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Quark propagator in Landau and Laplacian gauges with overlap fermions
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The properties of the momentum space quark propagator in Landau gauge and Gribov copy free
Laplacian gauge are studied for the overlap quark action in quenched lattice QCD. Numerical calculations
are done on two lattices with different lattice spacing a and the same physical volume. We have calculated
the nonperturbative wave-function renormalization function Z�q� and the nonperturbative mass function
M�p� for a variety of bare quark masses and perform a simple linear extrapolation to the chiral limit. We
focus on the comparison of the behavior of Z�q� and M�p� in the chiral limit in the two gauge fixing
schemes as well as the behavior on two lattices with different lattice spacing a. We find that the mass
functions M�p� are very similar for the two gauges while the wave-function renormalization function Z�q�
is more strongly infrared suppressed in the Laplacian gauge than in the Landau gauge on the finer lattice.
For Laplacian gauge, it seems that the finite a error is large on the coarse lattice which has a lattice spacing
a of about 0.124 fm.
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I. INTRODUCTION

Quantum Chromodynamics (QCD) is widely accepted
as the correct theory of the strong interaction and the quark
propagator is one of its fundamental quantities. By study-
ing the momentum-dependent quark mass function in the
infrared region we can gain valuable insight into the
mechanism of dynamical chiral symmetry breaking and
the associated dynamical generation of mass. At high
momenta, one can use the quark propagator to extract the
running quark mass [1].

Lattice QCD provides a way to study the quark propa-
gator nonperturbatively. There have been several lattice
studies of the momentum space quark propagator [2–11]
using different fermion actions. The usual gauge for these
studies has been Landau gauge, because it is a (lattice)
Lorentz covariant gauge that is easy to implement on the
lattice, and the results from the lattice Landau gauge can be
easily compared to studies that use different methods.
Finite volume effects and discretization errors have been
extensively explored in lattice Landau gauge [10,11].
Unfortunately, lattice Landau gauge suffers from the
well-known problem of Gribov copies. Although the am-
biguity originally noticed by Gribov [12] is not present on
the lattice, since in practice one never samples from the
same gauge orbit twice, the maximization procedure used
for gauge fixing does not uniquely fix the gauge. In general,
there are many local maxima for the algorithm to choose
from, each one corresponding to a Gribov copy, and no
local algorithm can choose the global maximum from
among them. While various remedies have been proposed
[13,14], they are either unsatisfactory or computationally
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very intensive. For a recent discussion of the Gribov prob-
lem in lattice gauge theory, see Ref. [15].

An alternative approach is to work with the so-called
Laplacian gauge [16]. This gauge is ‘‘Landau like’’ in the
sense that it has similar smoothness and Lorentz invariance
properties [17], but it involves a nonlocal gauge fixing
procedure that avoids lattice Gribov copies. The gluon
propagator has already been studied in Laplacian gauge
in Refs. [18,19] and the improved staggered quark propa-
gator in Laplacian gauge in Ref. [6]. It has been shown [20]
that Landau and Laplacian gauges become equivalent in
the perturbative (high-momentum) regime and this has
been confirmed by numerical studies [6,18,19].

In this paper we study the overlap quark propagator in
the Laplacian gauge and compare the results with the
Landau gauge to explore the effects of selecting a gauge
condition free of Gribov copies. Unlike Asqtad fermions,
the overlap formalism provides a fermion action which is
free of doublers and preserves an exact form of chiral
symmetry on the lattice. The latter feature makes overlap
fermions the action of choice for studying dynamical chiral
symmetry breaking near the chiral limit.

We also compare Laplacian gauge results on two lattices
with the same physical volume and different lattice spac-
ings a to explore the finite a error. In this work, the O�a2�
mean-field improved gauge action is used to generate the
quenched gauge configurations.

II. GAUGE-FIXING

We consider the quark propagator in Landau and
Laplacian gauges. Landau gauge fixing is performed by
-1  2005 The American Physical Society
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enforcing the Lorentz gauge condition,
P

�@�A��x� � 0
on a configuration by configuration basis. For the tadpole
improved plaquette plus rectangle (Lüscher-Weisz [21])
gauge action which we use in the current work, we use
the O�a2� improved gauge-fixing scheme, this is achieved
by maximizing the functional [22],

F �
4

3
F 1 �

1

12u0
F 2; (1)

where F 1 and F 2 are

F 1 �
1

2

X
x;�

TrfU��x� �Uy
��x�g
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1

2

X
x;�

TrfU��x�U��x��� �Uy
��x���Uy

��x�g

respectively, and u0 is the usual plaquette measure of the
mean link. In this case, a Fourier accelerated, steepest-
descents algorithm [23] is used to find a local maximum.
There are, in general, many local maxima and these are
called lattice Gribov copies. This ambiguity in principle
will remain a source of uncontrolled systematic error.

Laplacian gauge fixing is a nonlinear gauge fixing that
respects rotational invariance, has been seen to be smooth,
yet is free of Gribov ambiguity. It is also computationally
cheaper then Landau gauge fixing. There is, however, more
than one way of obtaining such a gauge fixing in SU(N)
lattice gauge theory. There are three implementations of
Laplacian gauge-fixing employed in the literature:
(1) @
2(I) gauge (QR decomposition), used by
Alexandrou et al. [18].
(2) @
2(II) gauge, where the Laplacian gauge transfor-
mation is projected onto SU(3) by maximizing its
trace [19].
(3) @
2(III) gauge (Polar decomposition), the original
prescription described in Ref. [16] and tested in
Ref. [17].
All three versions reduce to the same gauge in SU(2). For a
more detailed discussion, see Ref. [19]. For SU(3) stag-
gered quarks, the study in Ref. [6] indicate that @2(I) and
@2(II) gauge give very similar results, and @2(III) gauge is
very noisy. In this work we will only use the @2(II) gauge.

III. QUARK PROPAGATOR ON THE LATTICE

In a covariant gauge in the continuum, the renormalized
Euclidean space quark propagator has the form

S��2;p� �
1

i 6pA��2;p2� � B��2;p2�
�

Z��2;p2�

i 6p�M�p2�
; (2)

where � is the renormalization point. The renormalization
point boundary conditions are chosen to be

Z��2; �2� 
 1 M��2� 
 m��2�: (3)
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where m��2� is the renormalized quark mass at the renor-
malization point. The functions A��2;p2� and B��2;p2�, or
alternatively Z��2;p2� and M�p2�, contain all of the non-
perturbative information of the quark propagator. Note that
M�p2� is renormalization point independent, all of the
renormalization-point dependence is carried by Z��2;p2�.

When all interactions for the quarks are turned off, i.e.,
when the gluon field vanishes (or the links are set to one),
the quark propagator has its tree-level form

S�0��p� �
1

i 6p�m0 ; (4)

where m0 is the bare quark mass. When the interactions
with the gluon field are turned on we have

S�0��p� ! Sbare�a;p� � Z2��
2; a�S��2;p�; (5)

where a is the regularization parameter—in this case,
the lattice spacing—and Z2��2; a� is the quark wave-
function renormalization constant chosen so as to ensure
Z��2;p2�jp2��2 � 1. For simplicity of notation we sup-
press the a-dependence of the bare quantities.

On the lattice we expect the bare quark propagators, in
momentum space, to have a similar form as in the contin-
uum, except that the O�4� invariance is replaced by a 4-
dimensional hypercubic symmetry on an isotropic lattice.
Hence, the inverse lattice bare quark propagator takes the
general form

�Sbare��1�p� 
 i
X
�

C��p���� � B�p�: (6)

With the periodic boundary conditions in the spatial direc-
tions and antiperiodic in the time direction, the discrete
lattice momenta will be

pi �
2�
Nia

�
ni �

Ni

2

�
; and pt �

2�
Nta

�
Nt �

1

2
�

Nt

2

�
;

(7)

where ni � 1; ::; Ni and nt � 1; ::; Nt, Ni and Nt are
the lattice extent in spatial and temporal direction,
respectively.

The overlap fermion formalism [24,25] realizes an exact
chiral symmetry on the lattice and is automatically O�a�
improved. The massive overlap operator can be written as
[26]

D��� �
1

2
1� �� �1� ���5��Hw��; (8)

where Hw�x; y� � �5Dw�x; y� is the Hermitian Wilson-

Dirac operator, ��Hw� � Hw=
�������
H2

w

p
is the matrix sign func-

tion, and the dimensionless quark mass parameter � is

� 

m0

2mw
; (9)

where m0 is the bare quark mass and mw is the Wilson
-2



QUARK PROPAGATOR IN LANDAU AND LAPLACIAN . . . PHYSICAL REVIEW D 71, 014501 (2005)
quark mass which, in the free case, must be in the range
0<mw < 2. The bare quark propagator in coordinate
space is given by the equation

Sbare�m0� 
 ~D�1
c ���; (10)

where

~D�1
c ��� 


1

2mw

~D�1��� and

~D�1��� 

1

1� �
D�1��� � 1�

(11)

When all the interactions are turned off, the inverse bare
lattice quark propagator becomes the tree-level version of
Eq. (6)

�S�0���1�p� 
 i
X
�

C�0�
� �p���� � B�0��p�: (12)

We calculate S�0��p� directly by setting the links to unity in
the coordinate space, doing the matrix inversion and then
taking its Fourier transform. It is then possible to identify
the appropriate kinematic lattice momentum q directly
from the definition

q� 
 C�0�
� �p�: (13)

The form of q��p�� is shown and its analytic form given in
Ref. [9]. Having identified the appropriate kinematical
lattice momentum q, we can now define the bare lattice
propagator as

Sbare�p� 

Z�p�

i6q�M�p�
: (14)

This ensures that the free lattice propagator is identical to
the free continuum propagator. Because of asymptotic
freedom the lattice propagator will also take the continuum
form at large momenta. In the gauge sector, this type of
analysis dramatically improves the gluon propagator [27–
29].

The two Lorentz invariants can then obtained by

Z�1�p� �
1

12iq2
Trf6qS�1�p�g (15)

M�p� �
Z�p�
12

TrfS�1�p�g: (16)

This means that Z�p� is directly dependent on our choice of
momentum, q, while M�p� is not.

IV. NUMERICAL RESULTS

A. Simulation parameters

In this paper we work on two lattices with different
lattice spacing, a, and very similar physical volumes.
The gauge configurations are created using a tadpole im-
proved plaquette plus rectangle (Lüscher-Weisz [21])
014501
gauge action through the pseudo-heat-bath algorithm. For
each lattice size, 50 configurations are used. Lattice pa-
rameters are summarized in Table I. The lattice spacing a is
determined from the static quark potential with a string
tension

����
#

p
� 440 MeV [30].

Landau gauge fixing to the gauge configuration was
done using a Conjugate Gradient Fourier Acceleration
[31] algorithm with an accuracy of $ 


P
j@�A��x�j

2 <
10�12. The improved gauge-fixing scheme was used to
minimize gauge-fixing discretization errors [22]. For the
Laplacian gauge fixing, we only use the @2(II) gauge [19].
In this case we construct the gauge transformation by
projecting M�x� constructed from the three lowest lying
eigenmodes, onto SU(3) by means of trace maximisation.
Effectively, we maximise the trace of G�x�M�x�y by itera-
tion over Cabibbo-Marinari SU(2) subgroups.

Our numerical calculation begins with an evaluation of
the inverse of D��� with the unfixed gauge configurations,
where D��� is defined in Eq. (8). We approximate the
matrix sign function ��Hw� by the 14th order Zolotarev
approximation [32]. We then calculate Eq. (10) for each
configuration and rotate it to Landau or Laplacian gauge by
using the corresponding gauge transformation matrices
{Gi�x�g. Afterward we take the ensemble average to obtain
Sbare�x; y�. The discrete Fourier transformation is then
applied to Sbare�x; y� and the momentum-space bare quark
propagator, Sbare�p� is obtained finally.

We use the mean-field improved Wilson action in the
overlap fermion kernel. The value & � 0:19163 is used in
the Wilson action, which provides mwa � 1:391 for the
regulator mass in the interacting case [9]. We calculate the
overlap quark propagator for ten quark masses on each
ensemble by using a shifted Conjugate Gradient solver. For
the two lattices considered here, the quark mass parameter
� was adjusted to make the tree-level bare quark mass in
physical units, the same on the two lattices. For example,
we choose � � 0:018; 0.021, 0.024, 0.030, 0.036, 0.045,
0.060, 0.075, 0.090, and 0.105 on ensemble 1, i.e., the
163 � 32 lattice with a � 0:093 fm. This corresponds to
bare masses in physical units of m0 � 2�mw � 106, 124,
142, 177, 212, 266, 354, 442, 531, and 620 MeV,
respectively.

The results of lattice 2 (123 � 24) in Landau gauge were
presented in detail in Ref. [9], and the results of lattice
1(163 � 32) in Landau gauge were also reported in
Ref. [11]. Here we will focus on the comparison of the
results of two lattice gauge-fixing schemes, i.e., the Landau
gauge and the Gribov copy free Laplacian gauge, to probe
the behavior of the overlap fermion propagator with differ-
ent gauge fixings, and the effect of Gribov copies. Before
we make the comparison, we first briefly present some data
in Laplacian gauge on the 163 � 32 lattice, our fine lattice.
All data has been cylinder cut [27]. Statistical uncertain-
ties are estimated via a second-order, single-elimination
jackknife.
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TABLE I. Lattice parameters.

Action Volume NTherm NSamp ' a (fm) u0 Physical Volume (fm4)

Improved 163 � 32 5000 500 4.80 0.093 0.89 650 1:53 � 3:00
Improved 123 � 24 5000 500 4.60 0.124 0.88 888 1:53 � 3:00
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B. Laplacian gauge

In Fig. 1 we show the results for all ten masses for both
the mass and wave-function renormalization functions,
M�p� and Z�R��q� 
 Z�� ; q� respectively. As was shown
in Ref. [11], the continuum limit is more rapidly ap-
proached when the mass function is plotted against the
discrete lattice momentum p, while the wave-function
FIG. 1 (color online). The functions M�p� and Z�R��q� 

Z��2; q� renormalized at � � 5:31 GeV (in the q scale ) for all
ten quark masses in Laplacian gauge on the 163 � 32 lattice. The
mass function M�p� is plotted versus the discrete momentum p

defined in Eq. (7), p �
������������P

p2
�

q
, over the interval 0; 5� GeV, and

Z�R��q� is plotted against the kinematic momentum q defined in

Eq. (13), q �
������������P

q2�
q

, over the interval 0; 12� GeV. The data

correspond to bare quark masses (from bottom to top) � �
0:018; 0.021, 0.024, 0.030, 0.036, 0.045, 0.060, 0.075, 0.090,
and 0.105, which in physical units correspond to m0 � 2�mw ’
106, 124, 142, 177, 212, 266, 354, 442, 531, and 620 MeV,
respectively.

014501
renormalization function Z�R��q� is plotted against the
kinematic momentum q. The renormalization point in
Fig. 1 for Z�R��q� has been chosen to be � � 5:31 GeV in
the q-scale.

In the plots of M�p�, the data is ordered as one would
expect by the values for bare quark mass m0, i.e., the larger
the bare quark mass m0, the higher the M�p� curve. For
large momenta, the function Z�R��q� demonstrates little
mass dependence. Deviation of Z�R��q� from its asymptotic
value of one is a sign of dynamical symmetry breaking, so
we expect the infrared suppression to vanish in the limit of
an infinitely heavy quark. In the figure for Z�R��q�, the
smaller the bare mass, the more pronounced is the dip at
low momenta. Similarly, at small bare masses M�q� falls
off more rapidly with increasing momenta, which is under-
stood from the fact that a larger proportion of the infrared
mass is due to dynamical chiral symmetry breaking at
small bare quark masses. These results are much the
same as in Ref. [11], which display the data on the same
lattices in Landau gauge. This qualitative behavior is also
consistent with what is seen in Dyson-Schwinger based
QCD models [33,34].

In Fig. 2 we plot the data after a linear chiral extrapo-
lation for both functions M�p� and Z�R��q� 
 Z�� ; q� in
Laplacian gauge. The mass function M�p� is shown against
p and while the wave function renormalization function
Z�R��q� is shown against q with the renormalization-point
chosen as at 5.31 GeV in the q scale. We see that both M�p�
and Z�R��q� deviate strongly from the tree-level behavior,
which are M�p� � m0 and Z�R��q� � 1. In particular, as in
earlier studies of the Landau gauge quark propagator[4–
6,9,11], we find a clear signal of dynamical mass genera-
tion and a significant infrared suppression of the Z�� ; q�
function.

C. Gauge fixing comparison

Next we present the results in the two gauge fix-
ing schemes for comparison. All data have been cylin-
der cut [27]. First we give the results on the 163 � 32
lattice.

Figure 3 reports results for the mass and renormaliza-
tion functions at our lightest bare quark mass of m0 �
106 MeV. These results may be compared with the
Asqtad results of Ref. [6], where Fig. 9 compares results
of various gauge fixing schemes for the renormaliza-
tion function. There, Landau gauge results are seen to
lie significantly higher than the Laplacian gauge results
-4



FIG. 3 (color online). The comparison of two gauge-fixing
results at finite bare quark mass (m0 � 106 MeV) on the fine
163 � 32 lattice with a � 0:093 fm. Z�R��q� is renormalized to
one at the renormalization point � � 5:31 GeV (in the q-scale).
For the mass function M�p�, Landau gauge and Laplacian gauge
are very similar, while the wave function renormalization func-
tions Z�R��q� differ in the infrared region.

FIG. 2. The plot of the functions M�p� and Z�R��q� 
 Z��; q�
after a linear extrapolation to the chiral limit. The mass functions
M�p� is plotted against the discrete momentum p in the upper
part of the figure and Z�R��q� with the renormalization point � �
5:31 GeV (in the q-scale) is plotted against the kinematic
momentum q in the lower part of the figure.
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in the infrared. However, with overlap fermions, Fig. 3
indicates the Landau gauge results lie much closer to the
Laplacian gauge results. Given the improved chiral prop-
erties of the overlap operator, the present results should
provide a better indication of the continuum limit behavior.
In either case, the same qualitative behavior of Landau
Gauge sitting above Laplacian gauge in the infrared is
observed.

The mass function of Fig. 3 reveals an approximate
invariance on the selection of Landau or Laplacian gauges.
Figures 12 and 13 of Ref. [6] indicate that the mass
function of Asqtad fermions is also insensitive to the
choice of Landau gauge or the Gribov-copy free
Laplacian gauge.

We now proceed to compare the data in the chiral limit.
Figure 4 shows the comparison of the mass function, M�p�,
and the wave function renormalization function, Z�R��q�,
in Landau gauge and Laplacian gauge. We see that they
give similar performance in terms of rotational symmetry
and statistical noise. Looking more closely, we can see
that Landau gauge gives a slightly cleaner signal at this
014501
lattice spacing. We also note that at very large momenta,
the two gauge fixing schemes give similar results as
expected. Although Laplacian gauge is a nonlocal gauge
fixing scheme and difficult to understand perturbatively,
it is equivalent to Landau gauge in the asymptotic region
[20]. In the infrared region, the mass function, M�p�, in
the two gauges are very similar. For the mass func-
tions there is a hint that the data in Laplacian gauge are
a little higher than for the Landau gauge, although they
agree within statistical errors. With greater statistics we
may resolve a small difference. For the renormalization
function Z�R��q�, there are systematic differences in the
infrared region. The Z�R��q� is more strongly infrared
suppressed in the Laplacian gauge than in the Landau
gauge. That is consistent with what was seen in the case
of the Asqtad quark action [6] when comparing these two
gauges.

Now we give the results from the coarse lattice. Figure 5
shows the comparison of the mass function M�p� and the
wave function renormalization function Z�R��q� in the chi-
-5



FIG. 4 (color online). The comparison of two gauge-fixing
results after a linear extrapolation to the chiral limit on the
fine lattice, i.e., 163 � 32 at a � 0:093 fm. Z�R��q� is renormal-
ized to one at the renormalization point � � 5:31 GeV (in the
q-scale). For the mass function M�p�, Landau gauge and
Laplacian gauge are very similar, while the wave function
renormalization functions Z�R��q� are similar in the large mo-
mentum region but differ in the infrared region.

FIG. 5 (color online). The comparison of two gauge-fixing
results in the chiral limit on the coarse lattice, i.e., 123 � 24
with a � 0:124 fm. The small gauge dependence of the infrared
behavior of the Z-function is similar to that on the fine lattice in
Fig. 4. The infrared mass functions, M�p�, appear different on
this coarse lattice whereas they were similar on the fine lattice.
This suggests larger O�a2� errors in Laplacian gauge.

J. B. ZHANG et al. PHYSICAL REVIEW D 71, 014501 (2005)
ral limit in Landau gauge and Laplacian gauge on the
123 � 24 lattice with a � 0:124 fm. As in the case of the
163 � 32 lattice, at very large momenta, the two gauge
fixing schemes give similar results. For the renormalization
function Z�R��q�, the situation is very similar to the case of
the 163 � 32 lattice, i.e., at very large momenta, the two
gauge fixing schemes give similar results, while in the
infrared region, Z�R��q� is more strongly suppressed in
Laplacian gauge than in Landau gauge. For the mass
function, M�p�, the situation is different to that seen on
the fine lattice. In the infrared region, the data in Laplacian
gauge sit higher than in Landau gauge. While this is
consistent with the infrared behavior of the renormaliza-
tion function, Z�R��q�, which is more suppressed in
Laplacian gauge than in Landau gauge, there is no similar
signal for our fine lattice 163 � 32. In that case (see Fig. 5),
the data in Laplacian gauge agree with that in Landau
gauge within error bars, although there is a hint that the
data in Laplacian gauge are a little higher than in Landau
014501
gauge in the infrared region. This infrared behavior of the
mass function in Laplacian gauge is likely caused by the
finite lattice spacing errors, i.e., on fine enough lattices we
expect Landau and Laplacian gauge results for M�p� to be
very similar.

Finally, we present the data for the two lattices in
Laplacian gauge to further explore possible finite a errors.
Figure 6 shows the comparison of the mass function, M�p�,
and the wave function renormalization function Z�R��q� in
the chiral limit in Laplacian gauge on the 123 � 24 and the
163 � 32 lattices. For the renormalization function,
Z�R��q�, results from the two lattices have small differ-
ences, but agree with each other within errors. For the
mass function, M�p�, the results agree well at large mo-
menta, but there is a substantial difference in the infrared
region. A similar comparison was made between these two
lattices in Landau gauge [11]. In that case, both the renor-
malization function, Z�R��q�, and the mass function, M�p�,
agree well on the two lattices. This indicates that in Landau
gauge, the finite a errors are small even for our coarse
-6



FIG. 6 (color online). The comparison of Laplacian gauge
results in the chiral limit on two lattices, i.e., 123 � 24 with a �
0:124 fm and 163 � 32 with a � 0:093 fm. The renormalization
point for Z�R��q� 
 Z��; q� is chosen to be � � 5:31 GeV (in the
q-scale). For the mass functions M�p�, the value on 123 � 24
lattice is higher than that on the 163 � 32 lattice in the infrared
region. while the wave function renormalization function Z�R��q�
on two lattices agree within error bars. This suggests that the
finite a errors are not small on the coarse lattice in Laplacian
gauge.
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lattice with lattice spacing a � 0:124 fm. But in Laplacian
gauge, the finite a errors are not negligible for our coarse
lattice 123 � 24. A likely explanation for this is the fact
014501
that our implementation of the Laplacian gauge is not
O�a2� improved.
V. SUMMARY AND OUTLOOK

The momentum-space quark propagator has been
studied in Landau gauge as well as the Gribov copy
free Laplacian gauge on two lattices with the same physi-
cal volume but with different lattice spacings a. We calcu-
lated the nonperturbative momentum-dependent wave-
function renormalization, Z�q�, and the nonperturbative
mass function, M�p�, for a variety of bare quark masses.
We also performed a simple linear extrapolation to the
chiral limit.

At very large momenta the two gauge-fixing schemes
give similar results as expected. Laplacian gauge is equiv-
alent to the Landau gauge in the asymptotic region. In
the infrared region, the mass function, M�p�, in the
two gauges are very similar on the fine lattice, but dif-
fer on the coarse lattice. The present Laplacian gauge
fixing is not O�a2� improved. For our fine lattice in
the infrared region, the mass function, M�p�, agrees within
statistical errors in the two gauge fixings. However, there
is a hint that the data in Laplacian gauge may be a lit-
tle higher than in Landau gauge, which would be consis-
tent with the behavior of the renormalization func-
tion, Z�R��q�. For the renormalization function, Z�R��q�,
there are systematic differences in the infrared region.
The renormalization function is more strongly infrared
suppressed in the Laplacian gauge than in the Landau
gauge.
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