7, and
a3 = 1/4 [we call this choice “HYP (I)”’], gives

d1=1, d2=1, d3=1, d4=0, (15)
i.e., the same as for Fat7 links.
(5) Fat7+Lepage [O(a?) improved links]:
di=0, dy=1, dy=1, ds=1, (16)

. For later convenience, we name the SU(3) projected Fat7
scheme “Fat7”.

In [8], we studied various fat links from the standpoint of
renormalization to improve staggered fermions and it turns
out that at the one-loop level, the renormalization of stag-
gered fermion operators is identical between Fat7 and HYP
(II). In addition, it was explained that SU(3) projection
plays a role in tadpole improvement for the staggered
fermion doublers.

II1. PENGUIN DIAGRAMS

Here, we study penguin diagrams in which one of the
quarks in the four-fermion operator is contracted with one
of the antiquarks to form a closed loop. The main goal is to
calculate the penguin diagrams for improved staggered
fermion operators and to provide a matching formula
between the continuum and lattice operators at the one-
loop level.

On the lattice, the gauge noninvariant four-fermion op-
erators such as Landau gauge operators mix with lower
dimension operators which are gauge noninvariant [14]. It
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is required to subtract these contributions nonperturba-
tively. However, it is significantly harder to extract the
divergent mixing coefficients in a completely nonperturba-
tive way. This make it impractical to use gauge noninvar-
iant operators for the numerical study of the CP violation.
Hence, it is necessary to use gauge-invariant operators in
order to avoid unwanted mixing with lower dimension
operators. For this reason, we choose gauge-invariant op-
erators in our numerical study.

In the staggered fermion formalism there are four pen-
guin diagrams at the one-loop level as shown in Fig. 1.
These diagrams of penguin type can mix with lower di-
mension operators in addition to four-fermion operators of
the same dimension or higher. The mixing coefficients with
lower dimension operators are proportional to inverse
powers of the lattice spacing. The perturbation, however,
is not reliable with divergent coefficients. Hence, we must
use a nonperturbative method to determine them and sub-
tract away the lower dimension operators. In the case of
mixing with operators of the same dimension, the pertur-
bative calculation is expected to be reliable as long as the
size of the one-loop correction is small enough, which can
be achieved naturally by improving the staggered operators
using fat links.

(a)

T Tlc T Tlc

SIXIF]

SIOF,

S|IF] S QIF]
(0) (d)

FIG. 1. Penguin diagrams for the staggered fermions.
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In Fig. 1, diagrams (a) and (b) have their correspondence
in the continuum and diagrams (c) and (d) do not have any
continuum correspondence. However, diagrams (c) and (d)
play an essential role in keeping the gauge invariance in the
final sum. In other words, the gauge invariance is broken
without them.

First, we overview the role of each diagram in the gauge
invariance and present the details later. Basically, the con-
tribution from diagrams (c) and (d) can be reexpressed as a
sum of two separate terms: diagram (e) and (f) in Fig. 2.
We observe that the sum of diagram (a) of Fig. 1 and
diagram (e) of Fig. 2 produces bilinear operators in a
gauge-invariant form as shown in Fig. 3. It turns out that
the contribution from diagram (b) in Fig. 1 and diagram (f)
in Fig. 2 leads to four-fermion operators of our interest in a
gauge-invariant form, which are typically called “Penguin
diagrams” in the literature as shown in Fig. 4. Once more,
we emphasize that diagrams (c) and (d) [or equivalently (e)
and (f)] are essential to keep the gauge invariance.

A. Penguin operators on the lattice

In order to construct a lattice version of continuum
penguin operators, we need some guidelines, because the
staggered fermions carry four degenerate tastes by con-
struction, unlike the continuum fermions. Hence, a closed
loop of staggered quarks contains four degenerate tastes
running around it, rather than a single quark, which needs
to be normalized properly by 1/N; = 1/4. Penguin dia-

() +(d)

T Tc

(e) ®)

FIG. 2. Diagram identity: (c¢) + (d) = (e) + (f).
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grams occur for operators which belongs to octet irrep of
the continuum flavor SU(3) symmetry. Apart from the
overall factor, the calculation is identical for all the pen-
guin operators of our interest [14,31]. Therefore, we may
choose the following operator as a representative without
loss of generality:

(Qg/();t «— (OlLat (17)

S'F'.SF’

where the operators are defined as

@g(‘)gt = [st')’S’dfd][l/_/u')’Sl//u]x
1 S .
(915/2%,“ = W[i’s(?’s' ® Ep)XallXu(ys ® EF)xul
f

Here, we adopt the two spin trace formalism [21], color
contractions with gauge links are dropped for brevity, and
the subscripts s, d, u represent the continuum quark flavors.
Here we select the continuum flavors so that there is only
one possibility of up quark contraction to form a closed
loop, leading to a penguin diagram. The bilinear with
strange and down quarks behaves as a spectator in the
calculation. This choice of continuum flavor assignment
was suggested originally in [14].

Penguin diagrams of the above operators lead to mixing
with the same class of SU(3) octet operators (penguin
operators):

@S/‘,’E"P = Mﬂs'lﬂd]zwqyslﬁq], (18)
q

1 - @
@I;l;*t/l;[: = N_IZ»[X/S(YS/ ® fF/)Xd]Z[X/q(YS ® gF)/\/q]’
q

19)

where the sums run over the active light flavors such as
u,d,s.

We adopt the same notation as in [14,24] to incorporate
two different color contractions:

> (0]
0= ( ! ) (20)
Oy
The contribution from the color two trace operator, Oy;
vanishes in the penguin diagram because it is proportional
to Tr(7T%) = 0 [T“ is the SU(3) group generator which is
traceless]. Hence, it is sufficient to work only on the color

one trace operator, O;. This simplifies the matching for-
mula.

2
Cont) _— Latt 8
(©OF™), = (O, +

= 2L
> Z;(P - o™, (@D
J

where i, j includes both the spin and taste indices, and the

projection vector is
S 1 1
P=(+=,—-) 22
(+3-¢) (22)
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The Z;; have two separate contributions: one from the
continuum operators and the other from the lattice opera-
tors

Z;; = 75 — 74 (23)

Lat

The main goal of this paper is to calculate Z;™,

is well known [32].

since Zl.cjOm

B. Feynman diagrams

Using the Feynman rules described in Sec. II, we express
the analytical form of the Feynman diagrams presented in
Fig. 1. Diagram (a) of Fig. 1 contains only mixing with
bilinears and combined with diagram (e) of Fig. 2 makes
the bilinears gauge invariant as shown in Fig. 3.

1
G = = 5 HA. 4

a VPN 1 VPN a
H = 8.4(ys ® Ep)on EZ(?’S ® Ep)ap - Iy (25)
4B

19 = / exp(ip - (A — B)S(P)lps  (26)

(a) + (e)

T TCc

(@)

FIG. 3.  Bilinear mixing.
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(b) + (1)

Tl TTc D TTc

@ (hy

FIG. 4. Mixing with penguin operators.

Diagram (b) of Fig. 1, combined with diagram (f), leads
to mixing with four-fermion operators as shown in Fig. 4.
Using the Feynman rules described in Sec. II we can
express the diagram (b) as follows:

1
Gor =~y [, 60 D0

' Vi(p + T, —4q T Tp, _k)’ (27)

. J— 1 —
HP(k) = (—ig)T! (ys ® Ep)en 1—62(?’s ® £r)ap
4B

X exp[ig (A + B)} 1D k), (28)

150 = [ exatip-a = nf[si(p 3)]
cos(p) (7, ® 1) [SF<p + gﬂ}m (29)

Diagrams (c) and (d) of Fig. 1 contain mixing with bi-
linears and four-fermion operators as shown in Fig. 2.
These two diagrams play an essential role in keeping the
gauge invariance of the final results.

1

Gy = = N—foz“’(kx (30)
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C / 1 (v ® &p)
HI) = g2y 3 (75 © Erlua

1 — -
X—3 (=D (yg ® Ep) g (—1)PB
16 &
X (B — A, fr (01, (31)
1
G = — N—Hf;(d)(k), (32)
f

. 1 (vo® £)
H () = (+ig)Tly 15> (s ® Eras
AB

1 —
X 6 (=D (ys ® Epap
A'B
X (~DPF (B = A),fhy 0L  (33)

C. Gauge invariance

As shown in Fig. 2, diagrams (c) and (d) of Fig. 1 can be
expressed as a sum of diagrams (e) and (f). As a conse-
quence of this, diagrams (b) and (f) lead to a gauge-
invariant form of penguin operator and diagrams (a) and
(e) lead to a gauge-invariant bilinear operator.

First, let us derive the relationship shown in Fig. 2. We
begin with a simple identity for diagram (b):

. (k . T
22 s1n<7”> . Hf;(b)(k) = (lg)TLI.d()’s’ ®&p)op
"

e
'Eg(% ®Ep)an

-[exp(ik-A) —exp(ik- B)]- Iffl;.
(34)

The continuum correspondence of the above Eq. (34) van-
ishes but the right-hand side (rhs) of Eq. (34) is not zero.
Then, what is going on with the gauge invariance? It turns
out that there exists an additional term which cancels out
this term, which is the focal point of this section.

The same kind of identities for diagrams (c) and (d) can
be expressed in terms of diagrams (e) and (f).

3> sin<k7”> (W + 1)
DX sin(%) (How+ W) 6s)

Here, the Hf;(e)(k) and H;;(f )(k) are defined as
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1 -
1,(e) _ - 1 _1\C-A
H,, (k) = (+lg)Tcd _16;, B/( 1) (7’5/ ® fF/)A/B/

(=P (B = A) 5 (K)

L STe .
‘1 2 (s ® Enlaslliy (36)
A,B
L (Y — (T (o £
H, (k) (+lg)TCd(75’®§F’)C’D’
1 T e ) a
o2 s ®ERa(B—A)L1(K) Iy (3T)
AB

A derivation of the identity given in Eq. (35) is given in
Appendix A.

Note that H ,[;(e)(k) can be factorized into two bilinears:
one bilinear has a single gluon emitted and the other bi-
linear forms a closed fermion loop identical to that of
diagram (a). Unlike the continuum operators, the staggered
operators are nonlocal and gauge links must be inserted
between the quark and antiquark fields to make them gauge

invariant. Thus, at O(g), we must have H ﬁ(e)(k) to keep the
gauge invariance of the spectator bilinear. Of course, this is
completely a lattice artifact, which will vanish in the limit
of zero lattice spacing, a = 0. Let us explain this bilinear
mixing in detail in the next subsection.

D. Bilinear mixing

Here, we combine diagrams (a) and (e) and show that
they form a gauge-invariant bilinear.

HO + HEOW) = 1 S (DN D5 ® £l (— 1P
AT B
[8ea + (iga)T!(B' — A") 5 (K)]
-%§M®&m%- (38)
Here, the term enclosed in square brackets is nothing but an
expansion of gauge link V(y,, y;) in powers of the gauge

coupling g. Note that the closed loop part behaves as a
constant defined as

1 VPN a
Xave) = %Z(YS ® £)nlss. (39
v

Hence, the combined result of diagrams (a) and (e) be-
comes

a e X ate — N
HE“ + H (k) — %[X(yA)(VS/ ® £5)ap
X V(ya ye) x(vp)l

Naturally, the next question would be what are the
possible spins and flavors for (yg ® £r) in the closed
loop. Since we are talking about the vacuum diagram, it

(40)
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must have the vacuum quantum number. Hence, the natural
choice would be that (yg® &7) = (1 ® 1).

Another question would be how reliable is the coeffi-
cient X(,4,). Since we are talking about the divergent
coefficient, hence, the perturbative determination of
X(a+e) 1 highly unreliable because the contribution from
the truncated terms are also divergent as we approach to
zero lattice spacing. Hence, this coefficient must be deter-
mined using a nonperturbative method.

E. Penguin operator mixing
Here, we want to present the main results of Penguin
diagrams: mixing with penguin operators at the one-loop
level. First, we address the issue of the gauge invariance.
Basically, we want to show how the rhs of Eq. (34) cancels
out. From the definition of Hf,‘,(f)(k) given in Eq. (37) it is
easy to show the following Ward identity:

>2 sin<%“> C(HLP (k) + HED (k) = 0. (41)
)

This illustrates that, unlike the continuum, we need dia-
gram (f) to keep the gauge invariance of diagram (b),
which is a pure lattice artifact originating from using
staggered fermions when constructing operators on the
lattice.

Now, we turn to explicit calculation of the mixing with
penguin operators. First, we define Iﬁﬁ; in terms of Ig“g, in
Eq. (26) as follows:

1= - a1
=jwwpm—mymmm

P
cos(p )y, ® DISE(p) ]} pa- (42)

Using Iif;, we can collect diagrams (b) and (f) into such a
form that all of the nice features necessary for the gauge
invariance and the infrared behavior are visible at a glance.

H ") = B (0 + HY (k)

. —_— 1
= (—ig)T! (ys ® é:F’)C’D’E%

“(Ys ® éF)as exp[i§~ (A + B)}

(150 = 131

This result is identical to that originally presented in [14].
Regarding the infrared behavior, note that

(43)

iimolgbg(k) =19,

Hence, this confirms that H,I;(l”f )(k) vanishes when k = 0.
In addition, the quark mass behaves as an infrared regulator

such that the integrals of IXj;(k) and IX}); are infrared safe.
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As shown in Eq. (41), H{;(b”)(k) also satisfies the Ward
identity coming from gauge invariance:

S sin(£) - 0 = 0 (44)
N

for all values of k.

Now we turn to explicit calculation of H f;(}ﬁf )(k) in such
a form as we can use for matching to the continuum. The
mixing contributions comes not only from k£ ~ O but also,
in principle, from k ~ 77/a - A for any arbitrary hypercubic
vector A. Here, we first consider k ~ 0 as in the continuum.

HLO D (k) = (—ig)T! (ys ® Emen

' % ZWAB[P,U, (k)14 (45)
AB

[Pﬂ(k)]BA = _ﬁ Z Ep,avpka(a-lfp ® gVS)BA : Ia

a,v,p

im —_—
+ W;ka(aﬂa ® l)BA ‘ Ib

2
l —_—
+ —(477)2 Z(S,uakz — k#ka)(ya ® l)ga- 1.,
(46)

where the lattice-regularized finite integrals /1, I, and I,
are given in Appendix B. Note that this result for the
improved staggered fermions is identical to that for the
unimproved staggered fermions presented in [14]. This
equivalence will be discussed in detail later when we
present Theorem 1.

The first term in Eq. (46) describes mixing of the four-
fermion operator with a bilinear with gluon emission:

[/?S(’YS/ ® é:F’)Xd][)_(u(a-Vp ® §I/5)XL1:|
- [X/S(YS’ ® gF/)ﬁVde]‘ 47)

This corresponds to mixing with a dimension 5 operator.
From the standpoint of physics, this mixing belongs to a
class of unphysical operators because none of the operators
of our interest possesses a flavor structure of £,5.
Similarly, the second term in Eq. (46) corresponds to
mixing of the four-fermion operators with a bilinear:

[/\_/s(’yS’ ® gF’)Xd][/?u(O-p,a ® 1)/\/14]
- m[)_(s()’s’ ® gF’)FMa/\/d]' (48)

This represents mixing with a dimension 6 bilinear which
has its correspondence in the continuum. However, this
operator vanishes in the chiral limit and so it corresponds to
a higher order in the chiral perturbation. In addition, the
spin structure of the tensor does not appear in the original
set of operators of our interest and so this mixing can occur,
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if any, at order g*. Hence, by convention, this term is
dropped from the analysis [14,31].

It is the third term in Eq. (46) that corresponds to mixing
with penguin operators. To complete the operator construc-
tion, the gluon needs to be connected to the external
fermion line as follows.

1 -
Goen = =y, [, HA"" 70 - D0
' Vi(p + mc, —q — Tp, _k)7 (49)

where V] corresponds to the fermion vertex emitting one
gluon in [21]. Here, D%/, (k) represents the gluon propaga-
tor of the thin or fat links which can be collectively written
in terms of IQM = 2sin(k, /2) as

Ou kak
DY (k) = 5,,;hua(k)hvﬁ(k)[lg—f —d=a [lgz]ﬂ

(50)

in a general covariant gauge, where 2= Zﬁl% It turns
out that only the diagonal part of 4, , (k) contributes mainly
because the off-diagonal term of £,,,(k) is proportional to
lgulga — kyk, and so the contribution from the off-

diagonal term of 4, (k) vanishes due to a simple identity:
(8Wk2 — ky ko) -k, = 0.
(6ka2 - k,u,ky)h/_wz(k) = (6,u,vk2 - kﬂkv)‘s,u,ahﬂ,u,(k)
(5D
In addition, since h,, (k) = 1 + O(a’k?), the same iden-
tity also guarantees that the gauge fixing term proportional
to (1 — A) also vanishes for the leading term in the limit of

k — 0, which insures gauge invariance. In summary, we
can claim that in the low momentum limit of k — 0,

1
(6Mozk2 - ku,ka) ' Di{v(k) = 51]5uv[h,uy,(k)]2p
. (5Mak2 — k,kg). (52)

Another important ingredient is that the k,k, part of
(8 4ak* — k,k,) cannot contribute in the on-shell limit.
Using the equations of motion for the staggered fermions,
we can prove that regardless of quark mass,

k
in[~-2) - VI(p, —q, —k) = 0. 53
%Sl“(z) 2P, —q, —k) (53)

Hence, in the limit of small momentum, the J,,k,k, term
vanishes by the equations of motion. In addition, in the low
momentum limit,

exp[i%“ A+ B)} — 1+ Oka) (54)

and we are interested only in the leading term, since the
contribution from the remaining higher dimension opera-
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tors is supposed to vanish as we approach to the continuum
(a =0).

Now we can simplify G+ f) defined in Eq. (49) at small
ks

1 g’
G(b+f) = <_ N_f> (477)? (ZTédTéb>Ic

1

' Z('}’S' ® gF’)C'D’(Y,u, ® l)CD
m

’ 65,,11,617,1[]/[#/1,(]()]2: (55)

where k = g — p is strictly on shell. From the above
Eq. (55), we can derive an interesting theorem:

Theorem 1 (Equivalence).—At the one-loop level, the
diagonal mixing coefficients of penguin diagrams are iden-
tical between (a) the unimproved (naive) staggered opera-
tors constructed using the thin links and (b) the improved
staggered operators constructed using the fat links such as
HYP (I), HYP (1), Fat7, Fat7+Lepage, and Fat7 [33].

Proof 1.1.—In the case of the unimproved staggered
operators, h,, (k) =1 by definition. The improvement
using the fat links such as HYP, Fat7, Lepage + Fat7,
Fat7, in general, leads to h,, (k) as defined in Eq. (11).
The role of the additional terms proportional to d; is to
suppress the high momentum gluon interactions at the
cutoff scale (77/a). Hence, by construction, these addi-
tional terms cannot change the dispersion in the low mo-
mentum region. In other words, in the limit of kK — 0,

h,,(k) =1+ O(k*a®). (56)

Hp

Here, the O(k*a?) term corresponds to higher dimension
operators, whose contribution vanishes in the limit of a =
0. Hence, this term is irrelevant to the penguin mixing of
our interest. It is only the leading term of Eq. (56) that
contributes to the mixing with penguin operators. The
[, (K term is, if any, the only possible source of
difference introduced by the improvement. However, the
contribution from [, (k)* is, by construction, identical
in the low momentum limit before and after the improve-
ment. Therefore, this leads us to the conclusion that the
mixing coefficients with penguin operators must be iden-
tical for the staggered operators constructed using both thin
links and fat links such as HYP, Fat7, Lepage + Fat7, and
Fat7. This completes the proof of the theorem.

As a consequence of Theorem 1, it is trivial to obtain the
diagonal mixing coefficients from Eq. (55).

1

-—1, 57)

Z%att — ¥
f

where i represents (v, ® 1). This is our final result.
F. High momentum gluons and off-diagonal mixing.

By construction, gluons carrying a momentum close to
k ~ 7r/a are physical in staggered fermions and lead to
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taste-changing interactions, which is a pure lattice artifact.
Let us consider a vertex where a gluon carries a momentum
k + 1. where Il = 7/a - C and a quark/antiquark has
momentum (p + I14)/(q + 1), respectively. Here we
assume that |k|, |pl, |¢| << 7/a. This vertex can be ex-
pressed as follows:

Bk +Te) - Vi(p + Iy, —g — Mg, k+ T1¢)

= (—ig)T’8(p —q + k), ® Ec)ap
_ [1 + (=)

o+ (O(ka)}hw(k Y. (58)

Here, obviously we need to choose C,, = 0. In other words,
the longitudinal mode is not allowed to carry high momen-
tum in the gluon vertex mainly because this is unphysical
and violates helicity conservation. In the case of unim-
proved (naive) staggered fermions, h,,(k + II¢) = 6,
regardless of II.. Hence, it is permissible to mix with
the taste £~ (we call this off-diagonal mixing below) and
the mixing coefficient is substantial [14]. In contrast, in the
case of the improved staggered fermions using the fat links
of our interest such as Fat7, Fat7 and HYP (II),

hy,(k+ 1) =0+ O(k*a?) (59)

when C,., = 1 in at least one transverse direction. The
vertex also vanishes when C, = 1. Hence, this off-
diagonal mixing is absent at the one-loop level. Since we
adopt either Fat7 or HYP (II) as our improvement scheme
in our numerical study, we rejoice in this absence of
unphysical off-diagonal mixing when we analyze the data.

In the case of the improvement using HYP (I) and
Fat7 + Lepage, h,,(k + II) does not vanish exactly but
it is significantly suppressed. Correspondingly, the off-
diagonal mixing is similarly suppressed.

G. Tadpole improvement

In [24], the procedure of tadpole improvement for the
staggered four—fermion operators is presented. The tad-
pole improvement factor is given, basically, in powers of
uo. In perturbation, the contribution from this is of order g2
so that only the tadpole improvement of the original op-
erator at the tree-level can contribute at the g order.
Hence, the one-loop result for penguin operators are of
order g> and the tadpole improvement can change the
result only at the order of g*. In other words, the tadpole
improvement corrections included when we calculate the
current-current diagrams are complete at g order and so
there is no additional correction from the tadpole improve-
ment to the penguin diagrams. This argument holds valid
not only for the diagonal mixing but also for the off-
diagonal mixing.
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IV. CONCLUSION

We have studied penguin diagrams for various improved
staggered fermions at the one-loop level. The diagonal
mixing occurs only when the original operator has the
spin and taste structure of (y u® 1) regardless of that of
the spectator bilinear. The main result summarized in
Theorem 1 is that the diagonal mixing coefficient is iden-
tical between the unimproved staggered operators and the
improved staggered operators constructed using fat links
such as Fat7, Fat7 + Lepage, Fat7, HYP (I) and HYP (II).
This is a direct consequence of the fact that the contribu-
tion from the improvement changes only the mixing with
higher dimension operators and off-diagonal operators,
which are unphysical. However, Theorem 1 has such a
limitation that it does not apply directly to the case of the
AsqTad staggered formulation, in which case there is an
ambiguity of choosing the fat links for the operators. In
addition, the mixing with off-diagonal operators vanishes
for Fat7, Fat7 and HYP (II). In the case of Fat7 + Lepage
and HYP (I), the off-diagonal mixing is significantly sup-
pressed by the factor of [h,,, J*.

The results of this paper, combined with those of the
current-current diagrams in [6], provide a complete set of
matching for € /e with all corrections of O(g?) included.
In our numerical study of the CP violation, we adopt Fat7
and HYP (II). It turns out that this choice has one additional
advantage of the absence of off-diagonal mixing in pen-
guin diagrams as well as those advantages presented in [6—
8].
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APPENDIX A: DERIVATION OF EQ. (35)

First, we define the common factor Y as

. 1 T A & N /. R!
Y= (lg)T‘{dl_6 Z(_l)c Aysy ® Ep) g (—1)PB
A

1 VPN a
X E%(?’s ® fF)ABI/(u;- (A1)

Using this notation, we can simplify the identities as
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follows.

. (ku 1,(¢) ik-B ik-Al
22 sm<7> “H (k) =Y - [e*F — k4] (A2)
N

. kﬂ 1,(d) ik-B’' ik-A
ZZ sm(;) “H; (k) =Y -[e — ek, (A3)
“

. kﬂ 1,(e) ik-B' ik-A’
22 s1n<7> “Hp, (k) =Y [e*F —e* ] (A4)
M

k . .
>2 sin<7”> CHED (k) = ¥ - [eFB — eikA] (AS)
y72
Using these identities, it is easy to derive Eq. (35).

APPENDIX B: FINITE INTEGRALS

We use the following abbreviation to represent the in-
tegration measure and its normalization factor.

7 dp
= (1 DT1 _/'L_
]p (1672) “/_77 .

Using this notation, we can express [, I, and I, as follows.

(B1)

I, = f F2(p)cos?(p,,)cos(p,)sin*(p,) = +11.2293(3),
)

(B2)
I, = f F2(p)cos*(p,)cos*(pe)
P
= 16[— In(4m*a®) — yg + Foopo] — 40.7773(6)
+ O(m?*a?), (B3)
_ (1., 7 — gin2 2
Ic_ ng (p)[ — Sin (p,u)_SIH (pa)
— sin*(p,,)sin*(p,)]
= 13—6( - 11’1(41’!’[2612) — YE + FOOOO) - 95147(1)
+ O(m?a?), (B4)
where u # a # v and F(p) is defined as
1
F(p) = (B5)

Ysin?(p,,) + (ma)*’
w

These integrals are also given in [14] and the results are
consistent with each other.

014502-10



PENGUIN DIAGRAMS FOR IMPROVED STAGGERED FERMIONS

(1]
(2]

(3]
[4]

(5]

(6]
[7]
(8]
(9]
[10]
(1]

[12]
[13]
[14]
[15]
[16]

[17]

C.T. H. Davies et al., Phys. Rev. Lett. 92, 022001 (2004).
J.F. Lagae and D.K. Sinclair, Phys. Rev. D 59, 014511
(1999).

P. Lepage, Phys. Rev. D 59, 074502 (1999).

K. Orginos and D. Toussaint, Phys. Rev. D 59, 014501
(1999).

A. Hasenfratz and F. Knechtli, Phys. Rev. D 64, 034504
(2001).

W. Lee and S. Sharpe, Phys. Rev. D 68, 054510 (2003).
W. Lee and S. Sharpe, Phys. Rev. D 66, 114501 (2002).
Weonjong Lee, Phys. Rev. D 66, 114504 (2002).

W. Lee et al., hep-1at/0409047.

M. Luscher and P. Weisz, Nucl. Phys. B266, 309 (1986).
Howard Trottier, Nucl. Phys. (Proc. Suppl.) B129, 142
(1986).

Quentin Mason, Ph.D. thesis, Cornell University, 2003.
A. Buras et al., Nucl. Phys. B400, 37 (1993).

S. Sharpe and A. Patel, Nucl. Phys. B417, 307 (1994).
K. Choi and W. Lee, Nucl. Phys. (Proc. Suppl.) B129, 438
(2004).

M.FE.L. Golterman and J. Smit, Nucl. Phys. B245, 61
(1984).

K. Orginos et al., Phys. Rev. D 60, 054503 (1999).

[18]
[19]

[20]
(21]
(22]
[23]
[24]
(25]
[26]
[27]
(28]
[29]
[30]

[31]
(32]

(33]

014502-11

PHYSICAL REVIEW D 71, 014502 (2005)

P. Lepage, Phys. Rev. D 59, 074502 (1999).

Maarten Golterman, Nucl. Phys. (Proc. Suppl.) B73, 906
(1999).

H. Kluberg-stern et al., Nucl. Phys. B220, 447 (1983).
W. Lee and M. Klomfass, Phys. Rev. D 51, 6426 (1995).
S. Sharpe et al., Nucl. Phys. B286, 253 (1987).

S. Sharpe, Report No. DOE/ER/40614-5.

Weonjong Lee, Phys. Rev. D 64, 054505 (2001).

A. Patel and S. Sharpe, Nucl. Phys. B395, 701 (1993).
N. Ishizuka and Y. Shizawa, Phys. Rev. D 49, 3519 (1994).
D. Daniel and S. N. Sheard, Nucl. Phys. B302, 471 (1988).
S.N. Sheard, Nucl. Phys. B314, 238 (1989).

We heard that this is known and used in [25,30].

C. Bernard and T. DeGrand, Nucl. Phys. (Proc. Suppl.)
B83, 845 (2000).

G. Buchalla et al., Rev. Mod. Phys. 68, 1125 (1996).

C. Bernard, T. Draper, and A. Soni, Phys. Rev. D 36, 3224
(1987).

Note that AsqTad is not included in the list. In this case, by
construction the operators are made of the fat links which
are not the same as those used in the action due to the Naik
term. In addition, the choice of the fat links is open and not
unique.



