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Volume dependences from lattice chiral perturbation theory
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The physics of pions within a finite volume is explored using lattice regularized chiral perturbation
theory. This regularization scheme permits a straightforward computational approach to be used in place
of analytical continuum techniques. Using the pion mass, decay constant, form factor and charge radius as
examples, it is shown how numerical results for volume dependences are obtained at the one-loop level
from simple summations.
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I. INTRODUCTION

Lattice QCD is one of the key tools for studying had-
ronic physics [1]. It is a numerical technique that employs a
finite spatial volume, a finite extent in Euclidean time, and
a nonzero spacing between sites on the spacetime lattice.
Lattice QCD practitioners also choose unphysically large
masses for up and down quarks due to the extreme cost of
simulations at their physical values.

The extrapolation to physical up and down quark masses
can in principle be performed by using the low energy
effective theory for continuum QCD, called chiral pertur-
bation theory (ChPT) [2]. The Lagrangian of ChPT con-
tains an infinite number of terms, but to a specific order in
the small chiral expansion parameters (for the pure pion
theory these are m2�=�4�f��2 and p2=�4�f��2 with p
being a small four-momentum) the number of terms is
finite. ChPT has established itself as a valuable formalism
for hadronic physics, and its use in connection to lattice
QCD is just one important example.

Similarly, the extrapolation in lattice spacing can be
discussed within the effective theory for lattice QCD,
which is simply ChPT extended to include the effects of
the nonzero lattice spacing, a. This requires the addition of
an infinite number of new terms to the continuum ChPT
Lagrangian, each of which is proportional to some positive
power of a. To a specific order in the lattice spacing
expansion, the number of a-dependent terms is finite and
the numerical values of their coefficients can be deter-
mined in principle by matching to a particular definition
of lattice QCD. Different lattice QCD Lagrangians
(Wilson, Symanzik-improved, etc.) correspond to different
lattice ChPT coefficients for the a-dependent counter-
terms. All of these additional terms become irrelevant in
the continuum limit.

Lattice ChPT can be defined within a continuum quan-
tum field theory formalism, using (for example) dimen-
sional regularization to handle ultraviolet divergences and
retaining the lattice spacing only as prefactor for the
a-dependent Langrangian counterterms mentioned above
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[3,4].Another option is to define lattice ChPT in an explic-
itly discrete spacetime [5–8]. The lattice spacing now
plays the role of ultraviolet regulator in addition to being
the expansion parameter for the a-dependent Lagrangian
counterterms. With this approach, the lattice spacing ap-
pears explicitly in propagators and vertices and also in
limits of integration for Feynman loop diagrams. The con-
tinuum and discrete methods are essentially equivalent
when the inverse lattice spacing lies beyond the regime
of ChPT (1=a >�� �m	 � 4�f�) as is the case in typi-
cal lattice QCD simulations. One method or the other may
be preferred for ease of use, or for theoretical discussions
of the convergence properties of the ChPT expansion [7,8].

The extrapolation in lattice volume within the frame-
work of ChPT requires in general the inclusion of
boundary-valued counterterms to the Lagrangian due to
explicit boundary conditions except (as shown by Gasser
and Leutwyler [9,10]) for toroidal spacetime. In this case,
the only effect of finite volume is the straightforward
conversion of loop momentum integrals to loop momen-
tum summations. For a review of recent finite volume
ChPT calculations, see Ref. [11]. Some of the latest studies
in the pion sector are those of Refs. [12–14].

In the present work, we explore the use of lattice regu-
larized ChPT for computing volume dependences. The
continuum limit must be identical to any viable continuum
regulator, but lattice regularization has the feature of being
easy to manage numerically. Beginning from a Lagrangian
that displays the lattice spacing explicitly and also main-
tains exact chiral symmetry, [7] one can simply derive the
Feynman propagators and vertices then type those directly
into a computer program. Loop diagrams are just summa-
tions of a finite number of momentum values and the
numerics are finite at every step. For a sufficiently small
lattice spacing, observables must be independent of a.

A brief preliminary discussion of this work can be found
in Ref. [15], but a more detailed study is presented below.
Notation for the lattice regularized ChPT Lagrangian is
established in Sec. II. The computational method is intro-
-1  2005 The American Physical Society
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duced in Sec. III by examining the two-point pion corre-
lator. This gives the volume dependence of the pion mass,
which reproduces a result already known from continuum
methods [9,12]. The two-point correlator also gives an
explicit expression for wave function renormalization in
the lattice regularized theory. Section IV contains a com-
putation of volume effects on the pion decay constant
which agrees with published continuum calculations
[9,13]. New results are presented in Sec. V: volume de-
pendences of the pion form factor and the pion charge
radius. Section VI mentions some of the challenges that
remain to be addressed if lattice regularized ChPT is to be
employed for the determination of volume dependences
beyond the one-loop level. Appendix A provides an ex-
plicit example of calculating Feynman rules from the
lattice ChPT action, and Appendix B demonstrates the
014033
exact analytic agreement between volume dependences in
dimensional regularization and in the continuum limit of
lattice regularization.
II. A DISCRETIZED SU(2) CHIRAL LAGRANGIAN

The Lagrangian to be used in this work is an SU(2)
version of the SU(3) meson Lagrangian introduced in
Ref. [7]. Although only a few terms are presently required,
here is the complete Lagrangian:
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where h. . .i denotes a trace, and summations over repeated
Lorentz indices � and � are understood.� is essentially the
quark mass matrix,

� � 2B
mu 0
0 md

� �
: (4)

Throughout this work, we restrict ourselves to the isospin
limit mu � md � mq. We also choose the exponential
representation for pions,

U�x� � exp
�
i�a�a�x�

f

�
; (5)

where �a is a Pauli matrix. The external fields are

L��x� � exp
ia‘��x�� � expf
iaV��x� 
 A��x��g;

(6)

R��x� � exp
iar��x�� � expf
iaV��x� � A��x��g;

(7)

and the corresponding field strength tensors are discretized
as follows:
4ia2FX
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where X � L;R. As discussed in Ref. [7], a convenient
way to avoid unphysical poles in the spectrum while
maintaining invariance under parity is to use a nearest-
neighbor derivative in the leading order Lagrangian,

r���
� U�x� �

1

a
R��x�U�x� a��L

y
��x� 
U�x��; (9)

and a symmetrized derivative at next-to-leading order,
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y
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 Ry
��x
 a��U�x
 a��L��x
 a���: (10)

Notice that the Lagrangian in Eqs. (1)–(3) contains exactly
the same number of terms as the continuum SU(2) ChPT
Lagrangian [2]. As discussed in Sec. I, the most general
ChPT Lagrangian would contain extra terms proportional
to positive powers of the lattice spacing. Since we are
presently interested in volume dependences at the contin-
-2
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uum limit, these extra terms are irrelevant and hence
omitted for simplicity.

To conclude this section, we recall that the ChPT action
is

S � a4
X
x

L�x� 
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2

X
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21
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�2�x�

��
; (11)

where the second term is due to the integration measure
[7]. For SU(2),
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III. THE PION MASS AND WAVE
FUNCTION RENORMALIZATION

The Feynman diagrams for the one-loop pion two-point
correlator are shown in Fig. 1. To evaluate them within
lattice regularization, we choose a hyper-rectangular lat-
tice with lattice spacing a in all four spacetime directions.
The lattice is chosen to have Ns sites in each of the spatial
directions and Nt sites in the temporal direction. Our goal
is to consider the dependence of observables on spatial
volume in the double limit a ! 0, aNt ! 1 with aNs held
fixed.

With Feynman vertices obtained from the Lagrangian of
Sec. II (see Appendix A for the derivations), the three
diagrams of Fig. 1 respectively become
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where

D�k� �
1

a2x2� � 2
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is the pion propagator and
p p p
π
+

π
0

Γ = ++

,−

FIG. 1. Feynman diagrams contributing to the pion two-point
correlator at one-loop level in ChPT.
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is the lowest-order pion mass in the continuum limit. The
symbol ‘‘

P
k’’ in Eq. (15) represents a sum over available

lattice 4-momenta; for any function F, this meansX
k
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(18)
Notice that the middle diagram in Fig. 1 includes the
measure contribution as well as the tree-level L4

contributions.
The pion mass is defined as the energy of a stationary

pion. The corresponding expression for the pion mass is the
value of ip4 which solves � � 0 when ~p � ~0, where � is
the sum of the three diagrams

� � �LO � ��a�NLO � ��b�NLO: (19)

The result is

M� �
2

a
arcsinh

�
aX�

2

�
; (20)

X2� � x2� �
2x4�
f2

l3 � x2�
X
k

�3
 2 cosak4�

2N3sNta2f2
D�k� �O�a�:

(21)

Given numerical values for the Lagrangian parameters f,
Bmq and l3, the pion mass can now be computed directly
from Eqs. (20) and (21) for any lattice spacing and volume.
As a ! 0 the loop diagram diverges and these divergences
are cancelled by the a dependence of the bare Lagrangian
parameters f, Bmq and l3. (Since dimensional regulariza-
tion retains no power divergences, f and Bmq would be
scale invariant in that scheme. Lattice regularization does
retain power divergences as a ! 0 so the parameters f and
Bmq do have a dependence in this scheme.) For any a � 0
the loop diagram is finite, and for sufficiently small a the
renormalized pion mass is independent of lattice spacing.

To extract the volume dependence of the pion mass, one
needs only the difference of M� at two different spatial
volumes. The first two diagrams in Fig. 1 cancel in this
difference leaving only the loop diagram. As a ! 0, the
difference between two volumes must be finite because the
only available Lagrangian counterterms were in the first
two diagrams. The quantities x� and f appearing in the
loop diagram are the leading chiral-order expressions for
the mass and decay constant in the continuum limit.
Following Ref. [12], we employ f � 86:2 MeV. One
would expect results to become independent of lattice
spacing for a & 1=�4�f�� � 0:2 fm, and we will choose
Nt � Ns so that the temporal direction will not affect
-3
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our extraction of spatial volume effects in any significant
way.

Figure 2 displays numerical results for the fractional
change in the pion mass as a function of spatial volume,
relative to the infinite volume pion mass, for M��L1� �
100 MeV, 140 MeV, and 300 MeV, corresponding to x� �
100 MeV, 142 MeV, and 321 MeV, respectively. The com-
putation at ‘‘infinite’’ volume, L31, is performed numeri-
cally simply by choosing a volume large enough to offer
negligible deviations if the volume is increased yet further.
Figure 2 shows explicitly the dependence of numerical
results on changes to a, L1, and Nt. As expected, heavier
pions have an increased sensitivity to lattice spacing be-
cause loop integrals depend on the product ax�. The
computation at a � 0:1 fm; L1 � 8 fm and Nt � 5Ns
produces a fractional volume dependence for the pion
mass that agrees with the known continuum result[9,12]
to within the resolution of this plot for the full range shown,
2 fm< L< 4 fm. As a confirming cross-check, this
known continuum result is derived analytically from our
lattice regularized expression in Appendix B.

In addition to the pion mass, Eq. (19) also leads to an
expression for the wave function renormalization factor
that will be required for all of the observables to be
addressed below. Up to irrelevant lattice spacing effects,
the two-point correlator can be parametrized as
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FIG. 2 (color online). Fractional change in the pion mass as a
function of spatial volume.
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One can read "�
~p2� directly from Eqs. (13)–(15) by
choosing ~p � ~0, and this gives
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IV. THE PION DECAY CONSTANT

The three Feynman diagrams of Fig. 3 represent the
three contributions to the pion decay constant up to one-
loop order. Using the vertices and propagators from the
Lagrangian in Eqs. (1)–(3), one finds the following ex-
pressions for those three diagrams,
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Choosing a stationary pion ( ~p � ~0) and inserting Eq. (27)
for the wave function renormalization factor leads to
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where the one-loop pion decay constant is
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,
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FIG. 3. Feynman diagrams contributing to the pion decay
constant at one-loop level in ChPT. A wavy line denotes an axial
vector current insertion.
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In the difference between f� computed from two differ-
ent lattice volumes, the first two terms in Eq. (32) subtract
away. To this chiral order, the remaining parameters x� and
f can be set to the (infinite volume) physical pion mass and
decay constant. The resulting volume dependence of the
pion decay constant is displayed in Fig. 4. The magnitude
of the volume dependence is similar to that of the pion
mass plotted in Fig. 2, but the sign differs— the decay
constant is reduced as the volume shrinks, whereas the
mass grows with shrinking volume. The computation at
a � 0:1 fm, L1 � 8 fm and Nt � 5Ns produces a frac-
tional volume dependence for the pion decay constant that
agrees with the known continuum result [9,13] to within
the resolution of this plot for the full range shown, 2 fm<
L< 4 fm.

The careful reader will notice that Fig. 4 has a slightly
different normalization from the corresponding plot in
Ref. [15]; this difference is higher order in the ChPT
expansion, and is due to use of the physical mass and decay
constant in Ref. [15] in place of the lowest-order parame-
ters x� and f. Figs. 2 and 4 of the present work show the
familiar ratio, f��L�=f��L1� 
 1�=M��L�=M��L1� 

1� � 
4, expected from Ref. [9].
V. THE PION FORM FACTOR AND
CHARGE RADIUS

The pion electromagnetic form factor is obtained from
the Feynman diagrams of Fig. 5, and the charge radius can
be extracted from the slope of the form factor at vanishing
photon 4-momentum. Using the Lagrangian of Eqs. (1)–
(3), the four diagrams evaluate as follows,
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FIG. 4 (color online). Fractional change in the pion decay
constant as a function of spatial volume.
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where p is the incoming pion momentum, q and � are the
incoming momentum and Lorentz index of the external
photon, and p0 � p� q. The contribution from H�c�

NLO can
be simplified by removing terms that are odd under inter-
change of k and 
�k� q�, since these vanish after sum-
mation over k. The result is
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The pion form factor, F�q2�, can be obtained explicitly by
choosing � � 4 as follows,
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−

FIG. 5. Feynman diagrams contributing to the pion electro-
magnetic form factor at one-loop level in ChPT. A wavy line
denotes a photon.
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It is interesting to consider the q ! 0 limit, since vector
current conservation should require F�0� � 1. From
Eq. (39), we see that the term containing l6 does vanish
in the q ! 0 limit. The cancellation at q � 0 of the two
summation terms from Eq. (39) is easily demonstrated in
the notation of a temporally infinite lattice,
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Figure 6 shows the numerical results for the volume
dependence of the pion form factor at q2 � M2

� (meant
to represent a typical ChPT mass scale) obtained from
Eq. (39), where for numerical ease we work in the Breit
frame. As is evident from the plot, the form factor’s frac-
tional volume dependence has a similar magnitude to that
obtained for the pion mass and decay constant.

The pion charge radius is extracted from the slope of the
form factor at q2 � 0. Choosing q � �0; 0; q3; 0� for defi-
niteness, we find
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FIG. 6 (color online). Fractional change in the pion form factor
at Q2 � M2

� as a function of spatial volume.
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A graph of the fractional volume dependence of this quan-
tity is provided in Fig. 7. The magnitude of the effect is
dramatically larger than for the mass, decay constant and
form factor simply because the charge radius has (volume-
dependent) loop contributions at its first nonzero ChPT
order.
VI. SUMMARY AND OUTLOOK

The pion mass, decay constant, form factor and charge
radius have been computed from O�p4� chiral perturbation
theory in a finite volume by using lattice regularization. A
suggested advantage of this regularization scheme is that
the renormalization can be carried out numerically, leaving
fewer analytical steps to be performed. Explicit expres-
sions for these observables are given as four-dimensional
finite sums in Eqs. (21), (32), (39), and (41).

The dimensionally regularized expressions for the pion
mass and decay constant are known to be one-dimensional
sums over Bessel functions [9,13], and results from the two
regularization schemes agree numerically. In essence, di-
mensional regularization arrives at a more compact result
(i.e. fewer summations) because in that method more of the
renormalization is done analytically. Given the small com-
putational cost of the four-dimensional summations, the
lattice regularized result is also quite usable in practice. In
addition, Appendix B demonstrates that the continuum
limit of the lattice regularized result is analytically identi-
cal to the dimensional regularized expression, if one choo-
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FIG. 7 (color online). Fractional change in the pion charge
radius as a function of spatial volume.
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ses to complete the entire analytical calculation instead of
the computational scheme proposed in this work.

As emphasized in Ref. [11], it is necessary to extend
discussions of volume dependence to the two-loop level,
and perhaps beyond, so that the rate of convergence can be
explored. In general, two-loop renormalization is substan-
tially more involved than the one-loop case so the reduc-
tion of analytical effort obtained by using lattice
regularization could be of considerable value. The exten-
sion of lattice regularization to two loops will involve the
determination of numerical values for the Lagrangian’s
low energy constants (and their scale dependences) since
they will no longer subtract away in the difference between
two volumes. It will also require an understanding of the
interplay between power divergences, 1=an, and volume
dependences, 1=�aNs�

n. In particular, one does not want to
rely on numerical cancellations among diverging summa-
tions. These issues are currently under investigation, in
hopes of extending this practical computational method
to the domain of multiloop ChPT calculations.
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APPENDIX A: LATTICE FEYNMAN RULES FOR
THE PION MASS

This appendix contains an explicit derivation of the
Feynman rules required for a one-loop computation of
the volume dependence for the pion mass. Only the third
diagram of Fig. 1 contributes, which contains the pion
propagator and the four pion vertex.

Beginning from Section II and using ellipses to denote
terms that do not contribute to the pion two-point function,
the relevant terms in the action are
,S � a4
X
x

L2�x� � . . .

� 

a2f2

4

X
x;�

TrUy�x� �̂�U�x� �Uy�x�U�x� �̂��



a4f2

2
Bmq

X
x

TrU�x� �Uy�x�� � . . .

� 
a2,ab
X
x;�

�a�x��b�x� �̂� 
 �b�x��

�
a4x2�
2

,ab
X
x

�a�x��b�x� � . . . (A1)
014033
with �̂ � aê�. This will now be expressed in terms of the
Fourier transform,

��x� �
1

N3sNt

X
k

~��k�eik�x; (A2)

where the summation extends over the set of momenta

k �

�
2�n1
aNs

;
2�n2
aNs

;
2�n3
aNs

;
2�n4
aNt

�
(A3)

with

nj � 

Ns

2
;


Ns

2
� 1; . . . ;

Ns

2

 1; (A4)
n4 � 

Nt

2
;


Nt

2
� 1; . . . ;

Nt

2

 1; (A5)

and we have chosen Ns; Nt to be even, in order to keep the
presentation simple. Using the relation

X
x

eik�x � N3sNt,
�4�
k;0 (A6)

leads to

,S � 

a2,ab

N3sNt

X
k;k0;�

,�4�
k�k0;0 ~�

a�k�~�b�k0�eik
0��̂ 
 1�

�
a4x2�,

ab

2N3sNt

X
k;k0
,�4�
k�k0;0 ~�

a�k� ~�b�k0� � . . .

�
a4,ab

2N3sNt

X
k

"
x2� �

1

2a2
X
�

�1
 cosk � �̂�

#

� ~�a�k� ~�b�
k� � . . . (A7)

The Euclidean two-point correlator for incoming pion
fields ~�a�p� and ~�b�q� is



d

d� ~�
a�p�

N3sNt
�

d

d� ~�
b�q�

N3sNt
�

�
,S

a4N3sNt

�

� 
,ab,�4�
p�q;0

"
x2� �

2

a2
X
�

�1
 cosp � �̂�

#
: (A8)

The pion propagator is the negative inverse of this expres-
sion with p � 
q and a � b, and is a2D�k� of Eq. (16).

To derive the four pion vertex, we again begin from
Section II and use ellipses to denote terms that do not
contribute,
-7
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,S � a4
X
x

L2�x� � . . .

� 

a2f2

4

X
x;�

TrUy�x� �̂�U�x� �Uy�x�U�x� �̂�� 

a4f2

2
Bmq

X
x

TrU�x� �Uy�x�� � . . .

� 

a2

48f2
Tr��a�b�c�d�

X
x;�

�a�x� �̂��b�x� �̂��c�x� �̂��d�x� �̂� 
 4�a�x� �̂��b�x� �̂��c�x� �̂��d�x�

� 6�a�x� �̂��b�x� �̂��c�x��d�x� 
 4�a�x� �̂��b�x��c�x��d�x� � �a�x��b�x��c�x��d�x��



a4x2�
48f2

Tr��a�b�c�d�
X
x

�a�x��b�x��c�x��d�x� � . . .

� 

a2

48f2N12s N4t
Tr��a�b�c�d�

X
x;�;k;k0;k00;k000

~�a�k� ~�b�k0� ~�c�k00� ~�d�k000�ei�k�k0�k00�k000��xei�k�k0�k00�k000���̂ 
 4ei�k�k0�k00���̂

� 6ei�k�k0���̂ 
 4eik��̂ � 1� 

a4x2�

48f2N12s N4t
Tr��a�b�c�d�

X
x;k;k0;k00;k000

~�a�k� ~�b�k0� ~�c�k00� ~�d�k000�ei�k�k0�k00�k000��x

� 

a2

24f2N9sN3t
Tr��a�b�c�d�

X
k;k0;k00

~�a�k�~�b�k0�~�c�k00� ~�d�
k
 k0 
 k00�2a2x2�

�
X
�

�1
 2eik��̂ 
 3ei�k�k0���̂ 
 2ei�k�k0�k00���̂��: (A9)

The Euclidean four-point correlator (i.e. the Feynman rule) for incoming pion fields ~�a�p�, ~�b�q�, ~�c�r� and ~�d�
p

q
 r� is



d

d� ~�
a�p�

N3sNt
�

d

d� ~�
b�q�

N3sNt
�

d

d� ~�
c�r�

N3sNt
�

d

d� ~�
d�
p
q
r�

N3s Nt
�

�
,S

a4N3sNt

�
�

2

3a2f2
�,ab,cd � ,ac,bd � ,ad,bc�

�
X
�

1
 cosp� 
 cosq� 
 cosr� 
 cos�p� q� r���

�
x2�
3f2

�,ab,cd � ,ac,bd � ,ad,bc� �
2

a2f2
,ab,cd

X
�

cos�p� q��

�
2

a2f2
,ac,bd

X
�

cos�p� r�� �
2

a2f2
,ad,bc

X
�

cos�q� r��:

(A10)
The a ! 0 limit reproduces the standard continuum Feynman rule as expected.

APPENDIX B: ANALYTIC DERIVATION OF THE CONTINUUM LIMIT

In the main body of this article, lattice regularized results were left in the form of loop summations over products of
Feynman rules, since this is sufficient to produce numerical results. As expected, the numerics agreed with analytic
dimensional regularized calculations where available, since physics does not depend on regularization scheme. Using the
volume dependence of the pion mass as an explicit example, this appendix verifies that continuing the analytic steps in the
lattice regularization approach, and taking the continuum limit, leads to the same analytic result that comes from
dimensional regularization.

From Eqs. (20) and (21), lattice regularization produces the following difference in pion mass for two lattice volumes,

M��L�
M��L
0��finite a� lim

Nt!1

"
x�

4a2f2N3sNt

X
k

3
2cosak4
a2x2��2

P
�
�1
cosak��



x�

4a2f2�N0
s�
3Nt

X
k0

3
2cosak4
a2x2��2

P
�
�1
cosak0��

#

�O�a�; (B1)
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where the summations extend over the set of momenta

k �

�
2�n1
aNs

;
2�n2
aNs

;
2�n3
aNs

;
2�n4
aNt

�
;

k0 �
�
2�n01
aN0

s
;
2�n02
aN0

s
;
2�n03
aN0

s
;
2�n4
aNt

�
;

(B2)

with

nj � 

Ns

2
;


Ns

2
� 1; . . . ;

Ns

2

 1; (B3)

n0j � 

N0
s

2
;


N0
s

2
� 1; . . . ;

N0
s

2

 1; (B4)

n4 � 

Nt

2
;


Nt

2
� 1; . . . ;

Nt

2

 1 (B5)

and Ns;N
0
s; Nt; N

0
t even.

Using a double angle formula from basic trigonometry, Eq. (B1) can be re-expressed as

M��L�
M��L0��finite a � lim
Nt!1

"
x�

4a2f2N3sNt

X
k

1� 4sin2�ak4=2�

a2x2�� 4
P
�
sin2�ak�=2�



x�

4a2f2�N0
s�
3Nt

X
k0

1� 4sin2�ak04=2�

a2x2�� 4
P
�
sin2�ak0�=2�

#

�O�a�: (B6)

Since this mass difference is finite even in the continuum limit, and since the Taylor expansion of sin4 satisfies absolute
convergence term by term over the entire range of interest, 
�=2 � 4 � �=2, the leading volume dependence is obtained
by retaining the leading term in this Taylor expansion. The result is

M��L� 
M��L
0��finite a �

x�
4a4f2

lim
Nt!1

"
1

N3sNt

X
k

1

x2� �
P
�
k2�



1

�N0
s�
3Nt

X
k0

1

x2� �
P
�
k0�

#
�O�a�: (B7)

As stated in Sec. III, our goal is to consider the dependence of observables on spatial volume in the double limit a ! 0,
T � aNt ! 1 with L � aNs (and for now L0 � aN0

s also) held fixed. With this simple change of variables (but leaving a
finite momentarily), we obtain

M��L� 
M��L0��finite a �
x�
4f2

lim
T!1

"
1

L3T

X
n

1

x2� �
P
j
�2�nj=L�2 � �2�n4=T�2



1

�L0�3T

X
n0

1

x2� �
P
j
�2�n0j=L

0�2 � �2�n4=T�
2

#
�O�a�

�
x�
4f2

Z �=a


�=a

dp4
2�

"
1

L3
X
~n

1

x2� �
P
j
�2�nj=L�

2 � p24



1

�L0�3

X
~n0

1

x2� �
P
j
�2�n0j=L

0�2 � p24

#

�O�a�: (B8)

We now take the continuum limit, which merely extends the bounds of summation and integration to �1. The integral
over p4 can be performed in closed form,
014033-9
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M��L� 
M��L
0� �

x�
8f2

"
1

L3
X
~n

1��������������������������������������
x2� �

P
j
�2�nj=L�

2
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1

�L0�3

X
~n0

1����������������������������������������
x2� �

P
j
�2�n0j=L

0�2
r

#

�
x�

8f2
����
�

p
Z 1

0
ds

e
sx2����
s

p

"
1

L3
X
~n

e

s
P
j

�2�nj=L�2



1

�L0�3

X
~n0
e

s
P
j

�2�n0j=L
0�2
#
: (B9)

Letting L0 ! 1 gives

M��L� 
M� �
x�

8f2
����
�

p
Z 1

0
ds

e
sx2����
s

p

"
1

L3
X
~n

e

s
P
j

�2�nj=L�2



Z 1


1

d3p

�2��3
e
s ~p2

#

�
x�

8f2
����
�

p
Z 1

0
ds

e
sx2����
s

p

"
1

L3
X
~n

e

s
P
j

�2�nj=L�
2



1

�4�s�3=2

#
; (B10)

where M� � M��1�. We can now make use of a relation that appears in Ref. [16],

X1
n�
1

e
�n2 �

����
�
�

r X1
n�
1

e
�2n2=�; (B11)

to obtain

M��L� 
M� �
x�

64f2�2
Z 1

0
ds

e
sx2�

s2

"X
~n

e
 ~n2L2=�4s� 
 1

#

�
x�

64f2�2
Z 1

0
ds

e
sx2�

s2
X
~n�~0

e
 ~n2L2=�4s�

�
x2�

16f2�2L

X
~n�~0

K1

�
x�L

����������������������������
n21 � n22 � n23

q �
����������������������������
n21 � n22 � n23

q ; (B12)

where K1�x� is a Bessel function of the second kind. This is the result known from dimensional regularized calculations
[9,12]. Though expressed as a triple summation over n1, n2 and n3, the function only contains the sum of squares, n21 �
n22 � n23, thus allowing M��L� 
M� to be represented by a one-dimensional summation when multiplicity factors are
defined [12].
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