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Volume dependence of the pion mass in the quark-meson model
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We consider the quark-meson-model in a finite three-dimensional volume using the Schwinger proper-
time renormalization group. We derive and solve the flow equations for finite volume in local potential
approximation. In order to break chiral symmetry in the finite volume, we introduce a small current quark
mass. The corresponding effective meson potential breaks chiral O(4) symmetry explicitly, depending on
� and ~� fields separately. We calculate the volume dependence of the pion mass and of the pion decay
constant with the renormalization group flow equations and compare with recent results from chiral
perturbation theory in a finite volume.
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I. INTRODUCTION

The study of QCD in a finite volume has been of interest
for quite some time. Accurate results of lattice simulations
with dynamical fermions necessitate understanding finite
volume effects. A variety of different methods has been
proposed cf. refs. [1–9], to extrapolate reliably from finite
lattice volumes to the infinite volume. Finite volume par-
tition functions for QCD have attracted interest in their
own right, because they allow an exact description of QCD
at low energies [10–13]. The low-energy behavior of QCD
is determined by spontaneous chiral symmetry breaking
[14], which, however, does not occur in a finite volume. If
the current quark mass is set equal to zero, in a finite
volume the expectation value for the order parameter of
chiral symmetry breaking vanishes, remaining zero even
for arbitrary large volumes. The order parameter has a
finite expectation value only when the infinite volume limit
is taken before the quark mass is set to zero.

The box size L, the pion mass m�, and the pion decay
constant f� are the relevant scales for the transition be-
tween the regimes with a strongly broken and an effec-
tively restored chiral symmetry [10]. As a measure of
explicit symmetry breaking, the pion mass is of particular
importance. It is primarily the dimensionless product m�L
that determines in which regime the system exists for a
given pion mass and volume. In order to study chiral
symmetry breaking in a finite volume, it is essential to
introduce a finite quark mass as a parameter that explicitly
breaks the chiral symmetry. Such an explicit symmetry
breaking is quite natural in theories which involve effective
chiral Lagrangians.

QCD at low energy can be studied by a wide variety of
approaches which in essence all rely on the same fact:
Because of spontaneous breaking of chiral symmetry,
low-energy QCD is dominated by massless Goldstone
bosons associated with the broken symmetry. Since these
Goldstone bosons interact only weakly, the low-energy
limit of QCD can be described in terms of an effective
theory of these fields. A description in terms of effective
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chiral Lagrangians becomes even better if one considers
the partition functions in finite Euclidean volume.
Compared to the light degrees of freedom, contributions
of heavier particles are suppressed by e�ML, where M is
the typical separation of the hadronic mass scale from the
Goldstone masses. This separation of mass scales is at the
origin of the description of QCD with effective theories in
terms of the light degrees of freedom only.

Groundbreaking work has been done by Gasser and
Leutwyler [10–12] in chiral perturbation theory, and by
Leutwyler and Smilga for the eigenvalue spectrum of the
QCD Dirac operator [13]. Random matrix theory [15,16]
predicts analytically the volume and quark mass depen-
dence of the chiral condensate [17–19], and the eigenvalue
spectrum which has been well confirmed by numerous
lattice results, see eg., [19–21]. Such analytic predictions
have been extremely useful as a check for calculations in
lattice gauge theory.

In the context of the renormalization group (RG) ap-
proach, most calculations so far have been done in a
chirally symmetric formulation [22–25]. In such a frame-
work, explicit symmetry-breaking terms do not affect the
renormalization group flow. This means that pion contri-
butions to the renormalization group flow come from ex-
actly massless pions. Small quark masses can be converted
into a small linear term in the meson potential which is not
renormalized and can therefore be added at the end of the
evolution. In this paper, we will present a formulation
which includes explicit symmetry breaking in the renor-
malization group flow and which can be used also for a
finite volume.

We use the chiral quark-meson model, which contains a
scalar sigma meson and quarks in addition to the pion
degrees of freedom. It is well known that the linear sigma
model alone is not compatible with the low-energy
��-scattering data [14]. Because of the presence of
quarks, the low-energy constants of chiral perturbation
theory are reproduced [26,27]. The quark-meson model
is evolved with renormalization group flow equations
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which connect different scales. As we will demonstrate, the
inverse box size 1=L acts as an effective cutoff scale which
freezes the evolution when the evolution parameter k <
�=L. In the same way as the renormalization group flow
equations describe the dependence of the results on the
renormalization cutoff scale k, they also describe the de-
pendence on the additional scale imposed by the finite
volume. The summation of higher loop graphs in this
approach does allow to extend the calculation to smaller
quark masses and volumes, where perturbative calculations
lack convergence. Deviations of the calculated pion mass
correction in the finite volume from chiral perturbation
theory are found in this region. Our results agree, however,
in the case of large pion masses and large volumes.

The paper is organized as follows: In section II, we
review recent results from the application of chiral pertur-
bation theory to the problem of finite volume effects. In
section III, we show how the evolution equation for the
effective meson potential is modified in a finite volume.
Details of the numerical evaluation are discussed in
section IV. In section V we present our final results, which
are discussed in section VI.

II. FINITE VOLUME EFFECTS IN CHIRAL
PERTURBATION THEORY

For finite volume, massless Goldstone bosons dominate
the action of a theory with broken chiral symmetry. In
chiral perturbation theory (chPT) [14], the pion mass, the
pion decay constant, and the chiral condensate have been
calculated [10–12]. The expansion parameters are the
magnitude of the three-momentum j ~pj and the mass of
the pion m� as the lightest degree of freedom compared
with the chiral symmetry-breaking scale 4�f�.

Depending on the size L of the volume and the pion
mass m�, chiral perturbation theory distinguishes between
two different power counting schemes. If the size of the
box is much larger than the Compton wavelength of the
pion L � 1=m�, the lowest nonzero pion momentum is
smaller than the pion mass (pmin �

2�
L � m�) and the

normal power counting scheme applies (‘‘p-regime’’). In
this case, the pions are constrained very little by the
presence of the box, and finite size effects are compara-
tively small [12]. If, on the other hand, the size of the box is
smaller than the Compton wavelength of the pion, the
normal chiral expansion breaks down, since the smallest
momentum pmin �

2�
L � m� is now much larger than the

pion mass (‘‘-regime’’). In this case, the partition function
is dominated by the zero modes. After solving the zero-
momentum sector of the theory exactly, one expands the
finite momentum modes to one-loop order.

A very useful tool to study the effects of a finite volume
on the mass of the pion is Lüscher’s formula [28]. It relates
the leading finite volume corrections for the pion mass in
Euclidean volume to the ��-scattering amplitude in infi-
nite volume. Corrections to the leading order behavior drop
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at the least as O�e� �mL� where �m �
��������
3=2

p
m�. For the

particular case of the pion mass, the formula for the relative
deviation R	m��L�
 of the pion mass m��L� in the finite
volume from the pion mass in the infinite volume m��1�
reads as follows:

R	m��L�
 �
m��L� �m��1�

m��1�

� �
3

16�2

1

m�

1

m�L

Z 1

�1
dyF�iy�e�

�����������
m2

�y2
p

L

O�e� �mL�: (1)

F is the forward ��-scattering amplitude as a function of
the energy variable s continued to complex values. New
results [8,9] have recently been obtained by combining
Lüscher’s formula with a calculation of the scattering
amplitude in chiral perturbation theory. A next-to-next-to
leading order calculation of F alone does not seem to give a
reliable and satisfactory result. A one-loop calculation
using Lüscher’s formula gives a shift in the pion mass,
for example, which is substantially lower than the one
expected form the full one-loop calculation in chiral per-
turbation theory as performed by Gasser and Leutwyler
[11]. This estimate of the finite volume effects can be
improved, if one uses the mass correction obtained from
Lüscher’s formula with a ��-scattering amplitude includ-
ing higher orders to correct the full one-loop chiral pertur-
bation theory result [9]. Since Lüscher’s formula has
subleading corrections O�exp	�

��������
3=2

p
m�L
�, the correc-

tions to the leading result increase for decreasing pion mass
at fixed volume size L with m�L. As pointed out by the
authors in [9], the Lüscher formula becomes a less reliable
approximation exactly for those values of the pion mass for
which the chiral expansion converges especially well.

The renormalization group flow equations do not rely on
either box size or pion mass as an expansion parameter, and
do not require to distinguish between two different re-
gimes. They remain valid as long as the lowest momenta
and the masses of the heaviest particles remain below the
ultraviolet cutoff scale UV � 1:5 GeV. The beauty of the
renormalization group method is precisely that the flow
equations connect different scales. In the same way as the
renormalization group flow equations describe the depen-
dence of the results on the infrared cutoff scale k, they also
describe the dependence on the additional scale imposed
by the finite volume.

III. RENORMALIZATION GROUP FLOW
EQUATIONS FOR THE QUARK-MESON MODEL

The quark-meson model is an SU�2�L � SU�2�R invari-
ant linear �-model with chiral mesons � � ��; ~�� coupled
to constituent quarks q. It is an effective model for dy-
namical spontaneous chiral symmetry breaking at inter-
mediate scales of k & UV , where the ultraviolet scale
UV � 1:5 GeV is determined by the validity of a had-
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ronic representation of QCD. At the UV scale UV , the
quark-meson model is defined by the effective action

�UV
	�
 �

Z
d4xf �q�@q g �q�� i ~� � ~��5�q


1

2
�@���2 U��� mc �qqg (2)

in a four-dimensional Euclidean volume with compact
Euclidean time direction. The partition function Z has
the path integral representation

Z �
Z

D �q
Z

Dq
Z

D� exp���UV
�; (3)

where in the Euclidean time direction periodic and anti-
periodic boundary conditions apply for bosons and fermi-
ons, respectively. A Gaussian approximation to the path
integral followed by a Legendre transformation yields the
one-loop effective action for the scalar fields �,

�	�
 � �UV
	�
 � Tr log���2�

F 	�
� 
1

2
Tr log���2�

B 	�
�;

(4)

where ��2�
B 	�
 and ��2�

F 	�
 are the inverse two-point func-
tions for the bosonic and fermionic fields, evaluated at the
vacuum expectation value of the mesonic field �. Here, the
boundary conditions of the functional integral appear in the
momentum traces and we neglect contributions from
mixed quark-meson-loops. In order to regularize the func-
tional traces, we use the Schwinger proper time represen-
tation of the logarithms. We consider the effective action �
in a local potential approximation (LPA), which represents
the lowest order in the derivative expansion and incorpo-
rates fermionic as well as bosonic contributions to the
potential density U. In this approximation, the effective
field � is considered to be constant over the entire volume.

The scale dependence is introduced through the infrared
cutoff function fa��k

2�, which regularizes the Schwinger
proper time integral. A cutoff function of the form

k
@
@k

fa��k
2� � �

2

��a 1�
��k2�a1e��k2 (5)

satisfies the required regularization conditions [22–24,29].
We obtain a renormalization group flow equation for the
effective potential by performing a renormalization group
improvement and replacing the bare two-point functions
by the renormalized, scale-dependent two-point functions,

k
@
@k

�k	�
 �
1

2
Tr

Z 1

0

d�
�

�
k
@
@k

fa��k2�
�
exp�����2�

B;k	�
�

� Tr
Z 1

0

d�
�

�
k
@
@k

fa��k
2�

�
exp�����2�

F;k	�
�:

(6)

In LPA, the effective action reduces to the effective poten-
tial by the relation
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�k	�
 �
Z

d4xUk���: (7)

The renormalization group improved evolution equation
for the effective potential in infinite volume is given by

k
@
@k

Uk��;L ! 1; T� �
1

2

Z 1

0

d�
�

Z d4p

�2��4

� f4NcNf exp���	p2

M2
q��; ~�2�
� � exp���	p2

M2
���2�
� � 3 exp���	p2

M2
���

2�
�gk
@
@k

fa��k
2�: (8)

It is necessary to choose the parameter a in such a way that
the resulting integrals over the proper time parameter �
remain finite. In infinite volume, the lowest possible inte-
ger value is a � 2. The diagonalization of the meson mass
matrix gives the running meson masses which depend on
the effective potential. Without explicit symmetry break-
ing, they are of the form

M2
� � 2

@Uk

@�2  4�2 @2Uk

�@�2�2
; (9)

M2
� � 2

@Uk

@�2 : (10)

To derive renormalization group flow equations in the finite
volume Ld�1 at finite temperature T, we replace the inte-
grals over the momenta by a sum

Z
dpi . . . !

2�
L

X1
n��1

. . . (11)

and apply periodic boundary conditions for bosons and
antiperiodic boundary conditions for fermions in time
and spacelike directions. The sums run from �1 to 1,
where the vector ~n denotes �n1; n2; :::; nd�1�. The
Matsubara frequencies take the value !n � 2�nT for
bosons and (n � �2n 1��T for fermions, respectively.
In the following we use the short-hand notation

p2
F �

Xd�1

i�1

p2
i �

4�2

L2

Xd�1

i�1

�
ni 

1

2

�
2
; (12)

p2
B �

Xd�1

i�1

p2
i �

4�2

L2

Xd�1

i�1

n2
i ; (13)
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for the momenta of the fermions and bosons, respectively.
In finite volume, we allow explicit symmetry breaking in
the effective potential, which then becomes a function of
two variables � and ~�2 separately. The corresponding
expression to Eq. (8) is

k
@
@k

Uk��; ~�2; L; T� �
1

2

T

Ld�1

Z d�
�

�
X
l

X
~n

f4NcNf exp���	(2
l  p2

F

M2
q��; ~�

2�
� �
X4
i�1

exp���	!2
l

 p2
B M2

i ��; ~�
2�
�gk

@
@k

fa��k2�:

(14)
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The M2
i , i � 1; . . . ; N2

f are the eigenvalues of the second
derivative matrix

	Uk��; ~�2�
ij �
@2Uk

@�i@�j
(15)

of the meson potential Uk��; ~�
2� with respect to the fields

� � ��; ~��. They depend only on the magnitude of the
pion fields ~�2 and are independent of the direction. We
wish to stress the importance of this point, since otherwise
the meson contributions from the flow equations are not
compatible with the ansatz for the potential which we will
introduce below.

The second derivative matrix is given by
U�� U ~�2�2�
�1� U ~�2�2�

�2� U ~�2�2�
�3�

U� ~�22��1� 2U ~�2 U ~�2 ~�24���1��2 U ~�2 ~�24��1���2� U ~�2 ~�24��1���3�

U� ~�22��2� U ~�2 ~�24��2���1� 2U ~�2 U ~�2 ~�24���2��2 U ~�2 ~�24��2���3�

U� ~�22��3� U ~�2 ~�24��3���1� U ~�2 ~�24��3���2� 2U ~�2 U ~�2 ~�24���3��2

0BBB@
1CCCA; (16)
where we have suppressed the scale index k of the potential
and use the abbreviations

U� �
@U
@�

;

U��a� �
@U

@ ~�2

@ ~�2

@��a�
� U ~�22��a�;

U ~�2 �
@U

@ ~�2 ;

(17)

and the corresponding expressions for the higher deriva-
tives. The eigenvalues of this matrix are given by

M2
1 �

1

2

�
2U ~�2  4 ~�2U ~�2 ~�2 U��


��������������������������������������������������������������������������������������
�2U ~�2  4 ~�2U ~�2 ~�2 �U���

2  16 ~�2U2
� ~�2

q �
;

M2
2 � 2U ~�2 ; M2

3 � 2U ~�2 ;

M2
4 �

1

2

�
2U ~�2  4 ~�2U ~�2 ~�2 U��

�
��������������������������������������������������������������������������������������
�2U ~�2  4 ~�2U ~�2 ~�2 �U���

2  16 ~�2U2
� ~�2

q �
:

(18)

For vanishing cross terms U� ~�2 , the last eigenvalue reduces
to 2U ~�2  4 ~�2U ~�2 ~�2 , which corresponds to a derivative in
‘‘radial’’ direction in the pion-subspace. Especially for
~�2 � 0, the three pion modes have equal masses. We
also note that the pion fields appear only in the combina-
tion ~�2 in the eigenvalues, despite the fact that the deriva-
tive matrix contains terms linear in ��a�. The reason is that
the rotational symmetry of the pion space remains unbro-
ken even in the presence of explicit symmetry-breaking
terms in the sigma direction.
As discussed in [30], we are able to perform the sum
over the thermal Matsubara frequencies analytically and
obtain an evolution equation which contains the Fermi-
Dirac-distribution nF�E� and the Bose-Einstein-
distribution nB�E�,

k
@
@k

Uk��; ~�2; L; T� �
��1�a

2��a 1�

k2�a1�

Ld�1

@a

�@k2�a

�
X
~n

(X4
i�1

1

Ei
	1 2nB�Ei�


�
4NcNf

Eq
	1� 2nF�Eq�


)
; (19)

with

nF�E� �
1

eE=T  1
; nB�E� �

1

eE=T � 1
; (20)

where in the absence of a chemical potential for the fer-
mions the Fermi-Dirac-distributions for quarks and anti-
quarks coincide. The effective energies are defined by

E2
q � k2  p2

F M2
q��; ~�

2�;

E2
i � k2  p2

B M2
i ��; ~�

2�:
(21)

The parameter a in the cutoff function is given by a � 2 in
the finite volume, in order to ensure that we can compare
with the results in infinite volume. In the limit of vanishing
temperature T � 0, we find in d � 4 the finite volume
-4
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evolution equation of the meson potential:

k
@
@k

Uk��; ~�2; L� �
3

16

k6

L3

X
~n

(
�

4NcNf

	Eq� ~n; L�
5


X4
i�1

1

	Ei� ~n; L�
5

)
: (22)

The polynomial ansatz for the meson potential is deter-
mined by the following idea: Since the current quark mass
is the only source of symmetry breaking, the quark term in
the flow equation determines the symmetry-breaking terms
of the potential. The constituent quark mass can be ex-
panded around a finite expectation value of the mesonic
fields, which is chosen in the direction of the field �,

M2
q � g2	��mc�

2  ~�2


� g2	�� �0 � �0 mc�
2  ~�2


� g2	��0 mc�
2  2mc��� �0�  ��2  ~�2 � �2

0�
:

(23)

We have rescaled mc by a factor g for convenience, so that
the physical current quark mass is given by gmc. From this
expression, we read off that the contributions to the poten-
tial from the fermionic terms in the flow equations can all
be expressed in terms of powers of the combinations ��2 
~�2 � �2

0� for the symmetric part and ��� �0� for the
symmetry-breaking parts. Therefore, we make for the me-
son potential the ansatz

Uk��; ~�2� �
XN�

i�0

X	12�N��i�


j�0

aij�k���� �0�
i��2  ~�2 � �2

0�
j:

(24)

The flow equations for the coefficients in this potential are
derived in the appendix.

Incorporating the explicit breaking of the chiral symme-
try into the potential and the flow from the start has several
advantages. The polynomial expansion above evolves au-
tomatically from a potential with small symmetry breaking
peaked around h�i � 0 to a potential with large symmetry
breaking peaked at a value h�i � f�. Without explicit
symmetry breaking, the polynomial expansion in �2 has
to be changed from a parametrization in terms of powers of
�2 to ��2 ��2

0� at the chiral symmetry-breaking scale
[22].

As is well known, a linear symmetry-breaking term
remains unchanged in the renormalization group flow
[31]. Therefore the usual strategy is to evolve the potential
without a symmetry-breaking term. Explicit symmetry
breaking is then taken into account after the quantum
fluctuations have been integrated out on all scales
[22,32,33]. In an infinite volume and for small quark
masses, this is perfectly acceptable and will yield the
014032
correct results. In a finite volume, however, the situation
is different. Since chiral symmetry is not spontaneously
broken, explicit symmetry breaking has to be included on
all scales in the renormalization group flow to obtain a
nonzero value for the order parameter. Otherwise, diver-
gences from massless Goldstone bosons would restore the
symmetry. In this context, we would like to point out that
even in the absence of a symmetry-breaking term, the pion
decay constant does not remain zero on all renormalization
scales k. On some intermediate scale below the chiral
symmetry-breaking scale, k < k,, where the quantum fluc-
tuations are only partially integrated out, it acquires a
nonzero expectation value, and chiral symmetry is sponta-
neously broken. However, the emergence of exactly mass-
less Goldstone bosons dominates the infrared evolution of
the potential and counteracts the formation of a symmetry-
breaking condensate.

When the potential is expanded in a polynomial in a
theory with exactly massless Goldstone bosons, divergen-
ces appear in the flow equations for the coefficients of
operators of mass dimension higher than four [24]. As an
added benefit of including explicit symmetry breaking, the
presence of a finite pion mass regulates these IR
divergences.

IV. NUMERICAL EVALUATION

We have solved the RG-flow equations numerically and
present the results for the volume dependence of the pion
mass and the pion decay constant in the following section.
For the numerical evaluation, we have used the polynomial
ansatz for the effective potential given in Eq. (24), and
expanded up to fourth order in the fields:

Uk��; ~�2� � a00�k�  a01�k���2  ~�2 � �2
0�

 a02�k���2  ~�2 � �2
0�

2

 a10�k���� �0�  a20�k���� �0�
2

 a30�k���� �0�
3  a40�k���� �0�

4

 a11�k���� �0���
2  ~�2 � �2

0�: (25)

Here, we first discuss our choice of model parameters at the
UV scale, and some details of the numerical evaluation.

The UV scale itself is determined from physical consid-
erations as the scale below which a description of QCD
with hadronic degrees of freedom is appropriate. Here, we
choose UV � 1:5 GeV. At the ultraviolet scale UV , the
free parameters of the quark-meson model are the meson
mass mUV , the four-meson-coupling -UV , and the current
quark mass gmc, which controls the degree of explicit
symmetry breaking. The Yukawa coupling g does not
evolve in the present approximation [22,32,33]. We choose
g � 3:26, which leads to a reasonable constituent quark
mass of Mq � g�f� mc� � 310 MeV for physical val-
ues for the pion decay constant f� � 93 MeV and the
current quark mass gmc � 7 MeV.
-5
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In Table I, we summarize the three parameter sets which
we used in obtaining our results for pion masses of 100,
200, and 300 MeV. We determine these UV parameters by
fitting to a particular value for the pion mass m��1� and to
the corresponding value for the pion decay constant f��1�
in infinite volume. We then evolve the RG equations with
these parameters to predict the volume dependence of
f��L� and m��L�.

For any value of the pion mass, the corresponding value
of the pion decay constant is taken from chiral perturbation
theory [9]. The pion mass is mainly controlled by the value
of the current quark mass, which parametrizes the symme-
try breaking. The current quark mass varies from approxi-
mately 2 MeV for a pion mass of 100 MeV to about
10 MeV for m� � 200 MeV, it has to be increased to
approximately 25 MeV for m� � 300 MeV. To achieve
the correct corresponding values for the pion decay con-
stant, the meson mass at the UV scale has to be decreased
from approximately mUV � 780 MeV to mUV �
700 MeV, while the pion mass increases from 100 to
300 MeV. The four-meson-coupling -UV is fixed. We
have checked that our results are to a very large degree
independent of the particular choice of UV parameters:
Different sets of parameters leading to the same values of
the low-energy constants in the infinite volume give the
same volume dependence.

Although it facilitates the comparison to chiral pertur-
bation theory, it is not necessary as a matter of principle to
use the chiral perturbation theory result for the mass de-
pendence of the pion decay constant. However, as has been
found for infinite volume, in order to correctly describe the
behavior of the pion decay constant as a function of a
single symmetry-breaking parameter, it is necessary to go
beyond the approximation of a constant expectation value
for the meson field, which we used in this paper, and to
include wave function renormalizations in the RG flow
[27]. This makes it possible to recover the correct prefac-
tors of chiral logarithms in the framework of the renormal-
ization group. Such an approach is more powerful than the
present one, since in addition to the volume dependence, it
predicts the dependence of m� and f� on the symmetry-
breaking parameter mc. We stress that even in such an
approach, it remains necessary to fit the parameters at the
TABLE I. Values for the parameters at the UV scale used in
the numerical evaluation. The parameters are determined in
infinite volume by fitting to a particular pion mass and the
corresponding value of the pion decay constant, taken from
chiral perturbation theory. Note that in our notation, the physical
current quark mass corresponds to gmc.

UV [MeV] mUV [MeV] -UV gmc [MeV] f� [MeV] m� [MeV]

1500 779.0 60 2.10 90.38 100.8
1500 747.7 60 9.85 96.91 200.1
1500 698.0 60 25.70 105.30 300.2

014032
UV scale to the correct values of the low-energy constants.
Thus, for example, the value of the pion decay constant in
the chiral limit is not a prediction of the model, but a
necessary input to constrain its parameters. The full set
of RG equations including the wave function renormaliza-
tion and coupling constant renormalization equations
would reduce the input parameters to the four-fermion
coupling and the current quark mass at the UV scale. In
connection with the symmetry-breaking ansatz Eq. (24),
these equations are more complicated and have not been
worked out yet.

A limit on the possible values of the current quark mass
is given by the requirement that all masses, in particular,
the sigma-mass, remain substantially smaller than the ul-
traviolet cutoff UV � 1500 MeV of the model. For a pion
mass of m� � 300 MeV, we find m� � 800 MeV.

With regard to the UV-cutoff, we find only a slight
dependence of our results for reasonably large volumes.
When we change the cutoff from UV � 1500 MeV to
UV � 1100 MeV, our results for the relative shift
R	m��L�
 of the pion mass in the finite volume change
little. The change in the pion mass from a variation of the
cutoff is of the order of less than 1% for L> 2 fm, and
approximately 6% at L � 1 fm for the largest pion mass
we considered here, m� � 300 MeV. For smaller pion
mass, the dependence on the UV cutoff becomes weaker,
for m� � 100 MeV it is negligible on the scale of our
results. This can be understood, since a higher degree of
explicit symmetry breaking leads to more massive particles
for which a smaller value for the UV momentum cutoff
becomes more relevant.

The sums over the momentum modes in the flow equa-
tions cannot be performed analytically. For a numerical
evaluation of the flow equations, these sums must be
truncated at a maximal mode number Nmax � maxj ~nj
which defines the cutoff momentum mode pmax �
2�
L Nmax. This numerical truncation should not introduce
an additional UV cutoff in the model, and therefore we
require that

2�
L

Nmax � UV: (26)

Since we use a ‘‘soft’’ cutoff function it is necessary to
really satisfy the above equation with a safe margin. For
the volumes with L � 1 fm considered here, we have used
Nmax � 40.

In Fig. 1, the dependence of the relative difference of the
pion mass in finite volume from its value in the infinite
volume limit, R	m��L�
, is shown as a function of L for
different values of the maximal mode number Nmax. The
relative mass difference depends mainly on m�L and drops
exponentially for large values of this dimensionless vari-
able. Thus, for any given value of L, the value of R	m��L�

will be smaller for a heavier pion. Comparing the two
panels in Fig. 1, we see that although the absolute values
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are smaller, the relative error due to the finite number of
momentum modes in the evaluation is larger for a heavier
pion. The reason is the increasing importance of the non-
zero-momentum modes when the pion mass becomes
larger at fixed box size. Following the argument from
[11] outlined above, if 1=m� � L, then the partition func-
tion is dominated by the zero modes and effects from finite
momentum modes present small corrections. When the
pion mass is increased, the importance of the finite mo-
mentum modes grows and the number of modes has to be
increased to obtain results with the same level of accuracy.
This argument can be presented in a more formal way. The
momentum sums contributing to the flow equations are of
the form
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FIG. 1. The figures show the dependence of the results for the
pion mass in finite volume on the truncation Nmax of the
momentum sum in the numerical evaluation of the flow equa-
tions. Plotted is R	m��L�
, the relative deviation of the finite
volume pion mass from the value in infinite volume, as a
function of the box size L, for different values of Nmax.
Results for two different values of the pion mass are shown in
the two panels. Ideally, for large volumes, the relative deviation
from the infinite volume pion mass should approach zero. The
truncation has a relatively larger effect for heavier pion masses.
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X
n1;n2;n3

1

k2 m2
�  ~n2 4�2

L2

; (27)

where ~n2 � n2
1  n2

2  n2
3. For small values of the renor-

malization scale k, the sum is dominated by the zero mode
term

1

m2
�


1

m2
�  4�2

L2

 . . . : (28)

If the box is sufficiently small, all terms with nonzero
momentum are suppressed by 1=L2, which acts as a large
regulator. As we increase the size of the box, so that 1=L�
m�, the contributions of the nonzero-momentum modes
are of the same size as the zero mode term. Therefore,
effects from a truncation of the momentum sums should be
expected to appear already at a smaller box size for large
pion masses, which is exactly what we observe.
V. RESULTS

The results of the RG-flow equations for the evolution
with the infrared cutoff scale k give a picture of chiral
symmetry breaking which reflects the formation of the
quark condensate for higher momenta and the effects of
pion fluctuations at low scales. Figure 2 shows the masses
of the pion and sigma, and the pion decay constant as a
function of the renormalization scale k, for a value of
m� � 100 MeV, in the infinite volume limit. Starting at
the UV scale UV and proceeding towards smaller values
of k, we observe that the pion decay constant f� grows
rapidly around the chiral symmetry-breaking scale k,SB �

800 MeV, begins to flatten between 600–400 MeV, and
becomes almost completely flat below 300 MeV.
Generally, massive degrees of freedom decouple from the
renormalization group flow at a momentum scale given by
the value of their mass m, i.e., they do not contribute to the
renormalization for k < m. This can be seen clearly in the
flow of f�. As soon as the renormalization scale is of the
order of the constituent quark mass (approximately
300 MeV), the quarks are no longer dynamical degrees
of freedom and f� becomes essentially constant. The RG-
flow of the mass of the heaviest meson, the sigma, is in
several respects very similar to the flow of f�. Its slope is
also initially large at the chiral symmetry-breaking scale
and starts to decrease between 600–400 MeV as well. The
value of the sigma-mass reaches a maximum at k slightly
above 300 MeV. Its decrease below this scale is due to the
light pion with a mass of 100 MeV, which remains in the
evolution as the only dynamical degree of freedom. When
the pion mass is increased, the drop in the sigma-mass
below the scale set by the constituent quark mass becomes
much less pronounced. For m� � mq � 300 MeV, m��k�
is essentially a flat function of k after it has reached its
maximum.
-7
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FIG. 3. Masses of the mesonic degrees of freedom and the pion
decay constant as a function of the inverse box size 1=L. The
results are obtained by completely integrating out all quantum
fluctuations (k ! 0) at fixed L. As soon as k < 1=L, the box size
becomes the controlling scale, and in the limit k ! 0 it is the
only scale that remains. As for the preceding figures, we show
the results with m� � 100 MeV and f� � 90:4 MeV for k ! 0
and L ! 1.
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FIG. 2. Masses of the mesonic degrees of freedom and the pion
decay constant as a function of the renormalization scale k in
infinite volume. The chiral symmetry-breaking scale can be
clearly identified as the scale at which the mass of the heaviest
meson (the �) has a minimum. For this figure, we have chosen
m��1� � 100 MeV and f��1� � 90:4 MeV.
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In finite volume, a similar behavior is visible. In Fig. 3,
the meson masses and the pion decay constant are shown as
a function of the scale 1=L set by the finite volume. In these
results, all quantum fluctuations are integrated out com-
pletely, which removes the scale k. Now let us consider a
finite value of k, where the quantum fluctuations are only
partially integrated out. The scale 1=L introduced by the
finite volume is in competition with the renormalization
scale k. As soon as k drops below �=L, the renormalization
scale no longer controls the renormalization flow. We can
interpret the results shown in Fig. 3 roughly as an instant
picture of the k-flow arrested at a scale k � �=L.
However, this correspondence is not one-to-one: while
the cutoff k affects both bosonic and fermionic fields in
the same way, this is not true for 1=L. Since there are no
zero modes for fields with antiperiodic boundary condi-
tions, the fermionic fields are more strongly affected by
014032
this cutoff than the mesons. For the mesons, the scale 2�
L

imposes only a minimum value for the smallest nonzero-
momentum mode. For the fermionic fields, on the other
hand, the lowest momentum mode

���
3

p
�=L can effectively

‘‘freeze’’ the quark fields already above the constituent
quark mass scale and no condensation of quarks takes
place. For very small volumes 1=L > 0:5 fm�1, the sup-
pression of quark condensation by the large cutoff becomes
the dominating effect. The chiral symmetry is approxi-
mately restored. A more subtle effect can also be seen in
the behavior of the sigma-mass. While the sigma-mass has
a maximum in the k-flow at a value of m� � 600 MeV,
from which it drops to m� � 500 MeV due to the pion
fluctuations, there is no corresponding maximum in the
1=L-dependence. With decreasing 1=L the pions hardly
feel the constraints of the finite volume, but the momentum
-8
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scale at which the quarks decouple consistently increases.
Therefore the pion contributions at low momenta have a
greater effect in the RG-flow, since the k-region increases
in which they are the only relevant degrees of freedom.
Through this effect, the pions also contribute toward the
restoration of chiral symmetry for small volumes.

The volume dependence of the low-energy observables
is the main result of this paper. In Table II, we give the
values for R	m��L�
 cf. eq. (1), the relative difference of
the pion mass m��L� in finite volume from m��1�, its
value in infinite volume, for three volume sizes L � 2:0,
2.5, 3.0 fm and three pion masses m��1� � 100, 200,
300 MeV.

In Figs. 4 and 5, we show the relative change of the pion
mass m��L� and the pion decay constant f��L� as a func-
tion of the size L of the three-dimensional volume. We plot
the results for the relative differences on a logarithmic
scale for three different values of the pion mass m��1� �
100, 200, 300 MeV.

Let us first discuss the plots for the pion mass in Fig. 4.
The relative change of the pion mass decreases with the
volume size L and the pion mass m��1�. Figure 4 also
contains the results of chiral perturbation theory from the
exact one-loop calculation in finite volume [10] and also
the ‘‘best estimate’’ from [9]. As discussed in section II, the
difference between the results of Lüscher’s formula for the
mass shift which uses as input ��-scattering in the one-
(lo) and three-(nnlo) loop order is used as a correction to
the exact one-loop mass shift from [10].

Our RG results have the same slope as those from chiral
perturbation theory, but are consistently above chiral per-
turbation theory, even with corrections to three loops. In
general, the RG calculation gives values for R	m��L�

which are about a factor 1.5 to 2.0 larger than the values
from chPT, as can be seen in Table II.

The difference between the RG result and the loop
expansion decreases with higher order in loops. The RG
TABLE II. Values for R	m��L�
 cf. eq. (1), the relative shift of the
the value in infinite volume, for pion masses of m��1� � 100, 200,
chPT results of [11] for a finite volume (1L chPT), and the exact on
with chPT using Lüscher’s formula [9] 	1L chPT �nnlo-lo�
. In th
three-loop corrected chPT result is given.

L [fm] m��1� [MeV] m�L RG

2.0 100 1.01293 26:6� 10�2

200 2.02586 5:38� 10�

300 3.03879 1:70� 10�

2.5 100 1.26616 10:37� 10�

200 2.53233 1:95� 10�

300 3.79849 5:31� 10�

3.0 100 1.5194 4:94� 10�

200 3.03879 7:85� 10�

300 4.55819 1:76� 10�
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result is closer to the calculation with nnlo-Lüscher for-
mula than to the one-loop chPT calculation.

For large volumes, the pion mass should drop as
exp��m�L�. Therefore, we expect that the slope of the
RG result is the same as that from chiral perturbation
theory, which is indeed the case. The calculation with the
flow equation can be continued to smaller box sizes, as
long as the momenta constrained by the box are below the
cutoff UV . The slope of the RG result at small box size
(L< 1 fm) is approximately given by the meson mass
m� � m� cf. Fig. 3, after the transition between the regime
dominated by chiral symmetry breaking and the one with
restored chiral symmetry has taken place. In this other
region the chiral expansion can no longer be considered
reliable and is therefore no longer applied.

While the relative difference between the exact one-loop
result and the RG results remains approximately constant
for different pion masses, the relative difference between
the RG results and the results of Colangelo and Dürr [9]
decreases when the mass of the pion is increased. We have
checked that the difference between our RG results and the
chiral perturbation theory results from Colangelo and Dürr
are consistent with the error estimate of Lüscher’s approxi-
mation formula. We find for all pion masses that the
differences decrease exponentially according to
exp��Cm�L�, with C a positive constant of order 1.

Next we discuss the results for the volume dependence
of the pion decay constant shown in Fig. 5. As for the pion
mass, we compare with the chiral perturbation theory
results [8,10]. Note that in this case, we define the relative
difference with opposite sign as R	f��L�
 � 	f��1� �
f��L�
=f��1�, because the pion decay constant is smaller
for a finite volume, in contrast to the pion mass. We refer to
Fig. 3 for an illustration of the global behavior of f��L�.
When the size of the volume is decreased, the pion decay
constant at first drops only slowly, and then sharply at the
scale associated with chiral symmetry breaking. For very
pion mass in finite volumes of L � 2:0, 2.5, 3.0 fm, compared to
300 MeV. We compare our RG calculation to the exact one-loop
e-loop calculation with corrections in three-loop order obtained
e last column, the difference %R between the RG result and the

R	m��L�

1L chPT �nnlo-lo� %R

8:74� 10�2 11:6� 10�2 15:0� 10�2

2 2:00� 10�2 3:31� 10�2 2:07� 10�2

2 0:56� 10�2 1:12� 10�2 0:58� 10�2

2 3:85� 10�2 4:97� 10�2 5:40� 10�2

2 0:73� 10�2 1:17� 10�2 0:78� 10�2

3 1:65� 10�3 3:27� 10�3 2:04� 10�3

2 1:91� 10�2 2:41� 10�2 2:53� 10�3

3 2:95� 10�3 4:65� 10�3 3:20� 10�3

3 0:54� 10�3 1:05� 10�3 0:71� 10�3
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small volumes, the pion decay constant vanishes and chiral
symmetry is effectively restored. This is true for L ! 0
regardless of the value of the pion mass. Therefore, the
largest possible relative shift for L ! 0 is R	f��0�
 � 1,
when the order parameter vanishes completely.
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FIG. 4. Volume dependence of the pion mass. We plot the
relative shift of the pion mass from its infinite volume limit
R	m��L�
 � 	m��L� �m��1�
=m��1� as a function of the size
of the volume L. For comparison, we also plot the results from
chPT calculations taken from [9]. The values for the pion mass in
infinite volume are given in the figure, note the different scales
on the axes for different m��1�.
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The plots for the volume dependence of f� illustrate in
which region chiral perturbation theory remains valid.
Since spontaneously broken chiral symmetry and a suffi-
ciently large f� are required, chPT does not describe the
transition to the region with effectively restored chiral
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FIG. 5. Volume dependence of the pion decay constant. We
plot the relative shift from the infinite volume limit Rf� �L� �
	f��1� � f��L�
=f��1� as a function of the box size L for
different values of the pion mass. For comparison, we show the
chPT results taken from [8]. The values for m��1� are given in
the panels. Note the different scales on the axes for different
m��1�.

-10



VOLUME DEPENDENCE OF THE PION MASS IN THE . . . PHYSICAL REVIEW D 71, 014032 (2005)
symmetry. Therefore, chiral perturbation theory results are
available only for volumes with L � 2 fm. Already for
L � 2 fm and a pion mass m� � 100 MeV, the f�-shift is
almost 40%. The RG method remains valid in both regions,
down to very small volumes.

We compare with the chiral perturbation theory results
obtained by using an approximation similar to Lüscher’s
formula for the pion mass shift, which was derived in [8].
For the pion decay constant, the input needed to calculate
the finite volume shift is an amplitude involving the axial
current in infinite volume. So far only two loops in chiral
perturbation theory (nlo) are known. The chPT nlo-correc-
tions to the exact one-loop result increase the shift towards
larger values. As in the case of the pion mass, the RG
results give a slightly larger finite volume shift than the
chPT results. Again the results from RG and chPT con-
verge for larger values of the pion mass (note the different
scales on both axes in the plots for different values of m�!).

For the volume dependence of the sigma-mass, we refer
back to Fig. 3, where we show the overall dependence of
m� on 1=L. It is interesting to relate the variation of
m��1=L� to the 0 phase shift of ��-scattering, which
will be done in a separate work.
VI. CONCLUSIONS

We have presented a new approach to the quark-meson
model employing the renormalization group method in a
finite volume within the framework of the Schwinger
proper time formalism. Central to any such approach is
the inclusion of explicit chiral symmetry breaking. Since
chiral symmetry is not broken spontaneously in a finite
volume, it is necessary to introduce a finite current quark
mass. In this paper, we have evolved the effective potential
with additional symmetry-breaking terms. The form of
these terms is constrained by the quark contributions to
the renormalization group flow, which introduce the ex-
plicit chiral symmetry breaking.

By solving the resulting renormalization group flow
equations numerically, we have obtained results for the
volume dependence of the meson masses, in particular
the pion mass, and the pion decay constant, the order
parameter of chiral symmetry breaking.

Our results show consistently a larger finite volume mass
shift for the pion than has been obtained in chiral pertur-
bation theory including up to three loops. The differences
between the chiral perturbation theory results which make
use of the Lüscher formula and the RG results obtained in
the present paper are consistent with the error estimate for
Lüscher’s approximation. As one expects, the difference is
largest for small values of m�L. We have checked that this
difference decreases exponentially with an increase in this
dimensionless quantity. As shown in figs. 4 and 5, our
results and those obtained in chiral perturbation theory
014032
with Lüscher’s formula [8,9] converge for large current
quark masses. We note that the ratio of the results from
chPT and RG does not depend on L, even down to L �
1:5 fm.

Compared to the present numerical approach, chiral
perturbation theory has the advantage that it is possible
to obtain analytical expressions for the finite volume mass
shift. This makes comparisons to lattice results simpler. On
the other hand, current lattice volumes and lattice pion
masses are at the edge of a reliable chiral perturbation
theory calculation. In contrast, the RG method remains
valid for large current quark masses as well as small
volumes.

The main uncertainty of the RG method comes from its
dependence on the UV cutoff scale UV for large meson
masses. The system becomes sensitive to UV for large
explicit symmetry breaking, because the mass of the sigma
as the heaviest particle approaches the UV cutoff. For a
pion mass of m� � 300 MeV, the sigma-mass is m� �
800 MeV. In this case, a cutoff variation between UV �
1500 MeV and 1100 MeV, changes the pion mass for a
volume with L � 1 fm by approximately 6%, and by less
than 1% for L> 2 fm. Within this uncertainty, our results
agree with those of chPT for m� � 300 MeV. In contrast,
for m� � 100 MeV the cutoff dependence is so weak that
it is not noticeable on the scale of the results. The RG and
chPT results do not agree within this uncertainty, cf.
Table II for m� � 100 MeV and m� � 200 MeV.

The dependence of our results on the choice of model
parameters at the UV scale is much weaker than that on the
cutoff. By fitting to the values of the low-energy observ-
ables m� and f� in infinite volume, we achieve a very high
degree of independence on the particular choice of UV
parameters.

We expect that the inclusion of wave function renorm-
alizations in the finite volume renormalization group flow
should make it possible to describe the low-energy con-
stants as a function of a single symmetry-breaking parame-
ter, the quark mass mc. It has already been observed that
this is the case in infinite volume, where the behavior of m�

and f� as a function of mc is described correctly when all
other UV parameters remain fixed [27]. Systematic errors
introduced by the simplification used in this paper to adjust
both m��1� and f��1� in infinite volume could then be
estimated by a comparison of the calculations.

Although we have not yet investigated these questions in
depth, it appears that the present approach, which treats the
pion fields and the sigma explicitly and as individual
degrees of freedom, improves the convergence [24] of
the polynomial expansion of the effective potential. This
is due to the finite mass acquired by the Goldstone bosons,
which becomes relevant for k ! 0.

The RG approach shows in a transparent way the rele-
vance of the momentum scale introduced by the finite
volume for the quantum fluctuations.
-11



J. BRAUN, B. KLEIN, AND H. J. PIRNER PHYSICAL REVIEW D 71, 014032 (2005)
ACKNOWLEDGMENTS

H. J. P. would like to thank Professor Leutwyler and Dr.
Dürr for instructive discussions. J. B. would like to thank
the GSI for financial support.
APPENDIX A: FLOW EQUATIONS

We derive flow equations for the coefficients of the
potential by inserting Eq. (24) into the flow equation for
the potential and comparing coefficients of both sides. We
define expansion coefficients for the flow equations:�
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Then the flow equations for the coefficients aij in the
ansatz for the potential are given by�
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with the additional condition that �1 2j� � N�.
In order for � � �0 to actually correspond to a mini-

mum of the potential, it must satisfy @
@�Ukj���0

� 0. For
the coefficients a10 and a01, this translates into the condi-
tion

a10  2a01�0 � 0: (A3)

Because of this condition, only two of the variables in the
set fa10; a01; �0g are independent, and the third one can be
expressed in terms of the other two. Likewise, if we take
the derivative of the Eq. (A3) with respect to the renormal-
ization scale k, we get an equation which relates the flow of
these three variables:

k
@
@k

a10  2a01k
�
@
@k

�0

�
 2�0k

@
@k

a01 � 0: (A4)

We can use this equation to replace the flow equation for
a10 in the above set Eq. (A2). It is desirable to eliminate
a10, since �0 and a01 both correspond to the observables
we wish to obtain, namely, the pion decay constant and the
pion mass. In addition, with this replacement the system of
differential equations can also be solved more easily.

From the general expression for the flow equations
Eq. (A2), we find the particular equations governing a10

and a01:�
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The flow equation for a10 contains on the left-hand side
(LHS) only terms that are proportional to the symmetry-
breaking current quark mass mc. Because of this, a10 does
not evolve in the chiral limit mc ! 0. If it is initially zero at
the UV scale, it remains zero on all scales. In this case, the
condition (A4) forces the coefficient a01 to vanish as soon
as �0 acquires a finite expectation value. This corresponds
to the appearance of exactly massless Goldstone bosons in
case of spontaneous symmetry breaking, in accordance
with our expectations for the chiral limit.

In order to derive a flow equation for the minimum of the
potential �0, we can combine the two equations and use
Eq. (A4) to eliminate the k-derivatives of a10 and a01:
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k
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@k

�0

�
�2a20  2a01  4a11�0  8a02�2

0�:

(A7)

From the expressions for the meson masses, evaluated at
the minimum of the potential, it can be seen that the
expression in brackets, which multiplies the k-derivative
of �0, is up to a constant factor the square of the �-mass,
M2

�. Therefore, this equation is always well-conditioned.
The only exception is at the chiral symmetry-breaking
scale, where M2

� drops sharply, if the explicit symmetry
breaking is very small. For reasonably large pion masses,
this is not a problem.
APPENDIX B: ANSATZ FOR THE POTENTIAL

We use the flow equations in infinite volume to motivate
the ansatz for the potential with explicit symmetry break-
ing. Neglecting the mesonic contributions to the flow
equations, we are left with the terms arising from the
fermions:

k
@
@k

UF��; ~�2� � �
4NfNc

32�2

k6

k2 M2
q
: (B1)

The constituent quark mass Mq contains through the cur-
rent quark mass mc the only explicitly symmetry-breaking
term in the flow equation. As shown in Eq. (23), by
expanding around the minimum of the potential, the quark
mass can be written as
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M2
q � g2	��0 mc�

2  2mc��� �0�  ��2  ~�2 � �2
0�
; (B2)

where mc is rescaled by a factor of g for convenience. When we expand the denominator in the flow equation in the
deviation of the fields from the vacuum expectation value, the result contains only those terms we postulated in our ansatz
for the potential:
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0�2
�
�2mc

�
g2

k2  g2��0 mc�
2

�
2
�
 . . .

�
:

(B3)

All remaining terms are of higher order in ��� �0� or ��2  ~�2 � �2
0� or any combination thereof. Only the terms in

��2  ~�2 � �2
0� � ��2 � �2

0� remain in the chiral limit mc ! 0. These terms respect the chiral symmetry and the
potential reduces to the symmetric form.
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